

The Alon-Saks-Seymour and Rank-Coloring Conjectures

Michael Tait

Department of Mathematical Sciences University of Delaware Newark, DE 19716 tait@math.udel.edu

April 20, 2011

- A graph is a set of vertices V(G) and a set of edges E(G), where each edge is an unordered pair of vertices.
- The adjacency matrix of a graph is a |V(G)| × |V(G)| matrix with rows and columns indexed after the vertices. The xy'th entry is 1 is xy is an edge in G and 0 otherwise. This matrix is denoted by A(G)
- ► We denote the rank of A(G) by rank(A(G)).

A proper *k*-coloring of a graph *G* assigns *k* colors to the vertices of *G* in such a way that if two vertices are adjacent they do not have the same color. The **chromatic number** of a graph is the minimum number *k* such that a proper *k* coloring of *G* exists and is denoted $\chi(G)$.

The complete graph on n vertices is the graph on n vertices with all ⁿ₂ possible edges and is denoted K_n.

- An independent set is a set of vertices that are pairwise nonadjacent.
- A complete bipartite graph (also called biclique) is an independent set of size a and an independent set of size b with all a · b edges between them and is denoted K_{a,b}.

▶ The **biclique partition number** of a graph *G* is the minimum number of bicliques necessary to partition the edge set of *G*, and is denoted bp(*G*).

• So for example, $bp(K_4) \leq 3$.

The Graham-Pollak Theorem

- ▶ In fact, $bp(K_n) \le n 1$ for any *n*.
- We can prove by induction. To see this, we can take a $K_{1,n-1}$ out of the edge set of K_n , and what we are left with is the edge set of K_{n-1} .
- ► This problem begins with the Graham-Pollak Theorem. In 1971, Graham and Pollak proved that the inequality also goes the other direction, i.e. that $bp(K_n) \ge n 1$.

Theorem (Graham-Pollak Theorem)

The edge set of the complete graph on n vertices cannot be partitioned into fewer than n - 1 complete bipartite subgraphs.

 Several proofs of this fact have since been discovered (e.g. Witsenhausen, Peck, Tverberg, Vishwanathan).

The Alon-Saks-Seymour Conjecture

- Since $\chi(K_n) = n$, the Graham-Pollak Theorem can be rephrased as $\chi(K_n) = bp(K_n) + 1$.
- > This prompted Alon, Saks, and Seymour to make the following conjecture in 1991.

Alon-Saks-Seymour Conjecture - 1991

If the edge set of a graph *G* can be partitioned into the edge disjoint union of *k* bicliques, then $k + 1 \ge \chi(G)$.

▶ Rephrasing, the conjecture says for any graph *G*, the inequality $\chi(G) \leq bp(G) + 1$ holds.

The Rank-Coloring Conjecture

- We also notice that $rank(A(K_n)) = n$.
- In 1976, van Nuffelen stated what became known as the Rank-Coloring Conjecture.

Rank-Coloring Conjecture

For any simple graph G, $\chi(G) \leq \operatorname{rank}(A(G))$.

Counterexamples

- Neither conjecture is true!
- In 1989, Alon and Seymour constructed the first counterexample to the Rank-Coloring Conjecture with a graph that has rank 29 and chromatic number 32.
- ▶ In 1992, Razborov found the first counterexample with a superlinear gap between rank and chromatic number by constructing an infinite family of graphs G_n such that $\chi(G_n) \ge c(\operatorname{rank}(\mathcal{A}(G_n)))^{4/3}$ for some fixed c > 0.
- At the current time, a construction of Nisan and Wigderson yields the largest gap between rank and chromatic number.
- ▶ The Alon-Saks-Seymour Conjecture remained open for 20 years until Huang and Sudakov constructed graphs H_n such that $\chi(H_n) \ge c(bp(H_n))^{6/5}$ for some fixed c > 0.

Thesis Outline

- We construct new infinite families of counterexamples to both conjectures.
- These families generalize the constructions of Razborov and of Huang and Sudakov.
- We explain the relationship between these conjectures and questions in theoretical computer science.
- ▶ We consider a generalization of the Graham-Pollak Theorem to hypergraphs.

Construction

• We construct graphs G(n, k, r) with $n^{2k+2r+1}$ vertices for all integers $n \ge 2, k \ge 1$, $r \ge 1$.

$$\chi(G(n,k,r)) \ge \frac{n^{2k+2r}}{2r+1}.$$
 (1)

For
$$k \ge 2$$
,
 $2k(2r+1)(n-1)^{2k+2r-1} \le bp(G(n,k,r)) < 2^{2k+2r-1}n^{2k+2r-1}$ (2)

and

$$2k(2r+1)(n-1)^{2k+2r-1} \leq \operatorname{rank}(A(G(n,k,r))) < 2k(2r+1)n^{2k+2r-1}.$$
 (3)

► So for fixed k, r, and n large enough, G(n, k, r) is a counterexample to both conjectures.

Construction

- Let Q_n be the n-dimensional cube with vertex set {0,1}ⁿ. Let the all ones and all zeros vectors be denoted by 1ⁿ and 0ⁿ.
- Let Q_n^- be defined as $Q_n \setminus \{1^n, 0^n\}$.
- Given integers n, k, r, we define G(n, k, r) as follows.
- ▶ $V(G(n,k,r)) = [n]^{2k+2r+1} = \{(x_1,...,x_{2k+2r+1}) | x_i \in [n], 1 \le i \le 2k+2r+1\}.$
- For any two vertices $x = (x_1, ..., x_{2k+2r+1})$ and $y = (y_1, ..., y_{2k+2r+1})$, let

$$\rho(x, y) = (\rho_1(x, y), ..., \rho_{2k+2r+1}(x, y))$$

where $\rho_i(x, y) = 1$ if $x_i \neq y_i$ and $\rho_i(x, y) = 0$ if $x_i = y_i$.

• We define adjacency as $x \sim y$ if and only is $\rho(x, y) \in S$ where

$$S = Q_{2k+2r+1} \setminus [(1^{2k} \times Q_{2r+1}^{-}) \cup \{0^{2k} \times 0^{2r+1}\} \cup \{0^{2k} \times 1^{2r+1}\}].$$

Chromatic Number

Proposition:

For $n \ge 2$ and $k, r \ge 1$, $\chi(G(n, k, r)) \ge \frac{n^{2k+2r}}{2r+1}$.

Proof (Very brief sketch): Using the definition of the set *S*, we show that an independent set in *G* can have size at most (2r + 1)n. Using the fact that (for any graph) $\chi(G) \geq \frac{|V(G)|}{\alpha(G)}$, the bound follows.

Biclique Partition Number

Proposition:

For $n, k \ge 2$ and $r \ge 1$, $bp(G(n, k, r)) < 2^{2k+2r-1}n^{2k+2r-1}$.

Proof (Very brief sketch):

- First we prove that *S* can be partitioned into 2-dimensional subcubes.
- ▶ This allows us to write *G* as the edge disjoint union of subgraphs $G_1, ..., G_t$, where $t < 2^{2k+2r-1}$ and each G_i is an n^2 blowup of some graph G'_i which has $n^{2k+2r-1}$ vertices.
- Since any blowup of a biclique is still a biclique, we see that $bp(G_i) \leq bp(G'_i)$.
- ► Then because the edge set of *G* is partitioned by the edges of the *G_i*'s, we have

$$bp(G) \leq \sum_{i=1}^{t} bp(G_i) \leq \sum_{i=1}^{t} bp(G'_i) \leq \sum_{i=1}^{t} |V(G'_i)| - 1 < 2^{2k+2r-1} n^{2k+2r-1}$$

Rank

Proposition:

For $n \ge 2$ and $k, r \ge 1$, $2k(2r+1)(n-1)^{2k+2r-1} \le \operatorname{rank}(A(G(n,k,r))) < 2k(2r+1)n^{2k+2r-1}$.

Proof (Very brief sketch):

▶ We notice that *G* can be defined by something called the Non-complete Extended P-Sum (NEPS). Because of this, we can determine the spectrum of *G* by

$$f(x_1,...,x_{2k+2r+1}) = \sum_{(s_1,...,s_{2k+2r+1})\in S} \prod_{i=1}^{2k+2r+1} x_i^{s_i}$$

where *f* is evaluated at all possible combinations where the x_i 's are eigenvalues of the complete graph K_n .

This looks complicated but actually simplifies nicely! By plugging in values carefully, we obtain lower bounds on the number of both zero and non zero eigenvalues of G and show

$$2k(2r+1)(n-1)^{2k+2r-1} \leq \operatorname{rank}(A(G(n,k,r))) < 2k(2r+1)n^{2k+2r-1}$$

Taking a Step Back

► That was technical, but most importantly, remember that we've constructed graphs G(n, k, r) on $n^{2k+2r+1}$ vertices.

$$\chi(G(n,k,r)\geq \frac{n^{2k+2r}}{2r+1}.$$

For k ≥ 2,

$$2k(2r+1)(n-1)^{2k+2r-1} \le bp(G(n,k,r)) < 2^{2k+2r-1}n^{2k+2r-1}$$

and

$$2k(2r+1)(n-1)^{2k+2r-1} \leq \operatorname{rank}(A(G(n,k,r))) < 2k(2r+1)n^{2k+2r-1}$$

► So for fixed *k*, *r*, and *n* large enough, *G*(*n*, *k*, *r*) is a counterexample to both conjectures.

Applications

- Next we talk about the applications of the Alon-Saks-Seymour and Rank-Coloring Conjectures to theoretical computer science.
- We talk about a deterministic model of communication complexity that was first introduced by Yao in 1979.
- ► The basic model is that there are two parties (traditionally named Alice and Bob), and two finite sets *X* and *Y*. The task is to evaluate a boolean function

$$f: X \times Y \to \{0, 1\}$$

► The function is publicly known, the difficulty is that Alice is the only one who can see the input $x \in X$ and Bob is the only one that can see the input $y \in Y$.

Applications

WELAWARE

Applications

- ► Given a protocol p, we define the cost of evaluating the function α_p(x, y) to be the number of bits that Alice and Bob need to exchange before f(x, y) can be computed.
- Then the deterministic communication complexity of f is defined the be the cost of the "best" protocol given the "worst" inputs x and y and we will denote it by C(f). More precisely

$$C(f) = \min_{\rho \in P} \max_{x \in X, y \in Y} \alpha_{\rho}(x, y)$$

where P is the set of all protocols.

For any boolean function f we can define a matrix M_f where the rows are indexed after X and the columns after Y where $(M_f)_{x,y} = f(x, y)$.

Theorem (Yao/Mehlhorn and Schmidt) $C(f) \ge \log_2 \operatorname{rank}(M_f).$

Log-Rank Conjecture

Lovaśz and Saks have conjectured that this bound is "almost" tight.

Conjecture (Still open!)

(Log-Rank Conjecture) There exists a constant k > 0 such that for any function f

 $C(f) \leq (\log_2 \operatorname{rank}(M_f))^k$.

 Next we explain the connection between the Log-Rank Conjecture and the Rank-Coloring Conjecture.

Log-Rank/Rank-Coloring

Proposition

The Log-Rank Conjecture is true if and only if there exists a constant l > 0 such that for any graph G

 $\log_2 \chi(G) \leq (\log_2 \operatorname{rank}(A(G)))^{l}$

- Further, for any graph G such that rank(A(G)) < χ(G) there is a corresponding boolean function f: V(G) × V(G) → {0,1} such that log₂(rank(M_f) − 1) < C(f).</p>
- We constructed graphs G(n, k, r) such that $\chi(G(n, k, r)) \ge \frac{n^{2k+2r}}{2r+1}$ and $\operatorname{rank}(A(G(n, k, r))) < 2k(2r+1)n^{2k+2r-1}$.
- These graphs correspond to functions *f* defined by $M_f = J A(G(n, k, r))$ such that

$$C(f) \geq \frac{2k+2r}{2k+2r-1}\log_2(\operatorname{rank}(M_f)) - c$$

for a fixed constant c.

ELAWARE ELAWARE

Clique vs. Independent Set Problem

- We apply the question of deterministic communication complexity to the Clique vs. Independent Set Problem (CL-IS).
- ► In this problem there is a publicly known graph *G*. Alice gets a complete subgraph *C* of *G* and Bob gets an independent set *I* of *G*.
- ▶ Letting X be the set of all cliques and Y the set of all independent sets, the objective function is given by $f : X \times Y \rightarrow \{0, 1\}$ where $f(C, I) = |C \cap I|$.
- We denote the deterministic communication complexity of the function by $C(CL IS_G)$.
- ▶ To find a lower bound, notice that we can consider each vertex as both a clique and an independent set of size 1. Then there are |V(G)| vertices that may be given to Alice and Bob. This means that $I_{|V(G)|}$ is a submatrix of M_f , which means that $\operatorname{rank}(M_f) \ge \operatorname{rank}(I_{|V(G)|}) = |V(G)|$. This implies that $C(CL IS_G) \ge \log_2 |V(G)|$.
- Surprisingly, this is the best lower bound known.

Clique vs. Independent Set Problem

 We discuss the connection between the CL-IS problem and the Alon-Saks-Seymour Conjecture.

Proposition

(Alon and Haviv) For and graph *G* with $\chi(G) > bp(G) + 1$ there is a corresponding graph *H* with $C(CL - IS_H) > \log_2 |V(H)|$.

- We constructed graphs G(n, k, r) with $\chi(G(n, k, r)) \ge \frac{n^{2k+2r}}{2r+1}$ and bp $(G(n, k, r)) < 2^{2k+2r-1}n^{2k+2r-1}$.
- These correspond to graphs H = H(n, k, r) such that

$$C(CL - IS_H) \ge \frac{2k + 2r}{2k + 2r - 1} \log_2 |V(H)| - c$$

for a fixed constant c.

UNIVERSITY OF ELAWARE

Hypergraphs

- Next we talk about a generalization of the Graham-Pollak Theorem.
- ► The complete *r*-uniform hypergraph on *n* vertices has vertex set [*n*] and edge set $\binom{[n]}{r}$ and is denoted $K_n^{(r)}$.
- If X₁, ..., X_r are disjoint subsets of [n], then the complete *r*-partite *r*-uniform subgraph with partite sets X₁, ..., X_r has edge set {(x₁, ..., x_r)|x_i ∈ X_i}.
- ► In 1986, Alon asked the question, how many complete *r*-partite *r*-uniform subgraphs are necessary to partition the edge set of $K_n^{(r)}$ and we denote this value by $f_r(n)$.
- Indeed this is a generalization of the Graham-Pollak Theorem, because for r = 2 the question asks how many bicliques are necessary to partition the edge set of K_n .

Hypergraphs

• The value of $f_r(n)$ is not known for $r \ge 4$.

The best published bounds are given by Cioabă, Küngden, and Verstraëte, who improved a result of Alon and proved the following theorem.

Theorem

If $f_r(n)$ denotes the minimum number of complete *r*-partite *r*-uniform subgraphs necessary to partition the edge set of the complete *r*-uniform graph on *n* vertices, then

$$\frac{2\binom{n}{k}}{\binom{2k}{k}} \le f_{2k}(n) \le \binom{n-k}{k}$$
(4)

and

$$f_{2k}(n-1) \le f_{2k+1}(n) \le {\binom{n-k-1}{k}}.$$
 (5)

Hypergraphs

• We find the value of $f_r(n)$ exactly in the case when n = r + 2.

Theorem $f_{2k}(2k+2) = f_{2k+1}(2k+3) = \lceil \frac{2k^2+5k+3}{4} \rceil.$

We make a slight improvement on the upper bound of f_{2k}(n) by showing

$$f_{2k}(n) < \binom{n-k}{k} - \frac{n}{20} \binom{\lfloor \frac{n}{2} \rfloor - k + 4}{k-4}.$$

Open Questions

In the final chapter of the thesis, we list open problems:

Is the Log-Rank Conjecture true? Equivalently, does there exist a constant *l* > 0 such that for all graphs *G*

$$\log_2 \chi(G) \leq (\log_2 \operatorname{rank}(A(G)))^{l}.$$

- Do there exist graphs G_n with arbitrarily large biclique partition number k_n and chromatic number at least 2^{c log² k_n} for some fixed constant c > 0?
- ► What is the correct value for f_{2k}(n) and f_{2k+1}(n)?