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Preliminaries

I A graph is a set of vertices
V (G) and a set of edges
E(G), where each edge is an
unordered pair of vertices.

I The adjacency matrix of a
graph is a |V (G)| × |V (G)|
matrix with rows and columns
indexed after the vertices.
The xy ’th entry is 1 is xy is an
edge in G and 0 otherwise.
This matrix is denoted by
A(G)

I We denote the rank of A(G)
by rank(A(G)).



Preliminaries
A proper k -coloring of a graph G assigns k colors to the vertices of G in such a way
that if two vertices are adjacent they do not have the same color. The chromatic
number of a graph is the minimum number k such that a proper k coloring of G exists
and is denoted χ(G).



Preliminaries

I The complete graph on n vertices is the graph on n vertices with all
(n

2

)
possible

edges and is denoted Kn.

I An independent set is a set of vertices that are pairwise nonadjacent.
I A complete bipartite graph (also called biclique) is an independent set of size a

and an independent set of size b with all a · b edges between them and is denoted
Ka,b .



Preliminaries

I The biclique partition number of a graph G is the minimum number of bicliques
necessary to partition the edge set of G, and is denoted bp(G).

I So for example, bp(K4) ≤ 3.



The Graham-Pollak Theorem

I In fact, bp(Kn) ≤ n − 1 for any n.
I We can prove by induction. To see this, we can take a K1,n−1 out of the edge set

of Kn, and what we are left with is the edge set of Kn−1.
I This problem begins with the Graham-Pollak Theorem. In 1971, Graham and

Pollak proved that the inequality also goes the other direction, i.e. that
bp(Kn) ≥ n − 1.

Theorem (Graham-Pollak Theorem)
The edge set of the complete graph on n vertices cannot be partitioned into fewer than
n − 1 complete bipartite subgraphs.

I Several proofs of this fact have since been discovered (e.g. Witsenhausen, Peck,
Tverberg, Vishwanathan).



The Alon-Saks-Seymour Conjecture

I Since χ(Kn) = n, the Graham-Pollak Theorem can be rephrased as
χ(Kn) = bp(Kn) + 1.

I This prompted Alon, Saks, and Seymour to make the following conjecture in 1991.

Alon-Saks-Seymour Conjecture - 1991
If the edge set of a graph G can be partitioned into the edge disjoint union of k
bicliques, then k + 1 ≥ χ(G).

I Rephrasing, the conjecture says for any graph G, the inequality χ(G) ≤ bp(G) + 1
holds.



The Rank-Coloring Conjecture

I We also notice that rank(A(Kn)) = n.
I In 1976, van Nuffelen stated what became known as the Rank-Coloring

Conjecture.

Rank-Coloring Conjecture
For any simple graph G, χ(G) ≤ rank(A(G)).



Counterexamples

I Neither conjecture is true!
I In 1989, Alon and Seymour constructed the first counterexample to the

Rank-Coloring Conjecture with a graph that has rank 29 and chromatic number 32.
I In 1992, Razborov found the first counterexample with a superlinear gap between

rank and chromatic number by constructing an infinite family of graphs Gn such
that χ(Gn) ≥ c(rank(A(Gn)))4/3 for some fixed c > 0.

I At the current time, a construction of Nisan and Wigderson yields the largest gap
between rank and chromatic number.

I The Alon-Saks-Seymour Conjecture remained open for 20 years until Huang and
Sudakov constructed graphs Hn such that χ(Hn) ≥ c(bp(Hn))6/5 for some fixed
c > 0.



Thesis Outline

I We construct new infinite families of counterexamples to both conjectures.
I These families generalize the constructions of Razborov and of Huang and

Sudakov.
I We explain the relationship between these conjectures and questions in

theoretical computer science.
I We consider a generalization of the Graham-Pollak Theorem to hypergraphs.



Construction

I We construct graphs G(n, k , r) with n2k+2r+1 vertices for all integers n ≥ 2, k ≥ 1,
r ≥ 1.

I

χ(G(n, k , r)) ≥
n2k+2r

2r + 1
. (1)

I For k ≥ 2,

2k(2r + 1)(n − 1)2k+2r−1 ≤ bp(G(n, k , r)) < 22k+2r−1n2k+2r−1 (2)

and
I

2k(2r + 1)(n − 1)2k+2r−1 ≤ rank(A(G(n, k , r))) < 2k(2r + 1)n2k+2r−1. (3)

I So for fixed k , r , and n large enough, G(n, k , r) is a counterexample to both
conjectures.



Construction

I Let Qn be the n-dimensional cube with vertex set {0, 1}n. Let the all ones and all
zeros vectors be denoted by 1n and 0n.

I Let Q−n be defined as Qn \ {1n, 0n}.
I Given integers n, k , r , we define G(n, k , r) as follows.
I V (G(n, k , r)) = [n]2k+2r+1 = {(x1, ..., x2k+2r+1)|xi ∈ [n], 1 ≤ i ≤ 2k + 2r + 1}.
I For any two vertices x = (x1, ..., x2k+2r+1) and y = (y1, ..., y2k+2r+1), let

ρ(x , y) = (ρ1(x , y), ..., ρ2k+2r+1(x , y))

where ρi (x , y) = 1 if xi 6= yi and ρi (x , y) = 0 if xi = yi .
I We define adjacency as x ∼ y if and only is ρ(x , y) ∈ S where

S = Q2k+2r+1 \ [(12k × Q−2r+1) ∪ {0
2k × 02r+1} ∪ {02k × 12r+1}].



Chromatic Number

Proposition:
For n ≥ 2 and k , r ≥ 1, χ(G(n, k , r)) ≥ n2k+2r

2r+1 .

Proof (Very brief sketch): Using the definition of the set S, we show that an
independent set in G can have size at most (2r + 1)n. Using the fact that (for any
graph) χ(G) ≥ |V (G)|

α(G)
, the bound follows.



Biclique Partition Number

Proposition:
For n, k ≥ 2 and r ≥ 1, bp(G(n, k , r)) < 22k+2r−1n2k+2r−1.

Proof (Very brief sketch):
I First we prove that S can be partitioned into 2-dimensional subcubes.
I This allows us to write G as the edge disjoint union of subgraphs G1, ...,Gt , where

t < 22k+2r−1 and each Gi is an n2 blowup of some graph G′i which has n2k+2r−1

vertices.
I Since any blowup of a biclique is still a biclique, we see that bp(Gi ) ≤ bp(G′i ).
I Then because the edge set of G is partitioned by the edges of the Gi ’s, we have

bp(G) ≤
t∑

i=1

bp(Gi ) ≤
t∑

i=1

bp(G′i ) ≤
t∑

i=1

|V (G′i )| − 1 < 22k+2r−1n2k+2r−1



Rank

Proposition:
For n ≥ 2 and k , r ≥ 1,
2k(2r + 1)(n − 1)2k+2r−1 ≤ rank(A(G(n, k , r))) < 2k(2r + 1)n2k+2r−1.

Proof (Very brief sketch):
I We notice that G can be defined by something called the Non-complete Extended

P-Sum (NEPS). Because of this, we can determine the spectrum of G by

f (x1, ..., x2k+2r+1) =
∑

(s1,...,s2k+2r+1)∈S

2k+2r+1∏
i=1

xsi
i

where f is evaluated at all possible combinations where the xi ’s are eigenvalues of
the complete graph Kn.

I This looks complicated but actually simplifies nicely! By plugging in values
carefully, we obtain lower bounds on the number of both zero and non zero
eigenvalues of G and show

2k(2r + 1)(n − 1)2k+2r−1 ≤ rank(A(G(n, k , r))) < 2k(2r + 1)n2k+2r−1



Taking a Step Back

I That was technical, but most importantly, remember that we’ve constructed graphs
G(n, k , r) on n2k+2r+1 vertices.

I

χ(G(n, k , r) ≥
n2k+2r

2r + 1
.

I For k ≥ 2,

2k(2r + 1)(n − 1)2k+2r−1 ≤ bp(G(n, k , r)) < 22k+2r−1n2k+2r−1

and
I

2k(2r + 1)(n − 1)2k+2r−1 ≤ rank(A(G(n, k , r))) < 2k(2r + 1)n2k+2r−1.

I So for fixed k , r , and n large enough, G(n, k , r) is a counterexample to both
conjectures.



Applications

I Next we talk about the applications of the Alon-Saks-Seymour and Rank-Coloring
Conjectures to theoretical computer science.

I We talk about a deterministic model of communication complexity that was first
introduced by Yao in 1979.

I The basic model is that there are two parties (traditionally named Alice and Bob),
and two finite sets X and Y . The task is to evaluate a boolean function

f : X × Y → {0, 1}

I The function is publicly known, the difficulty is that Alice is the only one who can
see the input x ∈ X and Bob is the only one that can see the input y ∈ Y .



Applications



Applications

I Given a protocol p, we define the cost of evaluating the function αp(x , y) to be the
number of bits that Alice and Bob need to exchange before f (x , y) can be
computed.

I Then the deterministic communication complexity of f is defined the be the cost of
the “best” protocol given the “worst” inputs x and y and we will denote it by C(f ).
More precisely

C(f ) = minp∈P maxx∈X ,y∈Yαp(x , y)

where P is the set of all protocols.
I For any boolean function f we can define a matrix Mf where the rows are indexed

after X and the columns after Y where (Mf )x,y = f (x , y).

Theorem (Yao/Mehlhorn and Schmidt)
C(f ) ≥ log2 rank(Mf ).



Log-Rank Conjecture

I Lovaśz and Saks have conjectured that this bound is “almost” tight.

Conjecture (Still open!)
(Log-Rank Conjecture) There exists a constant k > 0 such that for any function f

C(f ) ≤ (log2 rank(Mf ))
k .

I Next we explain the connection between the Log-Rank Conjecture and the
Rank-Coloring Conjecture.



Log-Rank/Rank-Coloring

Proposition
The Log-Rank Conjecture is true if and only if there exists a constant l > 0 such that
for any graph G

log2 χ(G) ≤ (log2 rank(A(G)))l

I Further, for any graph G such that rank(A(G)) < χ(G) there is a corresponding
boolean function f : V (G)× V (G)→ {0, 1} such that log2(rank(Mf )− 1) < C(f ).

I We constructed graphs G(n, k , r) such that χ(G(n, k , r)) ≥ n2k+2r

2r+1 and
rank(A(G(n, k , r))) < 2k(2r + 1)n2k+2r−1.

I These graphs correspond to functions f defined by Mf = J − A(G(n, k , r)) such
that

C(f ) ≥
2k + 2r

2k + 2r − 1
log2(rank(Mf ))− c

for a fixed constant c.



Clique vs. Independent Set Problem

I We apply the question of deterministic communication complexity to the Clique vs.
Independent Set Problem (CL-IS).

I In this problem there is a publicly known graph G. Alice gets a complete subgraph
C of G and Bob gets an independent set I of G.

I Letting X be the set of all cliques and Y the set of all independent sets, the
objective function is given by f : X × Y → {0, 1} where f (C, I) = |C ∩ I|.

I We denote the deterministic communication complexity of the function by
C(CL− ISG).

I To find a lower bound, notice that we can consider each vertex as both a clique
and an independent set of size 1. Then there are |V (G)| vertices that may be
given to Alice and Bob. This means that I|V (G)| is a submatrix of Mf , which means
that rank(Mf ) ≥ rank(I|V (G)|) = |V (G)|.This implies that
C(CL− ISG) ≥ log2 |V (G)|.

I Surprisingly, this is the best lower bound known.



Clique vs. Independent Set Problem

I We discuss the connection between the CL-IS problem and the
Alon-Saks-Seymour Conjecture.

Proposition
(Alon and Haviv) For and graph G with χ(G) > bp(G) + 1 there is a corresponding
graph H with C(CL− ISH) > log2 |V (H)|.

I We constructed graphs G(n, k , r) with χ(G(n, k , r)) ≥ n2k+2r

2r+1 and
bp(G(n, k , r)) < 22k+2r−1n2k+2r−1.

I These correspond to graphs H = H(n, k , r) such that

C(CL− ISH) ≥
2k + 2r

2k + 2r − 1
log2 |V (H)| − c

for a fixed constant c.



Hypergraphs

I Next we talk about a generalization of the Graham-Pollak Theorem.
I The complete r -uniform hypergraph on n vertices has vertex set [n] and edge set([n]

r

)
and is denoted K (r)

n .
I If X1, ...,Xr are disjoint subsets of [n], then the complete r -partite r -uniform

subgraph with partite sets X1, ...,Xr has edge set {(x1, ..., xr )|xi ∈ Xi}.
I In 1986, Alon asked the question, how many complete r -partite r -uniform

subgraphs are necessary to partition the edge set of K (r)
n and we denote this

value by fr (n).
I Indeed this is a generalization of the Graham-Pollak Theorem, because for r = 2

the question asks how many bicliques are necessary to partition the edge set of
Kn.



Hypergraphs

I The value of fr (n) is not known for r ≥ 4.

The best published bounds are given by Cioabă, Küngden, and Verstraëte, who
improved a result of Alon and proved the following theorem.

Theorem
If fr (n) denotes the minimum number of complete r -partite r -uniform subgraphs
necessary to partition the edge set of the complete r -uniform graph on n vertices, then

2
(n−1

k

)(2k
k

) ≤ f2k (n) ≤
(n − k

k

)
(4)

and

f2k (n − 1) ≤ f2k+1(n) ≤
(n − k − 1

k

)
. (5)



Hypergraphs

I We find the value of fr (n) exactly in the case when n = r + 2.

Theorem
f2k (2k + 2) = f2k+1(2k + 3) = d 2k2+5k+3

4 e.
I We make a slight improvement on the upper bound of f2k (n) by showing

f2k (n) <
(n − k

k

)
−

n
20

(b n
2 c − k + 4

k − 4

)
.



Open Questions

In the final chapter of the thesis, we list open problems:
I Is the Log-Rank Conjecture true? Equivalently, does there exist a constant l > 0

such that for all graphs G

log2 χ(G) ≤ (log2 rank(A(G)))l .

I Do there exist graphs Gn with arbitrarily large biclique partition number kn and
chromatic number at least 2c log2 kn for some fixed constant c > 0?

I What is the correct value for f2k (n) and f2k+1(n)?


