The Alon-Saks-Seymour and Rank-Coloring Conjectures

Michael Tait
Department of Mathematical Sciences
University of Delaware
Newark, DE 19716
tait@math.udel.edu

April 20, 2011

Preliminaries

- A graph is a set of vertices $V(G)$ and a set of edges $E(G)$, where each edge is an unordered pair of vertices.
- The adjacency matrix of a graph is a $|V(G)| \times|V(G)|$ matrix with rows and columns indexed after the vertices. The $x y^{\prime}$ th entry is 1 is $x y$ is an edge in G and 0 otherwise.
This matrix is denoted by $A(G)$

- We denote the rank of $A(G)$ by $\operatorname{rank}(A(G))$.

Preliminaries

A proper k-coloring of a graph G assigns k colors to the vertices of G in such a way that if two vertices are adjacent they do not have the same color. The chromatic number of a graph is the minimum number k such that a proper k coloring of G exists and is denoted $\chi(G)$.

Preliminaries

- The complete graph on n vertices is the graph on n vertices with all $\binom{n}{2}$ possible edges and is denoted K_{n}.

- An independent set is a set of vertices that are pairwise nonadjacent.
- A complete bipartite graph (also called biclique) is an independent set of size a and an independent set of size b with all $a \cdot b$ edges between them and is denoted $K_{a, b}$.

Preliminaries

- The biclique partition number of a graph G is the minimum number of bicliques necessary to partition the edge set of G, and is denoted $\mathrm{bp}(G)$.

- So for example, $\mathrm{bp}\left(K_{4}\right) \leq 3$.

GNVERSITYOF
 ELAWARE

The Graham-Pollak Theorem

- In fact, $\mathrm{bp}\left(K_{n}\right) \leq n-1$ for any n.
- We can prove by induction. To see this, we can take a $K_{1, n-1}$ out of the edge set of K_{n}, and what we are left with is the edge set of K_{n-1}.
- This problem begins with the Graham-Pollak Theorem. In 1971, Graham and Pollak proved that the inequality also goes the other direction, i.e. that $\operatorname{bp}\left(K_{n}\right) \geq n-1$.

Theorem (Graham-Pollak Theorem)

The edge set of the complete graph on n vertices cannot be partitioned into fewer than $n-1$ complete bipartite subgraphs.

- Several proofs of this fact have since been discovered (e.g. Witsenhausen, Peck, Tverberg, Vishwanathan).

The Alon-Saks-Seymour Conjecture

- Since $\chi\left(K_{n}\right)=n$, the Graham-Pollak Theorem can be rephrased as

$$
\chi\left(K_{n}\right)=\operatorname{bp}\left(K_{n}\right)+1
$$

- This prompted Alon, Saks, and Seymour to make the following conjecture in 1991.

Alon-Saks-Seymour Conjecture - 1991

If the edge set of a graph G can be partitioned into the edge disjoint union of k bicliques, then $k+1 \geq \chi(G)$.

- Rephrasing, the conjecture says for any graph G, the inequality $\chi(G) \leq \mathrm{bp}(G)+1$ holds.

The Rank-Coloring Conjecture

- We also notice that $\operatorname{rank}\left(A\left(K_{n}\right)\right)=n$.
- In 1976, van Nuffelen stated what became known as the Rank-Coloring Conjecture.

Rank-Coloring Conjecture
For any simple graph $G, \chi(G) \leq \operatorname{rank}(A(G))$.

Counterexamples

- Neither conjecture is true!
- In 1989, Alon and Seymour constructed the first counterexample to the Rank-Coloring Conjecture with a graph that has rank 29 and chromatic number 32.
- In 1992, Razborov found the first counterexample with a superlinear gap between rank and chromatic number by constructing an infinite family of graphs G_{n} such that $\chi\left(G_{n}\right) \geq c\left(\operatorname{rank}\left(A\left(G_{n}\right)\right)\right)^{4 / 3}$ for some fixed $c>0$.
- At the current time, a construction of Nisan and Wigderson yields the largest gap between rank and chromatic number.
- The Alon-Saks-Seymour Conjecture remained open for 20 years until Huang and Sudakov constructed graphs H_{n} such that $\chi\left(H_{n}\right) \geq c\left(\mathrm{bp}\left(H_{n}\right)\right)^{6 / 5}$ for some fixed $c>0$.

Thesis Outline

- We construct new infinite families of counterexamples to both conjectures.
- These families generalize the constructions of Razborov and of Huang and Sudakov.
- We explain the relationship between these conjectures and questions in theoretical computer science.
- We consider a generalization of the Graham-Pollak Theorem to hypergraphs.

Construction

- We construct graphs $G(n, k, r)$ with $n^{2 k+2 r+1}$ vertices for all integers $n \geq 2, k \geq 1$, $r \geq 1$.

$$
\begin{equation*}
\chi(G(n, k, r)) \geq \frac{n^{2 k+2 r}}{2 r+1} \tag{1}
\end{equation*}
$$

- For $k \geq 2$,

$$
\begin{equation*}
2 k(2 r+1)(n-1)^{2 k+2 r-1} \leq \operatorname{bp}(G(n, k, r))<2^{2 k+2 r-1} n^{2 k+2 r-1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
2 k(2 r+1)(n-1)^{2 k+2 r-1} \leq \operatorname{rank}(A(G(n, k, r)))<2 k(2 r+1) n^{2 k+2 r-1} . \tag{3}
\end{equation*}
$$

- So for fixed k, r, and n large enough, $G(n, k, r)$ is a counterexample to both conjectures.

Construction

- Let Q_{n} be the n-dimensional cube with vertex set $\{0,1\}^{n}$. Let the all ones and all zeros vectors be denoted by 1^{n} and 0^{n}.
- Let Q_{n}^{-}be defined as $Q_{n} \backslash\left\{1^{n}, 0^{n}\right\}$.
- Given integers n, k, r, we define $G(n, k, r)$ as follows.
- $V(G(n, k, r))=[n]^{2 k+2 r+1}=\left\{\left(x_{1}, \ldots, x_{2 k+2 r+1}\right) \mid x_{i} \in[n], 1 \leq i \leq 2 k+2 r+1\right\}$.
- For any two vertices $x=\left(x_{1}, \ldots, x_{2 k+2 r+1}\right)$ and $y=\left(y_{1}, \ldots, y_{2 k+2 r+1}\right)$, let

$$
\rho(x, y)=\left(\rho_{1}(x, y), \ldots, \rho_{2 k+2 r+1}(x, y)\right)
$$

where $\rho_{i}(x, y)=1$ if $x_{i} \neq y_{i}$ and $\rho_{i}(x, y)=0$ if $x_{i}=y_{i}$.

- We define adjacency as $x \sim y$ if and only is $\rho(x, y) \in S$ where

$$
S=Q_{2 k+2 r+1} \backslash\left[\left(1^{2 k} \times Q_{2 r+1}^{-}\right) \cup\left\{0^{2 k} \times 0^{2 r+1}\right\} \cup\left\{0^{2 k} \times 1^{2 r+1}\right\}\right] .
$$

Chromatic Number

Proposition:

For $n \geq 2$ and $k, r \geq 1, \chi(G(n, k, r)) \geq \frac{n^{2 k+2 r}}{2 r+1}$.
Proof (Very brief sketch): Using the definition of the set S, we show that an independent set in G can have size at most $(2 r+1) n$. Using the fact that (for any graph) $\chi(G) \geq \frac{|V(G)|}{\alpha(G)}$, the bound follows.

WNVERSITYor
 EIAWARE

Biclique Partition Number

Proposition:

For $n, k \geq 2$ and $r \geq 1, \operatorname{bp}(G(n, k, r))<2^{2 k+2 r-1} n^{2 k+2 r-1}$.
Proof (Very brief sketch):

- First we prove that S can be partitioned into 2-dimensional subcubes.
- This allows us to write G as the edge disjoint union of subgraphs G_{1}, \ldots, G_{t}, where $t<2^{2 k+2 r-1}$ and each G_{i} is an n^{2} blowup of some graph G_{i}^{\prime} which has $n^{2 k+2 r-1}$ vertices.
- Since any blowup of a biclique is still a biclique, we see that $\mathrm{bp}\left(G_{i}\right) \leq \operatorname{bp}\left(G_{i}^{\prime}\right)$.
- Then because the edge set of G is partitioned by the edges of the G_{i} 's, we have

$$
\mathrm{bp}(G) \leq \sum_{i=1}^{t} \mathrm{bp}\left(G_{i}\right) \leq \sum_{i=1}^{t} \mathrm{bp}\left(G_{i}^{\prime}\right) \leq \sum_{i=1}^{t}\left|V\left(G_{i}^{\prime}\right)\right|-1<2^{2 k+2 r-1} n^{2 k+2 r-1}
$$

Rank

Proposition:

For $n \geq 2$ and $k, r \geq 1$,
$2 k(2 r+1)(n-1)^{2 \bar{k}+2 r-1} \leq \operatorname{rank}(A(G(n, k, r)))<2 k(2 r+1) n^{2 k+2 r-1}$.
Proof (Very brief sketch):

- We notice that G can be defined by something called the Non-complete Extended P-Sum (NEPS). Because of this, we can determine the spectrum of G by

$$
f\left(x_{1}, \ldots, x_{2 k+2 r+1}\right)=\sum_{\left(s_{1}, \ldots, s_{2 k+2 r+1}\right) \in S} \prod_{i=1}^{2 k+2 r+1} x_{i}^{s_{i}}
$$

where f is evaluated at all possible combinations where the x_{i} 's are eigenvalues of the complete graph K_{n}.

- This looks complicated but actually simplifies nicely! By plugging in values carefully, we obtain lower bounds on the number of both zero and non zero eigenvalues of G and show

$$
2 k(2 r+1)(n-1)^{2 k+2 r-1} \leq \operatorname{rank}(A(G(n, k, r)))<2 k(2 r+1) n^{2 k+2 r-1}
$$

Taking a Step Back

- That was technical, but most importantly, remember that we've constructed graphs $G(n, k, r)$ on $n^{2 k+2 r+1}$ vertices.

$$
\chi\left(G(n, k, r) \geq \frac{n^{2 k+2 r}}{2 r+1}\right.
$$

- For $k \geq 2$,

$$
2 k(2 r+1)(n-1)^{2 k+2 r-1} \leq \operatorname{bp}(G(n, k, r))<2^{2 k+2 r-1} n^{2 k+2 r-1}
$$

and

$$
2 k(2 r+1)(n-1)^{2 k+2 r-1} \leq \operatorname{rank}(A(G(n, k, r)))<2 k(2 r+1) n^{2 k+2 r-1} .
$$

- So for fixed k, r, and n large enough, $G(n, k, r)$ is a counterexample to both conjectures.

Applications

- Next we talk about the applications of the Alon-Saks-Seymour and Rank-Coloring Conjectures to theoretical computer science.
- We talk about a deterministic model of communication complexity that was first introduced by Yao in 1979.
- The basic model is that there are two parties (traditionally named Alice and Bob), and two finite sets X and Y. The task is to evaluate a boolean function

$$
f: X \times Y \rightarrow\{0,1\}
$$

- The function is publicly known, the difficulty is that Alice is the only one who can see the input $x \in X$ and Bob is the only one that can see the input $y \in Y$.

Applications

Applications

- Given a protocol p, we define the cost of evaluating the function $\alpha_{p}(x, y)$ to be the number of bits that Alice and Bob need to exchange before $f(x, y)$ can be computed.
- Then the deterministic communication complexity of f is defined the be the cost of the "best" protocol given the "worst" inputs x and y and we will denote it by $C(f)$. More precisely

$$
C(f)=\min _{p \in P \max _{x \in X, y \in Y} \alpha_{p}(x, y)}
$$

where P is the set of all protocols.

- For any boolean function f we can define a matrix M_{f} where the rows are indexed after X and the columns after Y where $\left(M_{f}\right)_{x, y}=f(x, y)$.
Theorem (Yao/Mehlhorn and Schmidt)
$C(f) \geq \log _{2} \operatorname{rank}\left(M_{f}\right)$.

Log-Rank Conjecture

- Lovaśz and Saks have conjectured that this bound is "almost" tight.

Conjecture (Still open!)
(Log-Rank Conjecture) There exists a constant $k>0$ such that for any function f

$$
C(f) \leq\left(\log _{2} \operatorname{rank}\left(M_{f}\right)\right)^{k}
$$

- Next we explain the connection between the Log-Rank Conjecture and the Rank-Coloring Conjecture.

WNVERSTTYor
 EIAWARE

Log-Rank/Rank-Coloring

Proposition

The Log-Rank Conjecture is true if and only if there exists a constant $I>0$ such that for any graph G

$$
\log _{2} \chi(G) \leq\left(\log _{2} \operatorname{rank}(A(G))\right)^{\prime}
$$

- Further, for any graph G such that $\operatorname{rank}(A(G))<\chi(G)$ there is a corresponding boolean function $f: V(G) \times V(G) \rightarrow\{0,1\}$ such that $\log _{2}\left(\operatorname{rank}\left(M_{f}\right)-1\right)<C(f)$.
- We constructed graphs $G(n, k, r)$ such that $\chi(G(n, k, r)) \geq \frac{n^{2 k+2 r}}{2 r+1}$ and $\operatorname{rank}(A(G(n, k, r)))<2 k(2 r+1) n^{2 k+2 r-1}$.
- These graphs correspond to functions f defined by $M_{f}=J-A(G(n, k, r))$ such that

$$
C(f) \geq \frac{2 k+2 r}{2 k+2 r-1} \log _{2}\left(\operatorname{rank}\left(M_{f}\right)\right)-c
$$

for a fixed constant c.

TNIVERSITYor
 ELAWARE

Clique vs. Independent Set Problem

- We apply the question of deterministic communication complexity to the Clique vs. Independent Set Problem (CL-IS).
- In this problem there is a publicly known graph G. Alice gets a complete subgraph C of G and Bob gets an independent set I of G.
- Letting X be the set of all cliques and Y the set of all independent sets, the objective function is given by $f: X \times Y \rightarrow\{0,1\}$ where $f(C, I)=|C \cap I|$.
- We denote the deterministic communication complexity of the function by $C\left(C L-I S_{G}\right)$.
- To find a lower bound, notice that we can consider each vertex as both a clique and an independent set of size 1. Then there are $|V(G)|$ vertices that may be given to Alice and Bob. This means that $I_{|V(G)|}$ is a submatrix of M_{f}, which means that $\operatorname{rank}\left(M_{f}\right) \geq \operatorname{rank}\left(I_{|V(G)|}\right)=|V(G)|$. This implies that $C\left(C L-I S_{G}\right) \geq \log _{2}|V(G)|$.
- Surprisingly, this is the best lower bound known.

Clique vs. Independent Set Problem

- We discuss the connection between the CL-IS problem and the Alon-Saks-Seymour Conjecture.

Proposition

(Alon and Haviv) For and graph G with $\chi(G)>b p(G)+1$ there is a corresponding graph H with $C\left(C L-I S_{H}\right)>\log _{2}|V(H)|$.

- We constructed graphs $G(n, k, r)$ with $\chi(G(n, k, r)) \geq \frac{n^{2 k+2 r}}{2 r+1}$ and $\operatorname{bp}(G(n, k, r))<2^{2 k+2 r-1} n^{2 k+2 r-1}$.
- These correspond to graphs $H=H(n, k, r)$ such that

$$
C\left(C L-I S_{H}\right) \geq \frac{2 k+2 r}{2 k+2 r-1} \log _{2}|V(H)|-c
$$

for a fixed constant c.

THIVERSITYOF
 ELAWARE

Hypergraphs

- Next we talk about a generalization of the Graham-Pollak Theorem.
- The complete r-uniform hypergraph on n vertices has vertex set [n] and edge set $\binom{[n]}{r}$ and is denoted $K_{n}^{(r)}$.
- If X_{1}, \ldots, X_{r} are disjoint subsets of $[n]$, then the complete r-partite r-uniform subgraph with partite sets X_{1}, \ldots, X_{r} has edge set $\left\{\left(x_{1}, \ldots, x_{r}\right) \mid x_{i} \in X_{i}\right\}$.
- In 1986, Alon asked the question, how many complete r-partite r-uniform subgraphs are necessary to partition the edge set of $K_{n}^{(r)}$ and we denote this value by $f_{r}(n)$.
- Indeed this is a generalization of the Graham-Pollak Theorem, because for $r=2$ the question asks how many bicliques are necessary to partition the edge set of K_{n}.

Hypergraphs

- The value of $f_{r}(n)$ is not known for $r \geq 4$.

The best published bounds are given by Cioabă, Küngden, and Verstraëte, who improved a result of Alon and proved the following theorem.
Theorem
If $f_{r}(n)$ denotes the minimum number of complete r-partite r-uniform subgraphs necessary to partition the edge set of the complete r-uniform graph on n vertices, then

$$
\begin{equation*}
\frac{2\binom{n-1}{k}}{\binom{2 k}{k}} \leq f_{2 k}(n) \leq\binom{ n-k}{k} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2 k}(n-1) \leq f_{2 k+1}(n) \leq\binom{ n-k-1}{k} \tag{5}
\end{equation*}
$$

Hypergraphs

- We find the value of $f_{r}(n)$ exactly in the case when $n=r+2$.

Theorem
$f_{2 k}(2 k+2)=f_{2 k+1}(2 k+3)=\left\lceil\frac{2 k^{2}+5 k+3}{4}\right\rceil$.

- We make a slight improvement on the upper bound of $f_{2 k}(n)$ by showing

$$
f_{2 k}(n)<\binom{n-k}{k}-\frac{n}{20}\binom{\left\lfloor\frac{n}{2}\right\rfloor-k+4}{k-4} .
$$

Open Questions

In the final chapter of the thesis, we list open problems:

- Is the Log-Rank Conjecture true? Equivalently, does there exist a constant I>0 such that for all graphs G

$$
\log _{2} \chi(G) \leq\left(\log _{2} \operatorname{rank}(A(G))\right)^{\prime}
$$

- Do there exist graphs G_{n} with arbitrarily large biclique partition number k_{n} and chromatic number at least $2^{c \log ^{2} k_{n}}$ for some fixed constant $c>0$?
- What is the correct value for $f_{2 k}(n)$ and $f_{2 k+1}(n)$?

