Some results on polarity graphs

Michael Tait

University of California-San Diego
mtait@math.ucsd.edu

Joint work with Xing Peng and Craig Timmons
September 29, 2015

In 1938, Erdős asked how
$E R_{q}$ and other
polarity graphs many edges an n-vertex graph with no C_{4} may have. This quantity is denoted by

$$
\operatorname{ex}\left(n, C_{4}\right)
$$

and is called the Turán number for C_{4}.

Many problems in extremal combinatorics can be phrased as (hypergraph) Turán problems for the appropriate family of excluded subgraphs.

Beginnings

$E R_{q}$ and other polarity graphs

History
$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic number of $E R_{q}$

Bounds for $\operatorname{ex}\left(n, C_{4}\right)$

A double counting and convexity argument of Kővári, Sós, and Turán gives

$$
\operatorname{ex}\left(n, C_{4}\right) \leq \frac{1}{2} n^{3 / 2}+\frac{1}{2} n
$$

Theorem (Brown, Erdős-Rényi-Sós, 1966)

For any prime power q

$$
\operatorname{ex}\left(q^{2}+q+1, C_{4}\right) \geq \frac{1}{2} q(q+1)^{2}
$$

Bounds for $\operatorname{ex}\left(n, C_{4}\right)$

The graphs constructed giving the lower bound are called Erdős-Rényi polarity graphs and are denoted by $E R_{q}$.
$E R_{q}$ and other polarity graphs

History
$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic number of $E R_{q}$

By results on the distribution of primes, gives the asymptotic formula

$$
\operatorname{ex}\left(n, C_{4}\right) \sim \frac{1}{2} n^{3 / 2}
$$

Exact results?

Exact results

Theorem (Füredi 1983, 1996)

For q a prime power

$$
\operatorname{ex}\left(q^{2}+q+1, C_{4}\right)=\frac{1}{2} q(q+1)^{2} .
$$

The chromatic
number of $E R_{q}$

Theorem (Firke-Kosek-Nash-Williford, 2013)
For q a power of 2,

$$
\operatorname{ex}\left(q^{2}+q, C_{4}\right)=\frac{1}{2} q(q+1)^{2}-q .
$$

Exact results for $n \leq 31$ by computer search. No other exact results known. Later we will discuss bounds.

Overview

(1) $E R_{q}$ and other polarity graphs
(2) History
(3) ex $\left(n, C_{4}\right)$
(4) The chromatic number of $E R_{q}$

The graph constructed by Brown and Erdős, Rényi, Sós is called the Erdős-Rényi Polarity graph and denoted by $E R_{q}$.

$$
V\left(E R_{q}\right)=\text { one dimensional subspaces of } \mathbb{F}_{q}^{3}
$$

$$
\left(x_{0}, x_{1}, x_{2}\right) \sim\left(y_{0}, y_{1}, y_{2}\right) \Leftrightarrow x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}=0
$$

$E R_{q}$ is an example of a polarity graph.
$E R_{q}$

Let $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ be a finite geometry.

Definition

A polarity of $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ is a bijection $\pi: \mathcal{P} \cup \mathcal{L} \rightarrow \mathcal{P} \cup \mathcal{L}$ such that

- Points are sent to lines and lines are sent to points.
- π^{2} is the identity function.
- π preserves incidence.

An example

Let \mathcal{P} be the one-dimensional subspaces of \mathbb{F}_{q}^{3} and \mathcal{L} be the two-dimensional subspaces.

Define \mathcal{I} by containment. i.e. $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ is a finite projective plane of order q.

Define a map π that sends points and lines to their orthogonal complements.
π is a polarity.

Polarity graphs

Given a geometry $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ and a polarity π, one can construct a polarity graph.
$V\left(G_{\pi}\right)=\mathcal{P}$
$E\left(G_{\pi}\right)=\{\{p, q\}: p \neq q \in \mathcal{P},(p, \pi(q)) \in \mathcal{I}\}$.
If $(p, \pi(p)) \in \mathcal{I}$ then p is called an absolute point.
$E R_{q}$ is the polarity graph obtained by the previous example.

$$
\left(x_{0}, x_{1}, x_{2}\right) \sim\left(y_{0}, y_{1}, y_{2}\right) \Leftrightarrow x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}=0
$$

$E R_{4}$

Michael Tait

$E R_{q}$ and other polarity graphs

History
$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic number of $E R_{q}$

Precedent

Sudakov asked about the independence number of $E R_{q}$.
$E R_{q}$ and other polarity graphs

History

- Mubayi and Williford (2007) determined $\alpha\left(E R_{q}\right)=\Theta\left(q^{3 / 2}\right)$.
- Godsil and Newman (2008) improved the upper bound given by Hoffman's bound. This was refined (2009) using the Lovász theta function.
- Hobart and Williford (2013) gave upper bounds for the independence number of general polarity graphs for q even using coherent configurations.

Abreu, Balbuena, and Labbate (2010) gave an explicit way to construct the adjacency matrix of $E R_{q}$ using latin squares.

Applications

Polarity graphs have been applied to other areas in mathematics.
$E R_{q}$ and other polarity graphs

History
$\operatorname{ex}\left(n, C_{4}\right)$

- $\operatorname{ex}\left(n, C_{4}\right)$.
- ex $\left(n, C_{2 k}\right)$ (Lazebnik-Ustimenko-Woldar).
- Constructive lower bounds for Ramsey numbers (Kostochka-Pudlák-Rödl 2010).
- Multicolor Ramsey numbers (Lazebnik-Woldar 2000 and Lazebnik-Mubayi 2003).
- Dense 3-uniform hypergraphs of girth 5 (Lazebnik-Verstraëte 2003).
- Cops and robbers game?

C_{4}-free graphs

Theorem (Füredi)
For q a prime power
$E R_{q}$ and other polarity graphs

History

$$
\operatorname{ex}\left(q^{2}+q+1, C_{4}\right)=\frac{1}{2} q(q+1)^{2} .
$$

Moreover, for $q>13$, any extremal graph is an orthogonal polarity graph of a projective plane.

Theorem (Firke, Kosek, Nash, Williford)
For q a power of 2

$$
\operatorname{ex}\left(q^{2}+q, C_{4}\right)=\frac{1}{2} q(q+1)^{2}-q
$$

Moreover, for q large enough, the unique extremal graphs are orthogonal polarity graphs with a degree of vertex q deleted.

Lower bounds

McCuaig's Conjecture

Any extremal graph that is C_{4} free with ex $\left(n, C_{4}\right)$ edges is an induced subgraph of some polarity graph.

This suggests that a good way to get lower bounds for $\operatorname{ex}\left(n, C_{4}\right)$ is to take a polarity graph and remove an appropriate set of vertices.

Abreu, Balbuena, and Labbate used this technique successfully to give the best-known lower bounds for $\operatorname{ex}\left(n, C_{4}\right)$ for certain values n.

Lower bounds

Conjecture (Abreu-Balbuena-Labbate 2010)

Let q be a prime power.

$$
\operatorname{ex}\left(q^{2}-q-2, C_{4}\right)= \begin{cases}\left(\frac{1}{2} q-1\right)\left(q^{2}-1\right) & \text { if } q \text { is odd; } \\ \frac{1}{2} q^{3}-q^{2} & \text { if } q \text { is even. }\end{cases}
$$

Theorem (MT and Timmons)

Abreu-Balbuena-Labbate conjecture false for odd q large enough.

Proof: Take a Cayley sum graph of a particular Sidon set. Remove a dense subgraph.

Dense Subgraphs

The denser the subgraph you remove is, the more edges are left over.

This converts the problem of lower bounding ex $\left(n, C_{4}\right)$ to the problem of finding a dense subgraph in a polarity graph.

Dense Subgraphs

Michael Tait

Theorem (MT and Timmons)

Let Π be a projective plane of order q that contains an oval and has a polarity π. If $m \in\{1,2, \ldots, q+1\}$, then the polarity graph G_{π} contains a subgraph on $m+\binom{m}{2}$ vertices that induces at least

$$
2\binom{m}{2}+\frac{m^{4}}{8 q}-O\left(\frac{m^{4}}{q^{3 / 2}}+m\right)
$$

edges.

Corollary

Let q be a prime power. Then

$$
\operatorname{ex}\left(q^{2}-q-2, C_{4}\right) \geq \frac{1}{2} q^{3}-q^{2}+\frac{3}{2} q-O\left(q^{1 / 2}\right)
$$

Proof sketch: preliminaries

Let H be an oval in the projective plane (a set of points of size $q+1$ with no 3 on a line).

- Any two points have a unique common neighbor.
- No vertex has more than 2 neighbors in H.
$E R_{q}$ and other polarity graphs

History
$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic
number of $E R_{q}$

Let S be the set of vertices secant to H (with exactly 2 neighbors in H).

Proof sketch: preliminaries

Polarity graphs of projective planes are pseudorandom.
Given a subset of vertices of size $\delta|V(G)|$, it induces
$E R_{q}$ and other polarity graphs

History

$\operatorname{ex}\left(n, C_{4}\right)$

$$
\left(\delta^{2}+o(1)\right)|E(G)|
$$

edges.
Proof: $A^{2}=J+q I$. The eigenvalues of A are $q+1$ and $\pm \sqrt{q}$.
Given a set S, the Expander-Mixing Lemma gives that

$$
\left|e(S)-\frac{(q+1)|S|^{2}}{q^{2}+q+1}\right| \leq \sqrt{q}|S|
$$

Proof sketch: Building a bipartite subgraph

Let $Y \subset H$ and let S_{Y} be the secants to Y.
$E R_{q}$ and other polarity graphs

History

ex $\left(n, C_{4}\right)$
The chromatic number of $E R_{q}$

Biregular graph with degrees 2 and $|Y|-1$. This is not quite enough to disprove the Abreu-Balbuena-Labbate conjecture. To complete the proof, we show that we can choose Y so that S_{Y} induces enough edges.

Proof sketch: edges in S_{Y}

$E R_{q}$ and other polarity graphs

Recall that pseudo-randomness gives that the secants to H induce $\left(\frac{1}{8}+o(1)\right) q^{3}$ edges.

Choose Y by randomly selecting m vertices from H.

Proof sketch: edges in S_{Y}

Given an edge in S, there are at most 4 vertices in H that must be chosen so that the edge is induced by S_{Y}.
$E R_{q}$ and other polarity graphs

History

$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic
number of $E R_{q}$

$$
\mathbb{P}\left(e \in E\left(G\left[S_{Y}\right]\right) \geq \frac{\binom{q-3}{m-4}}{\binom{q+1}{m}} .\right.
$$

S_{Y} induces at least $\frac{m^{4}}{8 q}-O\left(\frac{m^{4}}{q^{3 / 2}}\right)$ edges in expectation.

Difficulties

Can we improve this construction? Can we find a polarity graph with a subgraph that is denser?

There are two situations where we can substantially improve our construction, but they indicate the general problem is difficult.

Difficulties

Let q be a square. The classical projective plane of order q has a subplane of order \sqrt{q}, which implies $E R_{\sqrt{q}}$ is a subgraph of $E R_{q}$.
$E R_{\sqrt{q}}$ is a graph on $q+\sqrt{q}+1$ vertices with $\frac{1}{2} \sqrt{q}(\sqrt{q}+1)^{2}$ edges. This is much better than our result, which gives a subgraph with the number of edges linear in q.

Difficulties

Our theorem gives

$$
\operatorname{ex}\left(q^{2}-q+1, C_{4}\right) \geq \frac{1}{2} q^{3}-q^{2}+\frac{9}{2} q-O\left(q^{1 / 2}\right)
$$

Let q be a power of 2 and $q-1$ prime (a Mersenne prime). Then $E R_{q-1}$ is a graph on

$$
(q-1)^{2}+(q-1)+1=q^{2}-q+1
$$

vertices. That contains

$$
\frac{1}{2}(q-1) q^{2}
$$

edges. This improves our bound by a factor of $\left(\frac{1}{2}+o(1)\right) q^{2}$.

Future

Problem

Can one find denser subgraphs by studying specific non-desarguesian planes?

Recall that Mubayi and Williford showed that $\alpha\left(E R_{q}\right)=\Theta\left(q^{3 / 2}\right)$. This implies that $\chi\left(E R_{q}\right)=\Omega\left(q^{1 / 2}\right)$. Is this the correct order of magnitude?

Theorem (Peng, MT, Timmons)

Let $q=p^{2 r}$ where p is an odd prime. Then

$$
\chi\left(E R_{q}\right) \leq 2 \sqrt{q}+O(\sqrt{q} / \log q)
$$

$\chi\left(E R_{q}\right)$

We had difficulty when q is an odd power of a prime:
$E R_{q}$ and other polarity graphs

Theorem (Peng, MT, Timmons)
Let q be an odd power of an odd prime. If there is a $\mu \in \mathbb{F}_{q}$ such that $x^{2 r+1}-\mu$ is irreducible in $\mathbb{F}_{q}[x]$, then

$$
\chi\left(E R_{q^{2 r+1}}\right) \leq \frac{2 r+5}{3} q^{\frac{4 r}{3}+1}+(2 r+1) q^{r+1}+1 .
$$

There is also a technical hurdle when q is even.

Conjecture

Let p be a prime. Then

$$
\chi\left(E R_{p^{2 r+1}}\right)=O\left(p^{r+1}\right) .
$$

Proof sketch: A large independent set

Michael Tait

Most of the graph is isomorphic to

$$
\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right) \Leftrightarrow\left(x_{1}+y_{1}\right)^{2}=x_{2}+y_{2}
$$

We give an explicit isomorphism that uses 2^{-1}.
Partition $\mathbb{F}_{\sqrt{q}}^{*}$ into sets $\mathbb{F}_{\sqrt{q}}^{+}$and $\mathbb{F}_{\sqrt{q}}^{-}$such that

$$
a \in \mathbb{F}_{\sqrt{q}}^{+} \text {if and only if }-a \in \mathbb{F}_{\sqrt{q}}^{-} .
$$

Let $\theta \in \mathbb{F}_{q} \backslash \mathbb{F}_{\sqrt{q}}$ and $\mathbb{F}_{q}=\left\{a \theta+b: a, b \in \mathbb{F}_{\sqrt{q}}\right\}$. Then

$$
\left\{(x, y \theta+z): x, z \in \mathbb{F}_{\sqrt{q}}, y \in \mathbb{F}_{\sqrt{q}}^{+}\right\}
$$

is an independent set.

$$
\left(x_{1}+x_{2}\right)^{2} \neq\left(y_{1} \theta+z_{1}\right)+\left(y_{2} \theta+z_{2}\right) .
$$

When the exponent is odd, a similar construction is not quite as good.

Many large independent sets

Lemma
Let $k \in \mathbb{F}_{\sqrt{q}}^{*}$. Then the map

$$
\psi_{k}((x, y))=\left(x+k, y+4 k x+2 k^{2}\right)
$$

is an automorphism.
When q is even, the maps ψ_{k} don't "move" the vertices enough.
Color most of the vertices with these large independent sets.

Michael Tait
$E R_{q}$ and other
polarity graphs
History
$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic
number of $E R_{q}$

Michael Tait
$E R_{q}$ and other
polarity graphs
History
$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic
number of $E R_{q}$

Michael Tait
$E R_{q}$ and other
polarity graphs
History
$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic
number of $E R_{q}$

Michael Tait
$E R_{q}$ and other
polarity graphs
History
$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic
number of $E R_{q}$

Completing the coloring

Let H be the graph induced by the uncolored vertices.
Lemma

$$
\Delta(H) \leq 2 \sqrt{q}-1 .
$$

When the exponent is odd we had a very hard time bounding the maximum degree of H.

Completing the coloring

$E R_{q}$ and other
polarity graphs
History
$\operatorname{ex}\left(n, C_{4}\right)$
The chromatic number of $E R_{q}$

$$
\chi(H)=O\left(\frac{\sqrt{q}}{\log q}\right)
$$

Open Problems

Problem 1
 Give an effective upper bound on $\Delta(H)$ when the exponent is odd.

Problem 2

Find a proof that works when q is even.

Open Problems

Problem 3 (easier)

If G is any polarity graph of a projective plane of order q, determine if

$$
\alpha(G)=\Omega\left(q^{3 / 2}\right)
$$

Problem 4 (harder)

If G is any polarity graph of a projective plane of order q, determine if

$$
\chi(G)=O\left(q^{1 / 2}\right)
$$

Open Problems: The unitary polarity graph

Let q be a square. The unitary polarity graph U_{q} has

$$
\left(x_{0}, x_{1}, x_{2}\right) \sim\left(y_{0}, y_{1}, y_{2}\right) \Leftrightarrow x_{0} y_{0}^{\sqrt{q}}+x_{1} y_{1}^{\sqrt{q}}+x_{2} y_{2}^{\sqrt{q}}=0
$$

The absolute points form an independent set of size $q^{3 / 2}+1$. Mubayi and Williford asked what is the order of magnitude of the largest independent set not containing absolute points.

Problem 5 (easier)

Is there an independent set of non-absolute points in U_{q} of size $\varepsilon q^{3 / 2}$?

Problem 6 (harder)

Determine if

$$
\chi\left(U_{q}\right) \leq C q^{1 / 2}
$$

