Distinct edge weights on graphs

Sidon sets
Sum-injective
labelings
Product-
injective
Michael Tait
labelings
Lower bound
Upper bound
University of California-San Diego
mtait@math.ucsd.edu
Sum-injective
labelings
An idea

Joint work with Jacques Verstraëte
November 4, 2014

Overview

(1) Sidon sets

Sidon sets
Sum-injective labelings
(2) Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
(3) Product-injective labelings

- Lower bound

Sum-injective
labelings

- Upper bound
(4) Sum-injective labelings
- An idea

Sidon sets

Definition

Given an abelian group (or monoid) Γ, a Sidon set A is a set $A \subset \Gamma$ such that $a, b, c, d \in A$ and

$$
a+b=c+d
$$

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
implies that $\{a, b\}=\{c, d\}$.
In this talk we will consider Sidon subsets of
$[N]:=\{1,2, \ldots, N\}$ of integers under either "+" or "*".

Sidon sets

How thin does such a set have to be?

Sidon sets

Erdős and Turán (1941) showed that if $A \subset[n]$ is a Sidon set (with addition), then

$$
|A|<n^{1 / 2}+O\left(n^{1 / 4}\right)
$$

Sidon sets
Sum-injective
labelings
Product-
injective

labelings
Lower bound
Upper bound
Sum-injective labelings
An idea

Figure: Erdős and Turán

Sidon sets

There are still open questions about Sidon sets (with addition). How big can they be? What is the structure of a Sidon set of large size?

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Denote by $f(n)$ the largest integer k for which there is a sequence $1 \leqslant a_{1}<\cdots<a_{k} \leqslant n$
Lower bound
so that all the sums $a_{i}+a_{j}$ are distinct. Turán and I conjectured about 40 years ago
Upper bound
[5] that

$$
\begin{equation*}
f(n)=n^{1 / 2}+\mathrm{O}(1) . \tag{1}
\end{equation*}
$$

The conjecture seems to be very deep and I offered long ago a prize of 500 dollars for a proof or disproof of (1). The sharpest known results in the direction of (1) state [5]

$$
\begin{equation*}
n^{1 / 2}-n^{1 / 2-c}<f(n)<n^{1 / 2}+n^{1 / 4}+1 . \tag{2}
\end{equation*}
$$

Figure: 500 USD Erdős question

Sidon sets: Generalizations

- $B_{h}[g]$ sets: The number of solutions to

$$
a_{1}+\cdots+a_{h}=b_{1}+\cdots+b_{h}
$$

is bounded by g. Very little is understood about these sets when $h>2$.

Sidon sets
k-fold Sidon sets:

$$
a+b \neq i(c+d)
$$

for $1 \leq i \leq k$. Asymptotics not known for $k \geq 2$.

- Restricted Sidon sets: taking only squares, cubes, 5th powers, etc.

$$
a^{5}+b^{5}=c^{5}+d^{5} \quad ?
$$

Sidon sets on graphs

A generalization for graph theorists:
Given a graph G let $\chi: V(G) \rightarrow \mathbb{N}$ be an injective
Sum-injective labelings
function (i.e. label the vertices with distinct natural numbers).

Product-
injective
labelings
Lower bound
Upper bound

Definition

A sum-injective coloring of graph G is an injection $\chi: V(G) \rightarrow \mathbb{Z}$ such that $\chi(x)+\chi(y) \neq \chi(u)+\chi(v)$ for distinct edges $x y, u v \in E(G)$.

We weight an edge with the sum of its endpoints and require that all the edges have distinct weights.

Sidon sets on graphs

Sidon sets
Sum-injective
labelings
Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
An idea

Figure: A sum-injective labeling of K_{3}

Sidon sets on graphs

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
An idea

Figure: Not a sum-injective labeling of K_{4}

Sidon sets on graphs

Sidon sets
Sum-injective
labelings
Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
An idea

Figure: A sum-injective labeling of K_{4}

Sidon sets on graphs

Note that any graph admits a sum-injective labeling by using a Sidon set.We denote by $S(G)$ the minimum N such that G admits a sum-injective coloring $\chi: V(G) \rightarrow[N]$.
$S\left(K_{3}\right)=3, S\left(K_{4}\right)=5$.
$S(G) \leq S\left(K_{n}\right) \leq$ Largest integer in a Sidon set of size n

Denote by $D(G)$ the minimum N such that G admits a difference-injective coloring $\chi: V(G) \rightarrow[N]$

Sidon sets on graphs

Sidon sets of $[N]$ have size at most $(1+o(1)) \sqrt{N}$

$$
S\left(K_{n}\right)=D\left(K_{n}\right)=(1+o(1)) n^{2} .
$$

Lower burura
Upper bound

Sum-injective

What about other graphs?

Sum-Injective Coloring

A greedy algorithm gives an upper bound.

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
Sum-injective labelings
An idea

The unlabelled vertex cannot receive color 8 (or colors $5,7,10)$. There may be a restricted color for each neighbor and each edge in G.

Upper bound

Theorem

Let G be a graph with maximum degree Δ. Then

$$
S(G) \leq \Delta|E(G)|+n-1 \leq \frac{\Delta^{2} n}{2}+n
$$

Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
An idea

Note that $S(G) \leq S\left(K_{n}\right) \leq(1+o(1)) n^{2}$ by coloring with a Sidon set. Therefore this upper bound is trivial unless Δ is less than \sqrt{n}.

Lower bounds

Theorem (Bollobás and Pikhurko 2005)

Let G be a random graph with expected degree d. Then almost surely

$$
\begin{gathered}
S(G) \geq \begin{cases}c_{1} n^{2} & \text { if } d \geq n^{1 / 2} \log n \\
c_{2} \frac{d^{2} n}{\log n} & \text { if } d=o(\sqrt{n \log n}) .\end{cases} \\
D(G) \geq \begin{cases}(1-o(1)) n^{2} & \text { if } d \geq n^{1 / 2} \log n \\
c_{3} \frac{d^{2} n}{\log n} & \text { if } d=o(\sqrt{n \log n}) .\end{cases}
\end{gathered}
$$

Sidon sets
Sum-injective labelings

An idea

It is surprising that graphs much less dense than K_{n} have $S(G)=\Omega\left(n^{2}\right)$ and $D(G) \sim n^{2}$.
The Sidon condition is too strong. For most graphs with only $n^{3 / 2+o(1)}$ edges, labeling with a Sidon set is asymptotically best possible.

Multiplication

Let's switch from $(\mathbb{Z},+)$ to $(\mathbb{Z}, *)$.
What is a good Sidon subset (under multiplication) of $[N]$? i.e. pick a large subset of natural numbers that has no nontrivial solutions to

$$
a \cdot b=c \cdot d
$$

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
An idea

The primes up to N ?

$$
\pi(N) \sim \frac{N}{\log N}
$$

Multiplication

Theorem (Erdős, 1938)

Choosing primes is asymptotically best possible. If
Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings

$$
|A| \leq(1+o(1)) \frac{N}{\log N} .
$$

An idea

Is the restriction that $a b \neq c d$ for all $\{a, b\} \neq\{c, d\}$ too strong?

Product-injective labelings

Definition

A product-injective coloring of graph G is an injection

Sidon sets

 $\chi: V(G) \rightarrow \mathbb{Z}$ such that $\chi(x) \cdot \chi(y) \neq \chi(u) \cdot \chi(v)$ for distinct edges $x y, u v \in E(G)$.Lower bound
Upper bound

We weight an edge with the product of its endpoints and require that all the edges have distinct weights.

Denote by $P(G)$ the minimum N such that G admits a product-injective coloring $\chi: V(G) \rightarrow[N]$

Product-injective labelings

Sidon sets
Sum-injective labelings

Product-

injective
labelings
Lower bound
Upper bound
Sum-injective labelings
An idea

Figure: Not a product-injective labeling of K_{6}
$P\left(K_{6}\right)>6$.

Product-injective labelings

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
An idea

Figure: A product-injective labeling of K_{6}
$P\left(K_{6}\right)=7$.

Product-injective labelings

Erdős' result says that $P\left(K_{n}\right) \sim n \log n$.
For all graphs G on n vertices
Sum-injective labelings

Product-
injective
labelings

$$
P(G) \leq P\left(K_{n}\right) \leq(1+o(1)) n \log n
$$

Recall $D\left(K_{n}\right) \sim n^{2}$ but there are graphs G much sparser that also have $D(G) \sim n^{2}$.

An analogous result for products?

Product-injective labelings

Theorem (MT and Verstraëte)
Let G be a random graph with expected degree at least

$$
P(G) \sim n \log n
$$

almost surely.

Erdős: $P\left(K_{n}\right) \sim n \log n$. Proof: If A is a subset of N, with $|A|=(1+\varepsilon) \frac{N}{\log N}$, then A has a nontrivial solution to $a b=c d$.

An auxiliary graph

\circlearrowleft

Figure: $U=\left[N^{2 / 3}\right] \cup$ primes up to n

$$
V=\left[N^{2 / 3}\right] .
$$

- Every $a \in[N]$ can be written as $a=u \cdot v$ with $u \in U$, $v \in V$, and $v \leq u$.
- For each $a \in A$, pick such a representation.

An auxiliary graph

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
Figure: $U=\left[N^{2 / 3}\right] \cup$ primes up to $n \quad V=\left[N^{2 / 3}\right]$.

- Every $a \in[N]$ can be written as $a=u \cdot v$ with $u \in U$, $v \in V$, and $v \leq u$.
- For each $a \in A$, pick such a representation.
- The number of edges in this graph is $|A|$.

An auxiliary graph

U

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Figure: $U=\left[N^{2 / 3}\right] \cup$ primes up to $n \quad V=\left[N^{2 / 3}\right]$.

Lower bound
Upper bound

An idea

- Every $a \in[N]$ can be written as $a=u \cdot v$ with $u \in U$, $v \in V$, and $v \leq u$.
- For each $a \in A$, pick such a representation.
- The number of edges in this graph is $|A|$.
- Each C_{4} yields a nontrivial solution to $a b=c d$.

Erdős showed there is at least one C_{4} in this graph.

A Lemma

In fact there are many C_{4} 's in this graph.

Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
Sum-injective labelings

$$
\Omega\left(\frac{n^{2}}{(\log n)^{8}}\right)
$$

An idea

How do we use this to prove the lower bound?

Lower Bound

We show that if G is a random graph with expected degree at least $n^{1 / 2}(\log n)^{5}$, then $P(G) \geq(1-\epsilon) n \log n$ almost surely.

Strategy:

Sidon sets

- Fix a coloring χ from $[(1-\epsilon) n \log n]$.
- Show that the probability that G is

Lower bound
Upper bound
Sum-injective labelings product-injectively colored by χ is o ($1 /$ number of colorings). (use the lemma here)

- The union bound gives that $P(G) \geq(1-\epsilon) n \log n$.

Lower Bound

Fix a coloring χ from $[(1-\epsilon) n \log n]$. Look at solutions to $\chi(x) \chi(y)=\chi(u) \chi(v)$.

Sidon sets
Sum-injective labelings
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
An idea

Lemma: At least $\delta n^{2}(\log n)^{-8}$ such solutions.

Lower Bound

Fix a coloring χ from $[(1-\epsilon) n \log n]$. Look at solutions to
Sidon sets $\chi(x) \chi(y)=\chi(u) \chi(v)$.

Sum-injective
labelings
Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
An idea

For each picture like this, at most one edge can be generated.

Upper bound

What about an upper bound? Recall

$$
S(G) \leq \Delta|E(G)|+n .
$$

Lower bound
Upper bound
Sum-injective labelings
This bound also holds for $P(G)$, but it is very poor.

Upper bound

Theorem (MT and Verstraëte)

Let G be any graph with maximum degree less than
Product-
injective
labelings
Lower bound
Upper bound
$\sqrt{n}(\log n)^{-1}$. Then

$$
P(G) \sim n .
$$

Recall $n \leq P(G) \leq n$ 'th prime number $\sim n \log n$.

Upper bound

Almost all graphs	$\Delta>\sqrt{n}(\log n)^{5}$	$P(G) \sim n \log n$
All graphs	$\Delta<\sqrt{n}(\log n)^{-1}$	$P(G) \sim n$

Upper Bound

Let G be a graph with maximum degree
$\Delta \leq \sqrt{n}(\log n)^{-1}$. We will label it with maximum label
$(1+o(1)) n$ such that no two edges have the same product.

Strategy:

- Throw away highly divisible numbers.

Theorem (Hardy and Ramanujan 1917)

Let $\Omega(k)$ be the number of prime power divisors of k. Then for ω any function that tends to infinity

$$
|\{x \leq N:|\Omega(x)-\log \log N|>\omega \sqrt{\log \log N}\}|=o(N)
$$

Almost every number up to n has less than $\log n$ divisors.

Upper Bound

Strategy:

- Throw away highly divisible numbers.
- Color from a set of size $n+w$, choosing n colors

Sum-injective
labelings
Product-
injective
labelings
Lower bound
Upper bound
Sum-injective

An idea any two edges share a weight is small, but w is still $o(n)$.

- Local Lemma?

Local Lemma

- For edges $u v$ and $x y$, let $A_{u v, x y}$ be the event that $\chi(u) \chi(v)=\chi(x) \chi(y)$.
- We've chosen w large enough so that $\mathbb{P}\left(A_{u v, x y}\right)$ is small.
- If $A_{u v, x y}$ does not occur for any pair $u v$ and $x y$, then

Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
An idea χ is a product-injective labeling.

- However, all of the pairs of events are dependent.

Local Lemma

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
Sum-injective
labelings
Figure: Almost independent events
An idea

- If $\{u v, x y\}$ and $\{j k, r s\}$ are disjoint, then $A_{u v, x y}$ and $A_{j k, r s}$ are dependent but only superficially.

Local Lemma

Figure: Highly dependent events

Sidon sets
Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound

- If $\{u v, x y\}$ and $\{j k, r s\}$ are disjoint, then $A_{u v, x y}$ and $A_{j k, r s}$ are dependent but only superficially.
- If $\{u v, x y\}$ and $\{j k, r s\}$ are not disjoint, then $A_{u v, x y}$ and $A_{j k, r s}$ are highly dependent.
- Let $K_{u v, x y}$ be all of the not highly dependent events for $A_{u v, x y}$.
Let K be an arbitrary subset of $K_{u v, x y}$. Then $\mathbb{P}\left(A_{u v, x y} \mid K\right)$ is still small enough. The proof of the Local Lemma goes through.

Upper Bound

Strategy:

- Throw away highly divisible numbers.
- Color from a set of size $n+w$, choosing n colors randomly.
- Choose w strategically so that the probability that any two edges share a weight is small, but w is still $o(n)$.
- Apply the Modified Local Lemma to show that there is a positive probability that none of the edges have the same product.

An idea

Sums again

Back to working in $(\mathbb{Z},+)$. Edges have weight the sum of their endpoints.

Theorem (Bollobás and Pikhurko 2005)
Let G be a random graph with expected degree
Sidon sets
Sum-injective labelings

Product-
injective
labelings
Lower bound
Upper bound
$d=o(\sqrt{n \log n})$, then

$$
S(G)=\Omega\left(\frac{d^{2} n}{\log n}\right)
$$

Sum-injective
labelings
An idea
almost surely.
Recall that a greedy algorithm gives $S(G) \leq \Delta^{2} n+n$.

Which bound?

Which bound is closer?

Theorem (Bollobás and Pikhurko 2005)
Let G be a random graph with expected degree $d \gg \log n$.
Sum-injective labelings

Product-

injective
labelings
Lower bound
Upper bound
Then

$$
S(G) \leq(1+o(1)) \frac{d^{2} n}{\log d}
$$

Is there an analogous result for general graphs of maximum degree d ?

Sum-injective
labelings
An idea

Sum-injective coloring

The greedy upper bound $S(G) \leq \Delta^{2} n+n$ should be improved, as many of the restrictions are the same.

Conjecture

Let G be a graph with maximum degree d. Then

$$
S(G)=O\left(\frac{d^{2} n}{\log d}\right)
$$

Proof Idea: $d^{2} n$ restrictions but many are repeated. Use a semi-random method to color.

Rödl nibble

Sum-injective

- Label about $\frac{n}{\log d}$ vertices at a time and label randomly.

Rödl nibble

- Label about $\frac{n}{\log d}$ vertices at a time and label randomly.
- Work in \mathbb{Z}_{n} so that all weights are equally likely.
- Both the weights and the labels of a vertex's neighbors are uniformly distributed.
- The labels that a vertex is restricted from using should look uniformly distributed.
- We can always find a label for a vertex unless $C \frac{d^{2} n}{\log d}$ unique restrictions have been made.

Coupon Collector Problem

The expected time to collect n coupons drawing

Sidon sets

 uniformly, independently, and with replacement is asymptotic to $n \log n$.Theorem (Erdős and Rényi, 1961)
Let T_{n} be the time to collect n coupons. Then

$$
\mathbb{P}\left(T_{n}<n \log n+c n\right) \rightarrow e^{-e^{-c}}
$$

as $n \rightarrow \infty$.
Heuristically, it should be very unlikely that there is enough time to "collect" all $C \frac{d^{2} n}{\log d}$ "coupons". There is not enough time to run out of available labels.

Open problems

(1) Prove conjecture: $S(G)=O\left(\frac{d^{2} n}{\log d}\right)$.
© Sidon sets (with addition) of squares, cubes.
© k-fold Sidon sets.

Thank you!

