Increasing paths in edge-ordered graphs

Michael Tait
University of California-San Diego mtait@math.ucsd.edu Supported by NSF grant DMS-1427526

January 6, 2016

Joint work with Jessica De Silva, Theodore Molla, Florian Pfender, and Troy Retter

A game

Let's play a game

What is the longest increasing path you can find?

Definitions

Definition

An edge-ordering ϕ of a graph G is a bijection $\phi: E(G) \rightarrow\{1, \ldots,|E(G)|\}$.

Definition

Given an edge-ordering ϕ, and increasing path is a path $e_{1} e_{2} \cdots e_{k}$ such that $\phi\left(e_{1}\right)<\phi\left(e_{2}\right)<\cdots<\phi\left(e_{k}\right)$.

Note that a path is a self-avoiding walk, ie no vertex is visited more than once.

A game

There is an increasing path of length at least 4.

Our opponent

Our goal is to find a long increasing path. Our opponent's goal is to order the edges so that we cannot find a long increasing path.

Our opponent

Our goal is to find a long increasing path. Our opponent's goal is to order the edges so that we cannot find a long increasing path.

Max-min problem

If both players play optimally, how long will the longest increasing path be? Given a graph G, define $f(G)$ to be this length.

Definition

Fix a graph G. Define
$f(G)=\underset{\phi}{\min }$ length of longest increasing path under ϕ
where ϕ runs through all edge-orderings.

History

- Chvátal and Komlós ask about $f\left(K_{n}\right)$ in 1971.
- Graham and Kleitman show $f\left(K_{n}\right) \geq \sqrt{n-1}$ in 1973.
- Rödl shows if G has average degree d, then $f(G) \gtrsim \sqrt{d}$ in 1973.
- A series of upper bounds for $f\left(K_{n}\right)$ follow, settling on $f\left(K_{n}\right)<(1 / 2+o(1)) n$ by Calderbank, Chung, and Sturtevant in 1984.
- Alon and Yuster study graphs of bounded maximum degree in 2001.

Our Theorems

Theorem (GRWC 2014)

Let Q_{d} denote the d-dimensional hypercube. Then for all $d \geq 2$,

$$
f\left(Q_{d}\right) \geq \frac{d}{\log d}
$$

Theorem (GRWC 2014)

Let ω be any function tending to infinity, and $p \leq \frac{\log n}{\sqrt{n}} \omega(n)$. Then with probability tending to 1 ,

$$
f(G(n, p)) \geq \frac{(1-o(1)) n p}{\omega(n) \log n}
$$

Both of these bounds are tight up to the logarithmic factor.

Progress on $f\left(K_{n}\right)$

Our theorem shows that a random graph with expected degree just slightly larger than \sqrt{n} satisfies the same lower bound that Graham and Kleitman showed for K_{n}. We thought that this was good evidence that the lower bound for $f\left(K_{n}\right)$ was not correct.

Theorem (Milans)
$f(G)=\Omega\left((n / \log n)^{2 / 3}\right)$.

The pedestrian argument

Theorem (Graham-Kleitman 1973, Rödl 1973)
Every edge-ordering of K_{n} contains an increasing path of length at least $\sqrt{n-1}$. That is

$$
f\left(K_{n}\right) \geq \sqrt{n-1}
$$

Place a pedestrian on each vertex.

The pedestrian argument

Call out the edges in order. The two pedestrians switch places unless it would cause one of them to revisit a vertex she has already seen.

The pedestrian argument

Call out the edges in order. The two pedestrians switch places unless it would cause one of them to revisit a vertex she has already seen.

The pedestrian argument

Call out the edges in order. The two pedestrians switch places unless it would cause one of them to revisit a vertex she has already seen.

The pedestrian argument

Call out the edges in order. The two pedestrians switch places unless it would cause one of them to revisit a vertex she has already seen.

The pedestrian argument

The blue pedestrian has walked an increasing path of length 4 ($1-4-10-15$).

The pedestrian argument

Theorem (Graham-Kleitman 1973, Rödl 1973)

Every edge-ordering of K_{n} contains an increasing path of length at least $\sqrt{n-1}$. That is

$$
f\left(K_{n}\right) \geq \sqrt{n-1}
$$

Proof:

- Suppose each pedestrian walks $\leq k$ steps during this process.
- Then at most $\frac{k n}{2}$ edges are traversed.
- Each pedestrian declines to walk an edge at most $\binom{k+1}{2}-k$ times.
edges walked+edges declined $=\binom{n}{2} \leq \frac{k n}{2}+\binom{k}{2} n=\frac{k^{2} n}{2}$.

The pedestrian argument

Consider the pedestrian algorithm on an arbitrary graph G. Every edge in G is either traversed or is declined by some pedestrian. An edge may only be declined if it is contained in the subgraph induced by the path walked by a pedestrian.

Lemma

Let G be any graph. If $f(G)<k$, there exist sets $V_{1}, \cdots, V_{n} \subset V(G)$ such that $\left|V_{i}\right| \leq k$ and every edge of G is contained in a subgraph induced by some V_{j}.

In particular,
$n \cdot(\#$ edges in densest subgraph on $f(G)$ vertices $) \geq|E(G)|$.

The hypercube

$n \cdot(\#$ edges in densest subgraph on $f(G)$ vertices) $\geq|E(G)|$

Theorem (GRWC 2014)

$$
f\left(Q_{d}\right) \geq \frac{d}{\log d}
$$

Proof: Lemma: Any subgraph of a hypercube has density less than or equal to a subhypercube of the same size.

The random graph

Theorem (GRWC 2014)

Let $\omega(n)$ be a function tending to infinity arbitrarily slowly. Then for any $p \geq \frac{\log n}{\sqrt{n}} \omega(n)$, with probability tending to 1

$$
f(G(n, p)) \geq \frac{(1-o(1)) n p}{\omega(n) \log n}
$$

Proof: The graphs induced by the pedestrians' paths must cover all of the edges of $G(n, p)$. If $f(G(n, p)) \leq \frac{n p}{\omega(n) \log n}$, we get a lower bound on the number of pairs that cannot be edges. The probability that this occurs is $o\left(\binom{n}{f(G(n, p))}^{n}\right)$, i.e. it is so unlikely that even adding up over all possible paths for the pedestrians the probability that it occurs is still $o(1)$.

Upper Bounds

Our opponent wants to label the edges of G so that there is no long increasing path. Constructing an edge-labeling yields an upper bound on $f(G)$.

A first strategy: Consider a proper edge-coloring of a graph G with colors c_{1}, \cdots, c_{k}. Label the edges with color c_{1} with the smallest labels. Label the edges with color c_{2} with the next smallest labels. Continue this process. Any increasing path can use at most one edge of each color.

Open problems

Lavrov and Loh studied a variant of this problem. What happens when the edges of K_{n} are ordered randomly?

Theorem (Lavrov-Loh)
With probability tending to 1, a random edge-ordering of K_{n} has a monotone path of length at least $.85 n$. With probability at least $1 / e-o(1)$, a random edge-ordering of K_{n} has an increasing Hamiltonian path.

Conjecture

With probability tending to 1 , a random edge-ordering of K_{n} contains an increasing Hamiltonian path.

Open problems

- Improve the lower bound $f\left(K_{n}\right)=\Omega\left((n / \log n)^{2 / 3}\right)$.
- Does $f\left(Q_{d}\right)=d$?
- Are there graphs G with $\Delta(G)=k$ and $f(G)=k+1$?
- Show a random edge-ordering of K_{n} contains an increasing Hamiltonian path with probability tending to 1 .

