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ABSTRACT

We study tensor powers of rank 1 sign-normalized Drinfeld A-modules, where A is the coor-
dinate ring of an elliptic curve over a finite field. Using the theory of A-motives, we find explicit
formulas for the A-action of these modules. Then, by developing the theory of vector-valued An-
derson generating functions, we give formulas for the period lattice of the associated exponential
function. We then give formulas for the coefficients of the logarithm and exponential functions
associated to these A-modules. Finally, we show that there exists a vector whose bottom coordi-
nate contains a Goss zeta value, whose evaluation under the exponential function is defined over
the Hilbert class field. This allows us to prove the transcendence of certain Goss zeta values and

periods of Drinfeld modules as well as the transcendence of certain ratios of those quantities.
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1. INTRODUCTION

1.1 Introduction

The Carlitz module and its tensor powers are well understood. We have explicit formulas for
multiplication maps of both the Carlitz module and for its tensor powers (see [13] for the Carlitz
module and [33, §3] for tensor powers of the Carlitz module). Further, we have a nice product
formula for 7, the Carlitz period, and a formula for the bottom coordinate of the fundamental
period associated with tensor powers of the Carlitz module (see [5, §2.5]).

In his work towards the Langland’s program, Drinfeld introduced the notion of Drinfeld mod-
ules (see also [24], [30] or [46] for a thorough account of Drinfeld modules), which are a general-
ization of the Carlitz module. Since their introduction, many researchers have worked to develop
an explicit theory for Drinfeld modules which parallels that for the Carlitz module, notably Goss
in [22] and [23], Anderson in [2] and [3], Thakur in [44] and [45], Dummit and Hayes in [18],
and Hayes in [29]. To discuss the results of the present thesis, we first recall a few basic facts
about rank 1 sign-normalized Drinfeld A-modules over rings A, where A is the affine coordinate
ring of an elliptic curve E/F, (see §2.1 for a more thorough review of Drinfeld modules). Define
A = F,[t,y], where ¢ and y are related via a cubic Weierstrass equation for £. Also define an
isomorphic copy of A, which we denote A = IF,[6, 7], where 6 and 7 satisfy the same cubic Weier-
strass equation as ¢ and y. Let K be the fraction field of A, let K, be the completion of K at its
infinite place, and let C,, be the completion of an algebraic closure of K. Let H be the Hilbert
class field of K, which can be taken to be a subfield of K ,. A rank 1 sign-normalized Drinfeld

module is an [F-algebra homomorphism

p:A— L[]

satisfying certain naturally defined conditions, where L. C C, is some algebraically closed field

containing H and L[r] is the ring of twisted polynomials in the gth power Frobenius endomor-



phism 7 (see §2.1 for definitions). Associated to this Drinfeld module there is a point V' € E(H)

called the Drinfeld divisor, satisfying the equation with respect to the group law on F

VW V4 = = oo,

where = = (0,n) € E(K) and VUV is the image of V under the gth power Frobenius isogeny.
We specify that V' be in the formal group of £ at the infinite place of K, so that V' is uniquely
determined by the above equation. We define the shtuka function f € H(t,y) associated to £ to
have

div(f) = (V) = (V) + () — (c0),

and require that the sign of f equals 1 so that f is uniquely determined (see §1.2 for the definition
of sign).

Generalizing the Carlitz module further, Anderson introduced the notion of tensor products of
Drinfeld modules in [1], which provide higher dimensional analogues of (1-dimensional) Drinfeld
modules. Then, in the remarkable paper [5], Anderson and Thakur develop much of the explicit
theory for the arithmetic of the nth tensor power of the Carlitz module, including the aforemen-
tioned formula for the bottom coordinate of the fundamental period of the exponential function.
In a more recent paper, Papanikolas [33] uses hyperderivatives to give extremely explicit formulas
for multiplication maps and the fundamental period of tensor powers of the Carlitz module, along
with with remarkable log-algebraicity theorems. Both Anderson and Thakur’s and Papanikolas’s
techniques allow them to connect the logarithm function to function field zeta values.

The goal of this thesis is to give a detailed account of tensor powers of rank 1 sign normalized
A-modules and their applications to zeta values. The notion of using Drinfeld modules to study L-
functions, zeta functions, and their special values over functions fields has been pursued vigorously
in the last few years and has born much fruit (see [6], [25], [31], [35], [38] and [42]).

The main focus of this thesis is the study of tensor powers of rank 1 sign-normalized Drinfeld

modules over the affine coordinate ring of an elliptic curve. These modules provide a further gen-



eralization of the Carlitz module and are an example of Anderson A-modules. An n-dimensional

Anderson A-module is an A-module homomorphism

p: A — Mat,(L)[7]

satisfying certain naturally defined conditions, where Mat,,(L)[r] is the ring of twisted polynomi-
als in the gqth power Frobenius endomorphism 7, which extends to matrices entry-wise (see §2.2
for the full definition of Anderson A-modules).

The main theorems of this thesis include the following. We give formulas for the A-action
of tensor powers of rank 1 sign-normalized A-Drinfeld modules, as well as for the fundamental
period of the exponential function associated to this module. This generalizes both the work of
Papanikolas and the author on Drinfeld modules in [26] as well as that of Anderson and Thakur
on tensor powers of the Carlitz module in [5]. One of the main new aspects of this work, which
distinguishes it from that of Anderson and Thakur, is that we prove many of our results in a vector-
valued setting. In particular, we define and study vector-valued Anderson generating functions (see
(3.15)), and define new operators which act on these vector-valued functions (see §3.1). We also
give explicit formulas for the coefficients of the exponential and the logarithm function associated
to tensor powers of rank 1 sign-normalized Drinfeld modules, and show that evaluating the expo-
nential function at a special vector with a zeta value in its bottom coordinate gives a vector in H".
We remark that our techniques only allow us to study small zeta values. As an application of the
main theorems we use techniques of Yu from [48] to show that these zeta values and the periods
connected to the Drinfeld module are transcendental over K. This generalizes both the work of
Thakur on Drinfeld modules and zeta values in [45] as well as that of Anderson and Thakur on
tensor powers of the Carlitz module in [5].

The methods which Anderson and Thakur apply to obtain formulas for the coefficients for the
exponential and logarithm functions for tensor powers of the Carlitz module involve recursive ma-

trix calculations, which allow them to analyze a particular coordinate of those coefficients. In the



case of tensor powers of Drinfeld modules, however, the matrices involved are much more com-
plicated and do not give clean formulas as they do in the Carlitz case. We develop new techniques
to analyze the coefficients of the logarithm and exponential function inspired partially by work of
Papanikolas and the author in [26] and partially by ideas of Sinha in [41]. Further, Anderson and
Thakur use special polynomials (called Anderson-Thakur polynomials) in [5] to relate evaluations
of the logarithm function to zeta values. It is not yet clear how to generalize these Anderson-
Thakur polynomials to tensor powers of Drinfeld modules, and so instead we use a generalization
of techniques developed by Papanikolas and the author in [26] to prove formulas for zeta values.
We comment that this technique allows us to study zeta values only for 1 < s < g — 1; developing
techniques to study zeta values for all n > 1 is a topic of ongoing study (see Remark 5.1.1).

After setting out the notation and background in §1.2, in §2.1 we begin by defining A-motives
and dual A-motives, which are tensor powers of 1-dimensional motives. We realize these A-

motives and dual A-motives as spaces of functions

M =T(U,0p(nV)), N =T(U,0p(-nVY)),

respectively, where U = Spec L[t, 3] is the affine curve (L xp, E) \ {oo}. The spaces M and N

are generated as a free L[7]-module and a free L[o|-module by the sets of functions

{91,---sg} T M, {hi,...,h,} CN, (1.1)

respectively, where g;, h; € L(t,y) are naturally defined (see (2.12) and (2.13) for specific defini-
tions). The functions g; and h; appear repeatedly throughout this thesis, and one can think of them
as a generalization of the shtuka function to the n-dimensional setting.

To ease notation throughout the thesis, for a fixed dimension n, we define

N; € Mat,,(F,) (1.2)



for an integer « > 1 to be the matrix with 1’s along the ith super-diagonal and 0’s elsewhere and
define V; for i« < —1 to be the matrix with 1’s along the ¢th sub-diagonal and 0’s elsewhere.
We also define F; to be the matrix with a single 1 in the lower left corner and zeros elsewhere
and in general define E; to be N;_,,. We also define N;(a,...,a,_;) to be the matrix with the
entries oy, g, ..., a,_; along the ith super diagonal and similarly for N;_,(aq,...,a,_;) and
Ei(ay,...,q;). Also let * " denote the transpose of a matrix.

Using M and N, in §2.2 we define an Anderson A-motive p®", which is the nth tensor power
of a (1-dimensional) rank 1 sign-normalized Drinfeld module p, and analyze the structure of p{"

and p;". We find that
p?n = (9[ =+ Nl(al, ceey an_1> + NQ) + (anEl + EQ)Tv (13)

where a; are naturally defined constants in / (see (2.21) and Corollary (3.1.5)), and that pff" is
defined similarly (see (2.22)). By way of comparison, recall that for the nth tensor power of the

Carlitz module (see Example 2.2.1), we can write
We denote the exponential and logarithm functions associated to p®™ as

Exp}" ZQZ ,  Log}" ZPZ

where @Q);, P; € Mat,,(H) and denote the period lattice of Exp®” as A",

For g = Y c;xt’y* € LI[t,y], let gV denote the Frobenius twist of g, which is defined as

=> (14)

and let g) denote the ith iteration of twisting. In §3.1 we define an A-module of rigid analytic



functions €2, which vanish under the operator 7 — f", where 7 acts by twisting. We then proceed

to define an n-dimensional “vector version" of the operator 7 — f™ which we denote
G — Byt € Mat,(H(t,y))[T],

which acts on vectors of rigid analytic functions, and in Lemma 3.1.3 we solidify the connection
between these two operators. These vector operators allow us in §3.2 to connect the fundamental
period II,, of Expf?” with the space (), and obtain formulas for II,,. To state the main theorem on

periods, we begin by recalling the function

B [e) gqi
wp:é—l/(q 1)HW7
1=0

from [26, §4], where £ = —(m + [/«) (see (2.3) for the definition of m). We also define vector

valued Anderson generating functions,
EJ"(t) =Y Expi" (d[f]""u) ' € T,
=0

where u € C and T is a Tate algebra (see (1.10) for the definition of T), and prove several
properties about them. We relate the function wj to EZ™ using the vector operator G — E;7 from

§3.1. Using these techniques, we get the following information about the period lattice.
Theorem 3.2.7. If we denote

Resz(wjg1))

Resz(w)gn)
where g; are the functions from (1.1) and )\ is an (suitably normalized) invariant differential on F,

then the structure of the period lattice of Exp,;@” is given by

AP = {d[a]IL, | a € A},



where d[a] is the constant term of pS™. Further, if 7, is a fundamental period of the exponential
function associated to the (1-dimensional) Drinfeld module p, then the last coordinate of 11,, € CZ
is

gl(E) n

—.ﬂ'p,
a1ag . ..Qap—1

where the constants a; are the same as in (1.3).

In section §4.1 we move on to analyzing the coefficients of the exponential function EXp?”
associated to tensor powers of rank 1 Drinfeld A-modules. First, we define functions for 1 </ <n

and: > 1

o ge
T ey

and find that there is a unique expression for -; , of the form

)+ 05,29§i) +..congl) + Z dj ke

Jk

_ (i
Yie = Ce197

for ¢y, d; . € H, where the functions «;;, € H(t,y) satisfy naturally defined conditions given in
§4.1. We denote C; = (c;x), and we obtain our first main theorem about the coefficients of the

exponential function.

Theorem 4.1.1. For dimensionn > 2 and z € C, if we write
ExpS™(z) = >  Qiz",
i=0

then for i > 0, the exponential coefficients Q; = C; and Q); € Mat,,(H).

We prove this theorem by observing a recursive matrix equation which uniquely identifies the
coefficients of the exponential function (see Lemma 4.1.3), and then proving that the matrices C;
satisfy the recursive equation. After a bit more analysis, we obtain more exact formulas for the

first column of ();.



Corollary 4.1.4. For z € C, we have the expression

< z g1

0 0 ° q' g
EXp%@n = + Z () - ; |7

: : oo (ffO . fE)n =3)

0 0 In

Next, we transition to studying the coefficients of the logarithm function in §4.2. Our main
technique in this section involves proving the commutativity of diagram (4.15), which is inspired
by work of Sinha in [41]. We then define a single variable function which, using the machin-
ery from the diagram, allows us to recover the logarithm function. This gives formulas for the

logarithm coefficients in terms of residues of quotients of the functions g;, h; and f.

Theorem 4.2.4. For z inside the radius of convegence of Logf?", if we let

LogZ" () = 3 Pal?
=0

forn > 2 and let \ be an (suitably normalized) invariant differential on E, then P; € Mat,,(H)

(%)
gjhn—k’-i-l ) >
P, = <RGS: ( - A .
' = 1) (@))n
(ffO ... f®) < hen

With a little further analysis we obtain cleaner formulas for the bottom row of the logarithm

fori >0 and

coefficients.

Corollary 4.2.6. For the coefficients P; of the function Log?", the bottom row of P;, for 1 > 0, can

< B i >
. f@)n '
h(fO O

In section §5.1 we show that evaluating the exponential function at a special vector with a Goss

be written as

zeta value 1in its bottom coordinate is in H™. To state our results, we recall the extension of a rank

1 sign-normalized Drinfeld module p to integral ideals a C A due to Hayes [29] (see §5.1), which

8



maps a — p, € H[r]. We define J(p,) to be the constant term of p, with respect to 7 and let
¢ € Gal(H/K) denote the Artin automorphism associated to a, and let the B be the integral

closure of A in H. We define a zeta function associated to p twisted by the parameter b € B to be

e

Co(bys) := Z FIPAL

aCA

Theorem 5.1.2. For b € B and for n < q — 1, there exists a constant C € H and a vector

(%,...,%,CC(b;n))" € C such that

d:= EXp?n ‘ - Hn,
*

CCp(bsn)
where C' € H and d € H" are explicitly computable as outlined in the proof.

In §5.2 we discuss the transcendence implications of theorem 5.1.2. Using techniques similar

to Yu’s in [48] we prove the following theorem.

Theorem 5.2.1. Let p be a rank 1 sign-normalized Drinfeld module, let 7, be a fundamental period

of the exponential function associated to p and define (,(b;n) as above. Then

dimg Spang{(,(b; 1),...,(,(b;¢ — 1), 1,7, ... ,772‘2} =2(qg—1).

From Theorem 5.2.1 we get a corollary which relates to a theorem of Goss (see [22, Thm.

2.10]).

Corollary 5.24. For 1 < i < q — 1, the quantities Cp(b; i) are transcendental. Further, for

0 < j < q— 1the ratio {,(b;i)/m) € K ifand only ifi = j = q — 1.

Finally in §6.1 we give examples of the constructions in our main theorems.



1.2 Background and notation

We require much of the same notation as [26, §2] and we use similar exposition in this section.
Let p be a prime and ¢ = p" for some integer > 0 and let I, be the field with ¢ elements. Define

the elliptic curve F over IF, with Weierstrass equation
E :y2+clty+03y:t3+02t2+c4t+cﬁ, c; € Iy, (1.5

with the point at infinity designated as co. Let A = FF,[t, y] be the affine coordinate ring of E, the

functions on E regular away from oo, and let K = IF,(¢, y) be its fraction field. Let

dt

A= ——— 1.6
2y 4+ c1t + c3 (1.6)

be a fixed invariant differential on E. Also define isomorphic copies of A and K with an indepen-

dent set of variables ¢ and 7, which also satisfy (1.5), which we label
A=F,0,n, and K =TF,(60,n).
Define the canonical isomorphisms
1 K=K, x:K—-K (1.7)

such that () = € and «(y) = 1 and so on. We remark that the maps ¢ and y extend to finite
algebraic extensions of K and K respectively.

Let ord,, be the valuation of K at the infinite place, and let deg := — ord,,, both normalized
so that

deg(f) =2, deg(n) = 3.

Define an absolute value on K by setting |g| = ¢9°\9) for ¢ € K. Also define ord,,, deg and | - |

on K similarly. Let K, be the completion of K at the infinite place, and let C, be the completion

10



of an algebraic closure of K. Designate the point = = (0,7n) € E(K).
Extend the absolute value on C, to a seminorm on M = (m; ;) € Maty,,(C) as in [33,
§2.2] by defining

(M| = H}%X(|mzpj|)~

Note for ¢ € C, and M, N € Maty,,(C) that
lcM| = || - [M], |M+ N| < |M|+|N|,
and for matrices M € Maty.,(Cy) and N € Maty,,(C) that
|[MN| < [M]-[N],

but that the seminorm is not multiplicative in general.
In order to define a sign function, we first note that as an IF,-vector space, A has a basis
{t',t7y}, for i, j > 0 where each term has a unique degree. Thus, when expressed in this basis, an

element a € A has a leading term which allows us to define
sgn: A\ {0} = TF7,

by letting sgn(a) € F be the coefficient of the leading term of @ € A \ {0}. This sign function
extends naturally to K*. Define a sign function analogously for A and K, which we also call sgn.
Then, for any field extension L/F,, the coordinate ring of £ over L is L[t,y] = L ®p, A, and using

the same notion of leading term, we define a group homomorphism
S Lt y)* — L,

which extends the function sgn on K*.

Now, let L/IF, be an algebraically closed extension of fields containing A. Define 7 : L — L

11



to be the gth power Frobenius map and define L|[7] as the ring of twisted polynomials in 7, subject
to the relation for c € L

Tc = 1.

For g = 3" ¢;xt’y* € L[t,y], let gV denote the Frobenius twist of g, which is defined as

g ="yt (1.8)

and let ¢ denote the ith iteration of twisting. The twisting operation also extends naturally to
matrices in Mat,y,,,(L(t,y)) by twisting entry-wise. We use this notion of twisting to define the
ring Mat,,(L)[r] as the non-commutative ring of polynomials in 7 subject to the relation M =
MW7 for M € Mat,(L). In the setting of Anderson A-modules, we view Mat,,(L)[7] as a ring
of operators acting on L" for n > 1 via twisting, i.e. for A = Y M,7¢, with M; € Mat,, (L) and
ac L™,

Ala) =) Ma". (1.9)

Further, for X € FE(L), we define X") = Fr(X), where Fr : £ — E is the qth power Frobenius

isogeny. We extend twisting to divisors in the obvious way, noting that for g € L(¢,y)
div(g™M) = div(g)®V.

We define the Tate algebra for ¢ € C,

T, = {Z bit' € Coo[[t] | |'bs] — 0}, (1.10)
=0

where T. is the set of power series which converge on the closed disk of radius |c|. For convenience,

we set T := T;. Define the Gauss norm ||-||.. for vectors of functions h = >_ d;t' € T” for some

12



fixed dimension n > 0 with d; € CZ, by setting
bl = max|c'd,],

where | - | is the seminorm described above. Extend this norm to T.[y]" for hy, hy € T? by setting
|hy + yhs|. = max(||hy||, |7hs]|.). Note that each of these algebras are complete under their
respective norms. Using the definition given from [20, Chs. 3—4], we note that the two rings T[y]
and Ty[y] are affinoid algebras corresponding to rigid analytic affinoid subspaces of E/C... Let
€ be the rigid analytic variety associated to £ and let U C & be the inverse image under ¢ of the
closed disk of radius || in C., centered at 0. Then observe that U is the affinoid subvariety of
& associated to Ty[y], and that Frobenius twisting extends to T and T|[y] and their fraction fields.
As proved in [34, Lem. 3.3.2], T and T[y| have A and F,[t| as their fixed rings under twisting,
respectively.

We extend the action of Mat,,(L)[r] on L™ described in (1.9) to an action of Mat,, (T[y])[7] on

T[y]™ in the natural way.

13



2. A-MOTIVES AND A-MODULES

2.1 Tensor powers of A-motives

We briefly review the theory of A-motives and dual A-motives corresponding to rank 1 sign-
normalized Drinfeld-Hayes modules as set out in [26, §3]. First note that we can pick a unique
point V' in E(H) whose coordinates have positive degree (see the discussion preceding [26, (13)])

such that V' satisfies the equation on £

1-F)(V)=V -V =z (2.1)

If we set V' = (a, ), then deg(a) = 2 and deg(f) = 3 and sgn(«) = sgn(f) = 1. Define H to
be the Hilbert class field of K, which equals H = K («, ). There is a unique function in H (¢, y),

called the shtuka function, with sgn(f) = 1 and with divisor

div(f) = (VW) = (V) + (2) = (c0). 22)

We can write

t —n—m(t—~0 —m(t —
gty _y—n-—mlt=0) _y+fraate-—mit—a) (2.3)
o(t) t—« t—
where m is the slope between the collinear points V), —V and =, and deg(m) = q. We see
div(v) = (V) + (=V) + (E) = 3(c0), (2.4)
div(0) = (V) + (=V) — 2(c0). (2.5)

Let L/ K be an algebraically closed field, and let U = Spec L[t, y| be the affine curve (L xp, )\
{00}

14



We let
My =T(U,05(V)) = [ JL((V) +i(c0)),

i>0
where £((V') +i(00)) is the L-vector space of functions g on E with div(g) > —(V) —i(c0). We

make M, into a left L[t, y, 7]-module by letting 7 act by
Tg:fg(l)a gEM07

and letting L[t, y] act by left multiplication. We find that M, is a projective L[t, y]-module of rank 1

as well as a free L[7]-module of rank 1 with basis {1}. Define the dual A-motive
No =T (U,05(=(V"))) C L[t,y). (2.6)
If we let o = 771, then we can define a left L[t, y, c]-module structure on N by setting
oh = fhY.

With this action Ny is a dual A-motive in the sense of Anderson (see [4]), and we note that N is
an ideal of L[t,y] and that it is a free left L[o]-module of rank 1 generated by 6(!) (see [26, §3] for
proofs of these facts).

A Drinfeld A-module over L is an [F-algebra homomorphism
p:A— L[],

such that for all a € A,

Po = t(a) + b7+ -+ b, "

The rank r of p is the unique integer such that n = r deg a for all a. Thus, a rank 1 sign-normalized

Drinfeld module has » = 1 and that b,, = sgn(a).

15



For a Drinfeld A-module p, we denote the exponential and logarithm function as

exp,(z) = Z il_q-’ log,(2) = Z % € H[[z]], dy=14y=1.

7
Zq

P = D 7

o0 NG # > 5+
logp(z) = Ress (—ff(l) — f(i)>z = Z <_5(1)f(1) 0]

=0 i=0

) 21 (2.8)

where \ € Qg (—(V) + 2(00)) is the unique differential 1-form such that Ress(AD/f) = 1.
Denote the period lattice of exp,, as A,. Theorem 4.6 from [26] states that A, is a rank 1 free

A-module and is generated by the fundamental period

ga/la=1) o
o= 1T : : , (2.9)

q q
i=1 m 1
1— 0 )
<m9—77) + (m@—n) "

We now proceed to developing the theory for n-dimensional tensor powers of A-motives and

where £ = —(m + [/«).

dual A-motives. This generalizes the theory for the n-dimensional t-motives for the Carlitz module
(see [33, §3.6] for the Carlitz module and [27] for Drinfeld modules). For a fixed dimensionn > 1,

we define the n-fold tensor power of M,
Mg™ = Mo @pjty) -+~ Drjty) Mo,
and similarly for N;’". We wish to analyze M$" and N;" and identify them as a spaces of

functions over U.
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Proposition 2.1.1. For n > 1, we have the following L|t, y|-module isomporphisms

ME" = T(U,0p(nV)) and NE"=T(U,O0pg(—nVM)).

Proof. Define the map

¥ Mo ®@Ljry) - - - OrLjty) Mo = I(U, Op(nV))

on simple tensors for a; € M, as

A1 R Ry, > A1 "+ Ay

Looking at divisors, one quickly sees that a; - - - a,, is indeed in I'(U, Og(nV)) as desired. Then
it follows quickly from Proposition 5.2 of [28] that the map 1) is an L[t, y|-module isomorphism.

The proof that N = T'(U, Og(—nV (™)) follows similarly. O

From here on forward, we will denote

M := MZ" =T(U,0g(nV)), N :=N&" =T(U,0p(-nVM)). (2.10)

We turn M into an L[t,y, 7]-module and N into an L[t,y, c]-module by defining the action for
a€ Mandbe N as
ra= f"a" and ob= oY, (2.11)

Remark 2.1.2. The 7 action defined on M in (2.11) is the same as the diagonal action on Mg,

namely for a; € M,

VT ® - ®a,) =0[Ta @ - @7a,) =U(far @ -+ ® fa,) = ["Y(a1 @ - ® ay).

Thus the map ¢ from Proposition 2.1.1 is actually an L[t, y, 7]-module isomorphism.
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For a fixed dimension n > 2, we define a set of functions which generate M as a free L[r]-
module and define a second set of functions which generate NV as a free L|o]|-module. We remark
that for the case of n = 1, the present considerations do reduce to those detailed in [26, §3] for
motives attached to rank 1 Drinfeld modules, but for ease of exposition we assume that n > 2.
Let [n| denote the multiplication-by-n map on E. Define a sequence of functions g; € M for

1 <1 < nwithsgn(g;) = 1 and with divisors

div(g1) = —n(V) + (n — 1)(00) + ([n]V)
div(gs) = —n(V) + (n — 2)(c0) + () + (VY + [n — 1]V)

div(gs) = —n(V) + (n — 3)(00) + 2(E) + (2]VY + [n — 2]V)
div(gn-1) = —n(V) + () + (n — 2)(2) + ([n — 2V + [2]V)
div(gn) = —n(V) + (n = 1)(E) + ([n — VO + V),
and define functions h; € N with sgn(h;) = 1 and with divisors

div(h1) = n(VV) = (n + 1)(c0) + (—[n]V V)
div(hy) = n(VW) = (n +2)(c0) + (B) + (=[n — 1]V — V)

div(hg) = n(V®) — (n + 3)(c0) + 2(Z) + (—=[n — 2]V — [2]V)

div(h,_1) = n(VW) = (2n — 1)(00) + (n — 2)(Z) + (= [2]VY — [n - 2]V)

div(h,) = n(VD) = (2n)(c0) + (n — 1)(Z) + (=VY — [n — 1]V).
For ease of reference later on, we succinctly state that

div(gy) = —n(V) + (n = j)(00) + (i = DE) + ([H ~ WP+ [n = (G - DIV),  (2.12)
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div(hy;) = n(VO) = (n+ j)(00) + (j = D(E) + (=ln — (= DIV = [j = V). 2.13)

Recall that a divisor on £ is principal if and only if the sum of the divisor is trivial on £ [40,
Cor. II1.3.5] (we will use this fact implicitly going forward), and thus the divisors in (2.12) and
(2.13) are principal by (2.1). Also note that the functions g; and h; are uniquely defined because of

the sgn condition and note that g;, h; € H(t,y).

Proposition 2.1.3. Forn > 2, the set of functions {g;}!_, are a basis for M as a free L|T|-module

and the set of functions {h;}""_, are a basis for N as a free L|o|-module.

Proof. First observe that by the definition of the action of 7 from (2.11) that the L-vector space
generated by the functions 77¢g; for 1 < i < n and j > 0 is contained in M. Then observe that

each of the functions g; lives in the 1-dimensional Riemann-Roch space

gi € L(n(V) — (n —i)(00) — (i = 1)(2))-
Further, by the Riemann-Roch theorem
€)= J £6n(V) = (=)o) = G = D)
j=
so that £(n(V)) is equal to the L-span of the functions g;. Finally, observe that

deg(7g;) = deg((ffM ... fI-y"gD) = (j = 1)n + 1,

so that the degree of each 77 g; is unique and that these degrees includes each nonnegative integer,
thus

M = Uzmm +i(c0))

is equal to the L-span of the set {Tj g} for1 < i < nandj > 0. The proof for the o-basis

of the dual A-motive N follows similarly, once we note that each h; belongs to a 1-dimensional

19



Riemann-Roch space
hi € £L(=n(VD) + (n+ j)(00) = (j — 1)(2))-

We leave the details of this case to the reader. ]

When it is convenient, we will extend the definitions of the functions g; and h; for ¢« > n by

writing ¢ = jn + k, where 1 < k£ < n, and then denoting,
g =1 (g) = (ffO. f90) g0 and by = ol () = (FFCY L FOD)RCT). (2.14)
For ease of notation later on, we also define (where %' denotes the transpose)

g:=1(g1,--,0n) (2.15)

Remark 2.1.4. The A-motive N is dual to the A-motive M in a precise sense as outlined in [27,
Prop. 4.3]. But, as we do not need this for the rest of the thesis, we omit the details. We do,
however, record a lemma about the relationship between the functions g; and h; which we will

need later.

Lemma 2.1.5. We obtain the following identities of functions for 1 < j <n —1
ghi™V =t —t([]V),

Gjs1hn——1y = f" - (t = VY + [n = V).

Proof. The first identity is proved trivially, simply by comparing divisors from (2.12) and (2.13),

and noting that

sgn(g1) = sgn(hy) = sgn(t) = L.
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The second follows similarly, noting that for 1 < 7 <n —1

div(gjs1hn—(-1) = div(f" - (t = t([FIVY + [0 = j]V))),

and thus the two sides are equal up to a multiplicative constant. Then, since

Sg0(gj+1hn—-1) = sgu(f" - (t — (VY + [n = j]V))) = 1,

the equality of functions follows. [

Remark 2.1.6. The L[t,y, 7]-module N and the L[t,y, c]-module M with the actions described
in (2.11) is an A-motive and a dual A-motive, respectively, in the precise sense described by
Anderson (see [27, §4]). Because we do not require this fact going forward in the present thesis,

we omit the details.
2.2 Anderson A-modules

In this section we show how to construct an Anderson A-module from the A-motive M of
the previous section. An n-dimensional Anderson A-module is an F,-algebra homomorphism

p: A — Mat,(L)[r], such that fora € A

po =dla] + AT+ -+ A ™,

where d[a] = ¢(a)] + N for some nilpotent matrix N € Mat,, (L), and we remark that d : A —
Mat,, (L) is a ring homomorphism. The map p®" describes an action of A on the underlying space
L™ in the sense defined in (1.9), allowing us to view L™ as an A-module. Anderson A-modules
are a generalization of the ¢-modules introduced by Anderson in [1]; they are studied thoroughly

in [27, §5].

Example 2.2.1 (Tensor Powers of the Carlitz Module). For A = F[t], define an n-dimensional
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Anderson A-module C®" : F,[t] — Mat, (IF,[0])[7] (with the normalization deg(¢) = 1) by setting

Thus, forz € L",

C?"(z) = (01 + Ny)z + EzW,

and we extend C®" to all of A by setting Cym = C}" and using F-linearity. The map C'®" is an

Anderson A-module and is called the nth tensor power of the Carlitz module.

Work by Anderson in [1, Thm. 3] for the A = I, [t] case, then later by Bockle and Hartl in [9,
§8.6] for the more general rings A, shows that associated to every Anderson A-module, there is a

unique, [ -linear power series, which we label

Exp,(z) = Y Qiz'”) € Mat, (Cuc[[2]]),
=0
where z = (21,...,2,)", defined so that )y = I and that for all @ € A and z € C",

Exp ,(d[a]z) = p,(Exp,(z)). (2.16)

We call Exp, the exponential function associated to p, and note that it is entire on C7,. We also
define the logarithm function associated to A to be the formal inverse of Exp,. We label its

coefficients

Log,(z) = Y Pz € Mty (Cac|[7]),

=0

and note that Log , also satisfies a functional equation for eacha € A

Log,(p.(2)) = d[a] Log,(z). (2.17)
The function Log, has a finite radius of convergence in C7,, which we denote ;..
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Given the A-motive M and the dual A-motive N defined in (2.1.1), we now describe how
to use these motives to define an Anderson A-module. This method generalizes a technique of
Thakur [45, 0.3.5] for Drinfeld modules, and also has roots in unpublished work of Anderson (see
[27, §5.2]). We also refer the reader to [11] for a thorough account of the functoriality of this
process in the case of t-modules. We begin by defining the ¢- and y-action of the A-module, from
which the rest of the action of A can be defined. These actions are defined in terms of constants

coming from the functions g; and h; from (2.12).

Proposition 2.2.2. There exist constants a;, b;,y;,y; € H such that we can write for 1 <i <n

tgi = 09, + a;gix1 + Givo,
Ygi = Ngi + YiGi+1 + YiGito + Gitss

th; = 0h; + bihiy1 + hiyo,

where we recall the definitions of g; and h; for i > n from (2.14).

Proof. Note that tg; € M, and hence we can write

t9; = 191 + C292 + - - - + CnGm,

for ¢; € C. Examining the order of vanishing at oo of g; from (2.12) and recalling that ¢ has a

pole of order 2 at oo, we see that ¢; = 0 for j < and j > ¢ + 2. So

tgi = ¢igi + Cit19iv1 + CivaJita-

Then, noting that sgn(g;) = sgn(¢) = 1 and evaluating both sides at = shows that ¢;;» = 1 and
that ¢; = 0, respectively. Further, all the functions g; are in H (¢, y), and so the constants ¢; are as
well, which finishes the proof of the first equation. The proofs of the other two equations follow

similarly; we leave the details to the reader. O]
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Given the relationship between the basis elements g; and /1; described in Lemma 2.1.5, we also

expect the coefficients a; and b; to be related.

Proposition 2.2.3. For the coefficients defined in Proposition 2.2.2, for j < n — 1,

L= . _ 4
a; =b,_; and a,="0}.

Proof. From Proposition 2.2.2 we calculate that

) By . By
0=(0—1) (&— J >+aj@—bn_j AL (2.18)
Gi+2  hn_jio gj+2 hp—jio

Then using Lemma 2.1.5 yields the equality of functions

hoy =tV + -G+ DIV) g
huojrz t=t([[ =YV +[n— (G- 1D]V) g’

and so (2.18) becomes

9; t—1 ([J +1VO +n—(j+ 1)]V) B Jj+1
0= (g_) (1‘ t—t([j—1}v<l>+[n—<j—1>]V>) Y

From (2.12) and (2.13) we quickly see that

0 t=t(+UVO + - G+DIV) V)
deg; ((9 —1) <E> (1 Tttt (- VDO +n—(j— 1)]V))> -0

. h,_ .
deg, (aj@> = deg, (bn_jh ]H) =1
gj+2 n—j+2

Then, since sgn(g;) = sgn(h;) = 1, in order for the degree on the left hand side to match the

whereas

degree on the right hand side, we must have that a; = b,_; for j < n — 1. To get the equality
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a, = bl, we again use Proposition 2.2.2 to write

9 —t n n

0= (n—)g + a, - Int1 +1,
f 9n+2 9n+2
¢ _ pp0) X0

0— (0 t)hn + bq . n+1 + 1.

FOyhs "
Subtract these two equations and recall forn +1 < k£ < 2n that hy, = f”h,(cjl) and g, = f ”g,(i)n to
get

(0—tg. (01 —t)h’ g hy

— _ - _p1 . =
0= T T Ty 0y 219

Again, using Lemma 2.1.5 implies that

O —t)gn (t—00(t—t(VO +[n—1VD) (67— t)pY

) =0t - VO V) ()

so equation (2.19) turns into

(0 —1)gn <1 (=0t — (V@ + [ — wm))) L o hy
fngg) t—0)t—t(n—-1VvO+Vv)y) ) "

Again, we have

(0—tgn (| (=00 —t(VO +[n -1V _
@&<7@@_0"@—mu—wm—HW”+W>>>_o

whereas
1) h
deg, (—an : %) = deg, (b‘,ﬂ : h—l) =—1.
92 2

Then, since sgn(g;) = sgn(h;) = 1, in order for the degree on the left hand side to match the

degree on the right hand side of (2.20), we must have that a,, = b{. [

We begin defining the Anderson A-module associated to M, which is the nth tensor power of
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the Drinfeld module p associated to M, by defining

0 ag 1 O 0 0 0
0 0 ay 1 0 0 0 0 00 0
0 0 0 ag 0 0 0
pt=dlf]F Epr o= | 2t n S |+l0o 00 ... 0f7 22D
00 0 O 0 a,—o 1 1 00 0
00 0 O 0 0 ap a, 1 0 0
00 0 O 0 0 0
and
n oy oz 1 0 0 0
0 0 00 0
0 n y2 2 0 0 0
0 0 n w3 0 0 0
0O 0 00 ... 0
pyt =l H Byra= [0 n o n e T,
1 0 00 0
O 0 0 0 77 yn—? Zn—2
Zn—1 10 0 0
0 0 0 O 0 7 Yna
Yo 2 1 O 0
00 0 O 0 O n
(2.22)

where a;, y; and z; are given in Proposition 2.2.2.

To simplify notation later, we define strictly upper triangular matrices Ny and N, by

Ny =d[f]—0I and N, =d[n]—nl. (2.23)

With the definitions of p{"" and p?”, we define the IF;-linear map

pE" A — Mat, (H|[T])
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forany a € A by writinga = > ¢;t' +y > d;t* with ¢;, d; € F,, and extending using linearity and
the composition of maps p"* = (pi™)®. A priori, the map p is just an F-linear map, but we will
shortly show that it actually is an F,-algebra homormophism and defines an Anderson A-module.
Remark 2.2.4. In general the coefficients a;, y; and z; are not integral over H, which could lead
to our chosen model for p®" having bad reduction over certain places of A. We suspect that it
is possible to choose a normalization which has everywhere good reduction, but this would come
at the expense of having more complicated formulas e.g. not having 1’s across the last non-zero

super diagonals of pS" and p;?”.

Our main strategy for showing that the map p®" is actually an Anderson A-module involves
constructing a second Anderson A-module p’ using techniques of Hartl and Juschka, then showing
that the maps p®" and p’ align. In what follows, for convenience, we fix the algebraically closed

field L from §2.1 to be Co.. For g € N = I'(U, Og(—nV®)), define the map
e: N —=C,

by writing ¢ in the basis for the dual A-motive arranged as

g =dyoh1 + dy B b dy BT (F O pom Dy

+ d2,0h2 + d271hg*1)fn 4+t d2’mhg*m)(ff(fl) L f(*erl))n

(2.24)
+ ol + At hSD ™ 4 b (F D fEmED)
where d; ; € C, and at least one of the d, ,,, is non-zero, then defining
1) (m)
dn 0 dn,l dn m
dnfl,O dnfl,l dnfl,m

e(g) = _ + . +---+ _ . (2.25)

d1 0 dl,l dl m
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Note that the map ¢ is a special case of the map 9; defined in [27, Prop. 5.6]. One observes
immediately from the definition that ¢ is IF,-linear. We then obtain a proposition similar to Lemma

3.6 from [26].

Proposition 2.2.5. The map € : N — C_ is surjective and
ker(e) = (1—0)N ={g € N | g=h" — f"h for some h € I'(U, Op(—n(V)))}.

Proof. This proposition is a special case of [27, Prop. 5.6] (note that our map ¢ is called d;
in loc. cit.), and so we encourage the reader to look there for full details. Because it is useful
for certain computational examples, we briefly sketch a direct proof of Proposition 2.2.5. For
h € (U, 0g(—n(V))), we have h) € N and o(h(V) = f™h, so the two objects on the right are
the same. Also, if we write A using the basis and notation from (2.24), after a short calculation
we find that (h()) = £(f™h), and thus (1 — ¢)N C ker(e). To show that ker(¢) C (1 — )N,
we note that by the proof of Proposition 2.1.3 each function on the right hand side of (2.24) has
unique degree. Then for g € ker(e), we can construct a function h € I'(U, Og(—n(V))) satisfying
g = hY — f*h through the following process. We first note that degree considerations force
deg(h) = deg(g) — n, then we observe that h) € N and so we can write h(!) in terms of the
same basis used in (2.24) with coefficients d; ; € C. Next, we set g = (Y — f"h and compare
coefficients of equal degree terms on each side. The fact that g € ker(e) allows us to solve for

the coefficients d; ; uniquely in terms of the coefficients of g, which proves that such a function

h e T'(U,Og(—n(V))) exists. O

We then combine Proposition 2.2.5 with a theorem of Hartl and Juschka [27, Proposition 5.6]

to obtain the following proposition.
Proposition 2.2.6. The map p®" is an Anderson A-module.

Proof. Since N is free of rank n and finitely generated as a C,[c|-module, the quotient module

N/(1 — o)N is isomorphic as a C.-vector space to C,. We choose a basis for N/(1 — o) N
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consisting of the functions h;, the images of h; under the quotient map, then observe by Proposition

2.2.5 that this isomorphism is given by €. This gives rise to the following commutative diagram,

N/(1—0)N = C,

a\L \Lpfl (2.26)

N/(1—0o)N = C,

where the vertical map on the left is multiplication by a € A and the vertical map on the right is the
map induced by multiplication by @ under the isomorphism €. This diagram describes an action of
A on the space C7, and a priori, the induced action pj, is in Endg, (CZ,). However, Proposition 5.6
of Hartl and Juschka [27] shows that p/, is actually in Mat,,(C,[c]) and that it defines an Anderson
A-module. To write down the action of p/, we only need to analyze the action of a on the basis
elements h; (we drop the overline notation, since there is no confusion), and since A is generated
as an algebra by ¢ and y, we only need to consider the action of ¢ and y on the basis elements. We
first note that for 1 < ¢ < n — 2 and d; € C_, by Proposition 2.2.2 and by the definition of ¢ in

(2.25)
e(tdy_is1hs) = e(dp_is1(Oh; + bihiyt + hivo)) = dp_i1(0,...,0,1,0;,0,0,...,0)"
while we also have
e(tdahn 1) = e(do(Ohp_1 + by_1hy + (b)) = da(b;,0,0,...,0)" +d?_,(0,...,0,1)7

e(tdyhy) = (dy(0hy, + byo(hy) + o(hy))) = di(0,0,...,0)" +d%(0,...,0,1,b)7.

Y r¥n

Using the identities from Proposition 2.2.3, and piecing this all together, yields

e(t(dphy + -+ + dihy)) = (d0] + Eg7)(dy, ..., dn) " = pi™(dy, .., dn) "
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Similar analysis gives
e(y(dphy + -+ + duhy)) = p5"(dy, ... dy) "

Therefore, the operators p, = pi”" and Py = p;‘?”, and we see that the map p defined in (2.21) is

actually an A-module homomorphism and defines an Anderson A-module. [

Remark 2.2.7. We comment that it is likely possible to prove that p is an Anderson A-module by
appealing to Mumford’s work in [32] as does Thakur in [45], however, we prefer the approach

inspired by Hartl and Juschka in [27].

Having proved that p®™ is an Anderson A-module, we will label the exponential and logarithm

function associated to p®" as

Exp"(z) = Z Qiz"” € Mat,.1(Cs][2]]) (2.27)
=0
and
Logs"(z) = » Pz € Mat,1(Cuo|[2]). (2.28)
=0
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3. ANDERSON GENERATING FUNCTIONS AND PERIODS

3.1 Operators and the space (),

In [5, §2.5] Anderson and Thakur define an IF,[t]-module of functions for the Carlitz module,
which they call 2,, (our notation for this module is €2), which vanish under the operator 7— (t—6)"
(we remark that the shtuka function for the Carlitz module is (¢ — #)). They then connect this space
of functions to the period lattice of the exponential function by expressing a function h € €2,
in terms of ¢ — 6, then analyzing the principal part h in this expansion. Of particular note, they
construct an ancillary vector-valued function h which they use to aid their calculations in the proof
of their period formulas. In the case of tensor powers of Drinfeld A-modules, we apply similar
techniques using a space of functions {2y which vanish under the operator 7 — f". However, we
found it necessary to rely entirely upon the equivalent version of h, rather than using it as an
ancillary tool. Because of this, in this section we develop a vector setting in which we can embed
the space () and analyze vector-valued operators on it.

For a fixed a dimension n define

B :=TI' (U 0p(—n(V) +n(2)))

where U is the inverse image under ¢ of the closed disk in C,, of radius |0| centered at O defined in
§1.2. Define the A-module
Q={heB|nY - f"h e N}, (3.1)

where we recall the definition of IV from §2.1. Also define a submodule of € as

Qo={heB|nrY — f"h=0}. (3.2)
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For a function h(t,y) € €2, define the map 7" : 2 — T|[y|" by

h<t7 y) !

r(n ) = | " y_) Ay (33)

h(t.y) - gn
where the functions g; are the basis elements defined in (2.12). We observe immediately that 7" is

[F,-linear and injective.

Remark 3.1.1. The map 7" can be viewed as a generalization of the 0 operator defined by Anderson

and Thakur in the proof of 2.5.5 of [5], where they define for h(t) € T,

h(t) -1
h(t) - (t —0)

h(t) - (t = 0)"~!

Note that the function ¢ — 6, aside from being a uniformizer at =, is also the shtuka function for the
Carlitz module, and that it shows up in the 7-basis for the A-motive associated to the nth tensor
power of the Carlitz module (see [33, §3.6]). It is not immediately obvious which of these notions
leads to the correct generalization of [J for Anderson A-modules. After noticing properties such as
Lemma 3.1.2 and Theorem 3.2.7, however, it seems clear that the definition of 7'(+) is the correct

generalization for the present concerns.

Define operators on the space T[y|” which act in the sense defined in §1.2 by setting

Dy :=pf" —t, and D, =p;" —y.

Lemma 3.1.2. For h € ),



Proof. Using (2.2.2) and the fact that i € (), observe that

th(t,y) - ¢ h(t,y) - (0g1 + a1g2 + g3)
th(t,y) - h(t,y) - (0gs + asgs +
t-T(h) _ ( y) g2 _ ( y) ( 92 203 94) :d[Q]T(h)—I—E-T(h)(l).
thit,y) - Wit u) - (0 W en , (D) n
2 Y) " Gn (t,y) - (Ogn + angy [+ g5 [T)

Thus we see that pP"(h) = t - T(h) and so Dy(T(h)) = 0. A similar argument shows that
D,(T(h)) = 0. O

Define an additional operator on T[y]",

g/a —1 0o ... 0 000 ...0
0  g3/ga -1 ... 0 000 ...0

G-FET:=1] 0 0  gi/gs ... 0 —1000 ... 0|T (3.4)
0 0 0 ... ¢"fm/g, 100 ...0

A quick calculation shows that for any h € {2

(G = Exr](T(h)) =0,

and thus the operator G — F;7 can be viewed as a vector version of the operator 7 — f". In fact,

the relationship is even stronger, as proved in the following lemma.

Lemma 3.1.3. A vector J(t,y) € T[y|" satisfies (G — E,7)(J) = 0 if and only if there exists some

function h(t,y) € Qo such that

J(t,y) = T(h(t,y))-

Proof. We have already seen above that (G — Ey7)(T'(h)) = 0 for all h € €. For the other

direction, suppose that J(t,y) € T[y|]" satisfies (G — E;7)(J) = 0. Then, if we denote J =
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(j1,---,Jn) ", writing out the action of G — E7 on each coordinate gives equations

jlg —J2=0
g1
. g3 .
J2— —J3 =
92
3.5
. On .
jnfl —Jn =
gn—1
(1) rn
PR f M _
gn

Solving the first equation for j; and then substituting it into the second, and so on, gives the equality

of vectors
J1 J1
J2 B Ji '92/91
Jn Ji- gn/gl

From this, we also get the equality (7 — f™)(j1/91) = 0, so we see that J = T'(j;/g1) with

J1/g1 € Qo as desired. o

We use the quotient functions gy 1 /gy frequently throughout this section, so we briefly describe
some of their properties. Using the notation for £ > n for g; from (2.14), the quotients have

divisors
div(gri1/9x) = (2) = (00) + (KIVV + [n = KV) = (k= 1V + [n = (k= 1]V), (3.6)

for 1 < k < n. Thus we can write these functions as a quotient of a linear function of degree 3 and

a linear function of degree 2, which we label

vt y) y —n—m(t —0) _ Gk

Gt T t—tk—UVOtn—(k-D)V) g 3.7)
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for 1 < k < n, where my, is the slope between the points [£]V ") + [n — k]V and [—(k — 1)]V®) —
n—(k—1)]V.

Remark 3.1.4. The functions g1 /g) share many similarities with the shtuka funciton f, and the
vector (g2/g1, - -, 9n,/gn) " can be viewed as a vector version of the shtuka function; in fact, the

divisor of g;1 /g, matches with the divisor of the shtuka function, except that the points V(1) and

V in div(f) from (2.2) are shifted by ([k — 1]V + [n — k]V).

With the above analysis we are now equipped to give explicit formulas for the coefficients a;

from Proposition 2.2.2, which determine the action of p".

Corollary 3.1.5. The coefficients a; from Proposition 2.2.2 are given by

277 + 019 + c3
O —t([{)]VD) + [n —d]V)

a; =

Proof. Dividing both sides of the first equation from Proposition 2.2.2 by g, 1 and evaluating at

the point —= gives

_ Y2
a; = —
Ji+1|_=
Using expression (3.7) for £ = 7 + 1 we find
_Git2| 20+ 10+ c3
giv1|_=  O—t([{(JVD +[n—4V)’

]

Remark 3.1.6. In order to get formulas for y; and z; one can equate the coordinates on both sides

of the identity

&n . ®n
pn2+01779+0317 = Py34cr02-+cs+co

and solve for the coefficients y; and z; in terms of a;,. We do not use this fact going forward, and

thus we omit the details.
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Define the operator

MT = N1 + ElT,

where we recall the definition of the matrices NV; and £; from (1.2). Denote the diagonal matrix
M, == diag(z; — ag, 29 — as, ..., Zp_1 — Qp, Zn — agl)), (3.8)

where a; and z; are the constants from Proposition 2.2.2 and denote the diagonal matrix of functions
in H[t,y]
M5 = diag(51, 62, ce 7571) (39)

Proposition 3.1.7. We have the operator decomposition
(G — Ey7) = M; Y (D, — (M, + M,,) D).

Proof. We first compute using the definitions (2.21) and (2.22) and the definitions given above that

Dy - MTDt - Mth == M/, (310)
where
M' = M| + My
n—y—(0—t)(z1—az2) y1—(0—t)—ai(z1—a2) 0 0
0 ﬂ—y—(@—t)(ZQ—ag) yz—(e—t)—az(zg—ag) 0
0 0 n—y—(0—t)(z3—a4) ... 0
é (.) 0 '“. ynfl_(e_t)_a:nfl(znfl_an)
0 0 0 n—y—(e—t)(zn—agl))
0 00 0
0 00 0
0 00 0
+ . T

yn—(G—t)—an(zn—agl)) 00 ... 0
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If we define g := (g1,...,9n) ", then by Proposition 2.2.2 we observe that
dif)g + Eof"g" =0 and dnlg + E,f"g".
Then from (3.10), we observe that
Mg+ Mjfrg) = 0. (3.11)

Examining the coordinates of the above equation gives the equations for 1 < k <n — 1

Get1 _ Y —n— (0 —t)(2k — ars1)
Ik t—0+yp — ar(zp — agr)’

(3.12)

and
g y—n—(0—1t)(z—a)
9n t—0+yn—an(zn—agl))

Comparing these formulas with the notation established in (3.7) shows thatfor 1 <k <n — 1

my — 2k — Q41 and 5k:t—9+yk—akmk

and

mn:zn—agl) and 6, =t—0+vy, —a,m,.

With these observations, we then identify

M/ = Mg(G - ElT),

so that

(G — Ey7) = M; Y (D, — (M, + M,,) D).
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Remark 3.1.8. Note the similarity of this decomposition to that in [26, Prop. 4.1].

Corollary 3.1.9. Define the following matrices

My = Mj|,_, and My = My,

=0 =0’

with M7 and M, as in (3.10). Then

pzi/@n — (M + M) p™" = My + Mo,

Proof. After multiplying both sides by M;, the matrices in Proposition 3.1.7 have coefficients in

K][t,y], and equating the constant terms gives the corollary. [

Define the function

M@= ! _mb—n _ _(m+ é), (3.13)

(0% (07

where m, a, and 3 are given in §2.1 and recall that w, € T[y]* (see [26, §4], for details of

convergence). Note that

(W™ = frwn (3.14)

P

and thus w; € ). The idea behind the function w, comes originally from a similar function wc
defined for tensor powers of the Carlitz module by Anderson and Thakur in [5, §2.5]. Papanikolas
and the author genrealized the function we to Drinfeld modules in [26]. Angl’es, Pellarin and

Tavares Ribeiro also used this function in [8].
Proposition 3.1.10. The function w;, generates (g as a free A-module.

Proof. The proof follows similarly to the proof of [26, Prop. 4.3]. Since all of the zeros and poles
of w} lie outside the inverse image under ¢ of the closed unit disk in C, the function w} € T[y]*.
Then, for any h € g the quotient h/ w;} is fixed under twisting and thus is in A, and we see that

h = awg for some a € A. O
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3.2 Anderson generating functions and periods

Anderson and Thakur studied the period lattice of the n-fold tensor power of the Carlitz module
in [5], where they find succinct formulas for the last coordinate of a fundamental period. On
the other hand, Gekeler, Goss, Thakur, Papanikolas and Lutes and Papanikolas and Chang have
studied the fundamental period associated to (1-dimensional) Drinfeld modules (see [21, §III],
[24, §7.10], [31, Ex. 4.15], [43, §3], [14] and [15]). More recently, Papanikolas and the author
studied periods of rank 1 sign-normalized Drinfeld modules in [26] using Anderson generating
functions. This section generalizes the work of both Anderson and Thakur and of Papanikolas and
the author; we develop the theory of periods of n-fold tensor powers of rank 1 sign-normalized
Drinfeld modules. We remark that because of the additional complexity arising from generalizing
in both these directions, our methods required several new ideas, distinct from the works mentioned
above. In particular, while the residue formula presented in Proposition 3.2.5 is nearly trivial in the
1-dimensional case, its proof for the n-dimensional case required several new technical insights to
account for the higher order poles present in vector-valued Anderson generating functions.

We now define and study vector-valued Andreson generating functions in dimension n. Such
functions are used in the proof of Theorem 2.5.5 in [5] for the case of tensor powers of the Carlitz

module; here we define them for Anderson A-modules. For u = (uy, ..., un)T € CZ define

61(t)

E"t):=| i | =) BExpd (d[f]"'u)t (3.15)
1=0
en(t)
then define
Gy (ty) = Egn, (6) + (y + cit + c3) EJ" (1), (3.16)

We will shortly discuss the convergence of ES™ and GE™ as functions in Tate algebras, but

before proceeding we require two brief lemmas.

Lemma 3.2.1. Given an upper triangular matrix M € Mat,(T) with eigenvalues \; € T, the
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series

converges with respect to ||-|| and equals (I — M)~ if and only if | \;| < 1 forall 1 <i < n.

Proof. This is essentially a standard result from linear algebra, so we only sketch the proof. We
write M = D + N where D is the diagonal matrix consisting of eigenvalues and N is a strictly
upper triangular matrix. Then we write M’ = (D + N)’ and expand (D + N)’ to find that any

term with n or more copies of NV vanishes. Thus || M*|| — 0 asi — O if and only if |\;| < 1. O

Lemma 3.2.2. The coordinates of the matrix

(dln] —y) (o] =)™,

are regular at =, where d : A — Mat,,(H) is the ring homomorphism from §2.2.

Proof. For ease of exposition in this proof we will assume that the elliptic curve E has the simpli-
fied Weierstrass equation £ : y? = t* + At + B for A, B € F,. The lemma holds for the more
general Weierstrass equation (1.5) and we leave the extra details to the reader. Observe using the
simplified Weierstrass equation together with the fact that d : A — Mat,,(H) is a (commutative)

ring homomorphism that

(dln] — ) (d[0] — t)~" = (d[n] — y)(d[n] + y)(dln) +y) " (d[6]) — )~
= (d[n*] — y*)(d[n) +y) " (d[o] — )"
= ((d[6®) — %) + A(d[0] — ) (d[n] + )" (d]] — )"

= ((d[0”] + td[0] — %) + A)(d[n] +y) ™",

1

where in the last equality we factored out (d[f] — ¢) and canceled. Note that (d[n] + y)~' and

(d[6?] + td[f] — ?) + A are coordinate-wise regular at = and thus so is (d[n] —y) (d[f] —t)"". O
For the case of n = 1 and A = FF[f], El-Guindy and Papanikolas give a detailed proof that
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Anderson generating functions are in T and that they have a meromorphic continuation to C, in

[19] - the original result is due to Anderson. We give a similar theorem for ES™ and G&".

Proposition 3.2.3. For u € C",, the function ES™ € T™ and we have the following identity of

functions in T"

E&n(t Z Q, ( —t1) " u®),

where (); are the coefficients of Expff” from (2.27). Further, the function GE™ extends to a mero-

morphic function on U = (Cs x5, E) \ {00} with poles in each coordinate only at the points =

fori > 0.

Proof. Writing in the definition of Exp?" from (2.27) and expanding gives the sum

Een (¢ :Z <Z Q; (d[f) =)' )> . (3.17)

=0 7=0

Recall from (2.23) that d[f] = 01 + N, where Ny is nilpotent with order n, so we can write

A
| |

((61 )
e

. n (3.18)
(L1+ Ahn=it1 kl,ZjLTkn)sl_[l( ) ])

- ((92+1[+dlgz+2N ot 191+nN£L)>7

where in the last two lines we used the multinomial theorem then collected like terms using some

constants d; € IF,. Using the last line of (3.18) we find that

1

ek]vk 1

flu) ()

1<k<

SmaX{!QJI o m{
J

¢ _
} : |u|qj}, (3.19)
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where | - | is the matrix seminorm defined in §1.2. Let us denote

f

which equals some constant independent of ¢ and j. Then, the fact that Exp;?" is an entire function

L k1
QkN

1<k<n

Ny = max {

on CZ_, implies that the factor

1

eka 1

@ _
} Jul®

goes to zero as j — 0o, and thus is bounded independent of j. Thus by (3.19)

|Q;| - max {

1<k<n

—1u)(j)

goes to zero as i — 0o, which proves that EZ™ € T". Further, using the above analysis, we find
that

— 0,

‘Qj (dw]—i—lu) ()

as max(i, j) — 0, and thus we are allowed to rearrange the terms of the double sum (3.17) and
maintain convergence in T" (see [39, §1.2]).
Next, observe that the eigenvalues of the matrix d[f]~'¢ are all equal to ¢/6, and that ||¢/0]] < 1,

and hence by Lemma 3.2.1 we have the geometric series identity in T"

Zd |7 = (d[e)) —tT)
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Using this we rearrange the terms of E>™ to get the equality in T"

00 0o ()
B =30, (Z derﬂ‘) u

Using the above equation, we see that
G =3"Q; (di)D — 1) (dln)D + (y + e1t + e5)I) u € T[y)". (3.20)
=0
We then observe, using analysis similar to that in (3.18), that for any m > 0 the sum

f: Q; (dl6)D) — 1)~ (d[n]D + (y + est + c5)T) ut?

m

=) Q; (df)Y — t1) " (dn)9 + (y + ert + e5)T) uY
=0
converges for any point (¢,y) € U with [¢t| < |9|™"!, providing a meromorphic continuation of

G2 to U. We also observe that the only possible poles in each coordinate of

ST Q; (A9 1) (A9 + (y + ert + es)]) u) € H(t,y)" (3.21)
j=0
occur at == for i < m. We calculate that each coordinate of G&™ does actually have poles at the

positive twists of = (see the proof of Proposition 3.2.5 for more details). On the other hand, under

the substitution given by negation on F, namely (¢,y) — (¢, —y — c1t — c3) we see that

(O]9 — 1) (dln)9 + (y + ext + e3)I) = (d[0)Y) — ) (dn)¥) —yI),

and so by Lemma 3.2.2 we see that each coordinate of (3.21) is regular at —=U) for j > 0. Thus

the meromorphic continuation described above has the correct properties. 0
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Lemma 3.2.4. For u € C" , we obtain two identities
o0

(a) Dy(Gy") =Exp,"(d[n]u) + (y + it + c3) Exp,™ (u)
(b) Dy(GY") = — c1 Exp," (d[n]u) + Exp;™ (d[6°]u) + (t + c2) Exp;" (d[0]u)

+ (£ + cat + 1) Exp$™(u).
Proof. First observe that
Ef[)% = pP"(ES™) = Z pi™ (ExpS™ (d[6) " 'a)) t' = Exp}"(u) +tEJ",

and thus

Dy(Eg") = Exp,™ (u).

Part (a) of the lemma follows directly from this. For part (b), observe that
SMES) = (Bxpl™ (dilde) ') £ = E5n,
=0
and so using (1.5)

®n XN
py (Ed[n]u) Ed[nQ]u
= Ed[93+0202+049+c67c191770377]u

= B3y + C2Eqp21u + caFgora + ceBu — c1Eapgu — c3Fapu
Then substituting in the above equation, canceling and using (1.5) we write

Dy(GJ") = py(Egpa) — yEq, + (Y + it +e3) Eg, — (v + city + cay) EE"
= FEqp3u + C2Eqp21a + cabgor + c6 Eu — c1Egignu — c3Eajyu

+ (ert +e3) Eg,, — (£* + cot® + cat + c6) ES"
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We then use (3.22) to get part (b) of the lemma. ]
Define M to be the subring of T[y| consisting of all elements in T[y] which have a meromorphic
continuation to all of U (see [20]). Now define the map
RESz : M" — CL_,

for a vector of functions (21 (t,y), ..., z.(t,4)) " € M" as

z1(t, y) Resz(21(t,y)A)
RES= | : |= : , (3.23)

Zn (tv y) ReSE(Zn (ta y)/\)
where ) is the invariant differential of £ from (1.6). We remark that in defining the maps 7" and

RES=(), we were partially inspired by ideas of Sinha in [41, §4.6.6]. We now analyze the residues

of the Anderson generating function G&™ under the map RES=.

Proposition 3.2.5. If we write u = (uy, ..., u,) " € C", then
RES=(G™) = —(uy, ..., un) .

Proof. Again, for ease of exposition in this proof we will assume that the elliptic curve F has the
simplified Weierstrass equation E : y* = t* + At + B for A, B € F,. The proposition holds for
the more general Weierstrass equation (1.5) and we leave the extra details to the reader. Equation

(3.20) gives

ng _ i Q; (d[g} ) _ t])_l (d[n](” + y_]) u(j),
§=0

so when we calculate RESz(G&")), we find that the only possible contributions to the residues

come from the j = 0 term, since (d[@] D) —tI )_1 is regular at = in each coordinate for j > 1. In
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particular, we find that

RES=(Gy") = RESz ((d[n] + y1) (d[6] — tI) " u)

and further that
(dl] + yT) (d[6) — 1) A = (dln] + yI) (dl6) — 1)~ - j—;
— 5 ] = (] = ) ] = o) (5 a4 dp ) 324)
= % (2d[n] — (d[n] —v)) (d[6] — 1)~ (@_ (d[n) — yI) + d[n]1> dt

After multiplying out the factors in the last line of (3.24), using Lemma 3.2.2 we find that the only

term whose coordinates have poles at = is (d[f] — t) . Thus we see that

(d[n] +yI) (d[f] — t)~" X = (d[0] — t) " dt + r(t, y)dt,

where r(t,y) € H(t,y)" is some function which is regular at = in each coordinate. Recall the

definition of the matrix

O—t) 1 0

0 (49—75) a9 0
dif] —tI=1| 0 0o @—t ... 0 |,

0 0 0 ... (-1

where the constants a; € H are from Proposition 2.2.2. Because the matrix is upper triangular, we
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see immediately that the inverse matrix has the form

X % %
0 ﬁ * *

@o- =0 o A .ok
0 0 0 ﬁ

where each off diagonal entry denoted by * is a sum of the form

- d
Z (t _kg)k

k=ko

for ky > 0 and some (possibly zero) constants d;, € H. Using the cofactor expansion of the inverse,
we find that £y > 2 for each coordinate, and thus the off diagonal entries will not contribute to the
residue. Thus, since ¢ — 0 is a uniformizer at =, for some functions r;(t) € H(t,y) which have no

residue at = we find that

Resz (32 + 71(t))dt) Uy
RESz(G2™) = : =—1:|. (3.25)

Resz (225 + 7, (t))dt) U,

Proposition 3.2.6. The composition of maps
RESzoT : Qy — C,

is an injective A-module homomorphism, where A acts on )y by multiplication and on C._ by
p®", and its image is \§" = ker(Exp}").

Proof. The proof follows similarly to the proof of [26, Thm. 4.5]. For an arbitrary h € ", each
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coordinate of T'(h) is in T[y], so we can write

— Z bi_l_lti + (y -+ 01t + 03) Z Ci+1ti

i=0 =0

uniquely for b;, ¢; € C . Then using Lemma 3.1.2, we observe that

Zp bi1)t' + (y+ cat + c3) Zpt (cir)t' = pf"(T(h))

=0

— 1T(h)

= Z bt 4+ (y + c1t + ¢3) Z cipt'

=0

from which we see that if we set by = ¢y = 0, then for7 > 0

pi"(biy1) = by, p(ci1) = ¢ (3.26)

Similarly we find that for ¢ > 0

Since |b;, |c;| — 0 as i — oo, there is some iy > 0 such that b;;; and c;,; both lie within the

radius of convergence of Logf?" for ¢ > 1¢. Thus by (2.17) and (3.26), for 7 > i3 we have
di8') Logg™ (by) = dl6™*] LogS" (biur),  d[6] Log?" (c:) = d[F™'] Log™ (civn)
and we note that these two quantities are independent of 7. We set
IT,, := d[#"] Log5™ (c;),
for some ¢ > 7, and note that

d[n]IL, = d[n)d[6"] Log"(c;) = d[6"]d[n] Log5" (c;) = d[6"] Logs" (p5"(c;)) = d[6] Logs™ (b;).
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Using (2.16) together with the above discussion we see that
Exp$™(I1,,) = Exp" (d[6"] Log5™ (¢;)) = pii"(ci) = pi"(c1) = ¢ = 0,
which implies that I1,, € )\ff”. Further, we see that

b, = Exp® (d[nld[0~|IL,), ¢ = ExpS™ (d[6~]IL,,)

p

and thus

T(h) =Gy = E?EZ}H" + (y +ert + c3) BT

By Proposition 3.2.5, we see that RES=(T'(h)) = —II,,, and thus RESz(T'(Q)) € AJ". Since

Gi" = Gy if and only if IT,, = II,, the map RESz o T is injective. Finally, let IT/, € AZ", so that

Lemma 3.2.4 shows that

D,(G) = D,(GE) = 0.

Thus, using Proposition 3.1.7 we find that
(G~ Er)(Gip) =0,
and hence by Lemma 3.1.3 G%Z = T'(h) for some function i € ). Finally, by Proposition 3.2.5
RES=(T'(h)) = RESE(G%) = 1T,

which shows that \5" C RESz(T(€))). To see that RESg o7 is an A-module homomorphism,

for h € Qy, using the above discussion we find that

RES=(T'(th)) = RES=(tGg),
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for some I/, € A?" and using analysis similar to that in the proof of Proposition 3.2.5 that
RESE(tG%‘) = RES=((t — d[@])G%Z + d[Q]G%’Z) = d[f] RESE(G§Z) = d[#] RES=(T'(h)).

It follows similarly that RES=(7(yh)) = d[n] RESg(T'(h)), which finishes the proof. O

Theorem 3.2.7. If we denote

then T(w)) = GY" and 5" = {d[a]ll,, | a € A}. Further, if 7, is a fundamental period of the (1-
dimensional) Drinfeld exponential function exp,, from (2.9), then the last coordinate of 11,, € C7,
Is

9 (E) n

—'7Tp,
a1ag . ..«ap—1

where the constants a; are from Proposition 2.2.2.

Proof. The first two statements follow immediately from Propositions 3.1.10 and 3.2.6. Then
recall from [26] that 7, = —Resz(w,\), whereupon the last statement follows by noting that the
last coordinate of — RESz(T'(w})) equals

-~ Ress(wjon) = R (0= 0 ) - (s

)= (),

~1is regular at =. The formula then

since (¢ —6)"~'w? has a simple pole at = and since g,,/(t — )"

follows by dividing the first equation of Proposition 2.2.2 through by g;.; then evaluating at = to

get
(t—0)g;
Gi+1

= Q.
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4. COEFFICIENTS OF EXP AND LOG

4.1 Coefficients of the exponential function

The coefficients of the exponential function for rank 1 sign-normalized Drinfeld modules are
well understood (see (2.7)). Further, the coefficients for the exponential function of the nth tensor
power of the Carlitz module are also well understood. These coefficients were first studied by An-
derson and Thakur in [5, §2.2], and have recently been written down explicitly using hyperderiva-
tives by Papanikolas in [33, 4.3.6]. In this section we give explicit formulas for the coefficients of
the exponential function for the nth tensor power of a rank 1 sign-normalized Drinfeld module.

In order to write down a formula for the coefficients of Exp?" we must first analyze certain
functions which arise when calculating residues of the vector-valued Anderson generating func-

tions G2, For a fixed dimension n, for 1 < ¢ < n and for ¢ > 0, define the functions

o ge
Ty

4.1)

where for 7 = 0 we understand vy, = g,. Using (2.2) and (2.12) we see that the polar part of the

divisor of v; , equals

—n(V®) = n(26) —n(E6D) — ..~ (n— (£~ 1))().

We temporarily fix an index ¢. Using the Riemann-Roch theorem, we observe that we can find
unique functions «;, with sgn(c; ) = 1 in each of the following 1-dimensional spaces, Further,

using the Riemann-Roch theorem we observe that we can find functions each of the following
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I-dimensional spaces, which we denote

ar; € L(n(VD) —n(ED) + (2)

ars € L(n(VD) —n(ED) +2(2) — (c0))

ar3 € L(n(VD) —n(ED) + 3(2) — 2(c0))

Qi € L(n(V(i))

06271 € L(n(V(’)) —

&272 € L(n(V(’)) —

= n(EY) + () — (n - 1)(c0))

Qi € L(n(V(i)) — n(E(i)) + n(E(i_l)) + o+ n(E(l)) +n(Z) — (in — 1)(00)).

More succinctly we could write for 1 < j <iand1 <k <n

aji € L(n(VY)=n(ED)+kEVD)4+n(E02) - 4nEW) +n(E) — (n(j —1) +k—1)(c0)).

Then, for appropriate constants d;; € H we subtract off the principal part of the power series

expansion of g,/(ffV).

L fEEDY at =20 for 1 < m < j — 1, to find that

Vil — Z djpay € £ (n(VW)) = Spany (g7, 687, ..., g9).

j7k“
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So for further constants ¢, ;, - - - , ¢,,, € H we can write

Yie = cf,ng) + 05,295) gt + Z d; 1 Oj ke 4.2)

where we note that each of the functions a;, vanishes with order n at =) and that the coefficients
¢y, are implicitly dependent on i. To ease notation, for each 1 < ¢ < n we will write oy :=

> ik d; ro; 1, and write the equations from (4.2) for 1 < ¢ < n in matrix form as

(@)

Vi1 ¢iq1 G2 ... Cin g1 aq
Yi,2 C1 C22 ... Con g2 )
= + (4.3)
/Yi,n Cn1 Cmg Ce Cn,n Jn (7%
with
Vi1 o
Yi,2 &%)
Yi = . , Cl = <Cj,k>7 and o, = s
Vi,n Qn
so that
= Cig" + . 4.4)

Theorem 4.1.1. With the notation as above, for dimension n > 2 and z € C, if we write

Exp," Z Qiz",

then for i > 0, the exponential coefficients QQ; = C; and Q); € Mat,,(H).

Remark 4.1.2. We remark that in the case for n = 1, if one interprets the empty divisors in (2.12)

correctly, then Theorem 4.1.1 still holds. However, for clarity of exposition, we restrict to n > 2.

Before giving the proof of Theorem 4.1.1, we require a lemma about the coefficients of the
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exponential function.

Lemma 4.1.3. Given a sequence of matrices (Q; € Mat,(H) fori > 0 with Qo = I, the matrices

Q; are the coefficients of EXp?” if and only if they satisfy the recurrence relation
MQWM, + B QW0 = Qud[n]® — (Ny + M) Qid[0]® — MyQs, i > 1. 4.5)

where My and M are defined in Corollary 3.1.9 and M, is defined in (3.8). Further, the coeffi-
cients (Q); € Mat,,(H).

Proof. First note that by (2.16)
(05" — (M + My ) ") (Expg™ (=) = Expf" (dln]2) — (M, + M) Exp$™(d[o]2).
Then, using Corollary 3.1.9,
(My + My7) (Bxp§™(2)) = BxpS"(dln]e) — (M- + M) Expl™ (dl6]-)

and expanding Exp?” on both sides in terms of its coefficients (); and equating like terms gives

the equality
MQY, + EnQPd[0)) = Qud[n] ! — (Ny + M) Qid[0)? — My Q.

Thus the coefficients of the exponential function satisfy the recurrence relation (4.5). Next, for
J = 0,let {Q}} C Mat,(H) be a sequence of matrices satisfying recurrence relation (4.5). We
will show that {Q} is uniquely determined by Q, and thus if we fix Qg = I, the matrices {Q}

will be the coefficients of Exp};”. Given a term Q;_, of the sequence {Q’} for 7 > 1, define

W; = MQ(Q;_l)(l) + El(Q;_l)(l)d[e](i)a
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so that by (4.5)
Wi = Qd[n)?Y — (M, + N1)Qd[6]? — M, Q. (4.6)

Then, denote M, = M, + M,,, where M, is the diagonal part of M; and M, is the nilpotent

(super-diagonal) part. Then collect the diagonal and off-diagonal terms of (4.6) to obtain
Wi = (T = 6% My, — Ma)Q, + QN = 6" NiQ}, = MyuQiN,” — NiQiN,” = M, Q;, (4.7)

where we recall the definition of Ny and NV, from (2.23). Next, we denote the matrix Mp =

nqil — 09" M,, — My, and note that it is diagonal and invertible. Define
Bi : Mat,,(H) — Mat,,(H)
to be the F,-linear map given for Y € Mat,,(H ) by
Y o MpU(YNY — 07 NY — M, YN — NyYN) — M,Y). (4.8)

Note that (3; is a nilpotent map with order at most 2n — 1, since each matrix in definition (4.8),
except Mp, is strictly upper triangular, and thus each term of 32"~ will have at least n strictly
upper triangular matrices on either the left or the right of each matrix Y. Then, using the map ;

and rearranging slightly we can rewrite (4.7) as

Qi+ 5;(Q) = Mp'W;. (4.9)

Applying Bf to (4.9), multiplying by (—1)7, then adding these together for j > 1 gives a telescop-

ing sum. Since f3; is nilpotent with order at most 2n — 1, we find

2n—1

Q) = Z ). (4.10)
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Thus we have determined @} uniquely in terms of @;_,, and so each element in the sequence {Q’; }

is determined by Q. If we require that Qo = I, then the matrices {();} are the coefficients of
Expff". Further, since Mp and each matrix in the definition of f3; is in Mat,,(H ), we see that the

exponential function coefficients @); € Mat,,(H). [l
We now return to the proof of Theorem (4.1.1).

Proof of Theorem (4.1.1). We first recall that 7, = g, and hence by (4.2) we have Cy = I = o,
so that the theorem is true trivially for ¢ = 0. We then show that the sequence of matrices {C;}

satisfies the recurrence in Lemma 4.1.3 for ¢ > 1. First observe that by Proposition 2.2.2
dlflg = tg — ["Eeg') and d[nlg = yg — [ B8, (4.11)
with g defined as in (2.15). Using (4.11), we write

(A6CD, + B CO,d0) ) — Cidln)® + (N + M) Cd[f) + M C;) g
= (ng.(i)l +tE,CY = yCs + t(Ny + M,,)C; + M10i> g

- (ElcfPlEg“ — GEY + (N, + Mm)CiEé,i)> Frgt.
We examine the first term in the right hand side of the above equation, which we denote
T = (MO, + B CE, = yC+ H(Ny + Mp)Ci + MGy 8, (4.12)
and the second term, which we denote

T, = (BiCOED - CED + (N + M) CE ) g, (4.13)
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separately. By the discussion immediately following (4.4) we see that (4.12) equals

Ty = (My+ tEl)'Yi(i)l + (—yl + t(M,, + N1) + My)v: + az@l + o

= Mé’)’i(ﬂ + Mi~; + az@l + oy,

with M| and M/ as given in (3.10). Then, writing out the coordinates of ~ using the functions ~; ¢

from (4.1) and finding a common denominator gives

1

= gy (

1
(1)1 + Oéi) 7

Mig+ My frg® + o, + ai) ~ (ffO. . fEDyn (ai—

since M!g + M, f"g) = 0 by (3.11). Thus 7} vanishes coordinate-wise with order at least n
at =09, because the functions o, from (4.4) each vanish with order at least n at =), Further, the
presence of the factored-out f"g®) shows that 75 from (4.13) also vanishes coordinate-wise with

order at least n at =(*). Thus we see that
(M08 + BB ) = Cidin)® + (N1 + M) Cid[f) ) + M) g

consists of a constant matrix in Mat, (H) multiplied by g, and equals a vector of functions
which vanishes coordinate-wise with order at least n at =*. However, recall from (2.12) that

ord=q) (g](-i)) = j — 1, and thus
(A0, + BCD,d0) ) — Cidln)® + (Ny + M) Cdf) ) + M) = 0

identically, which proves that { C;} satisfies the recursion equation (4.5) and proves the proposition.

]
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Corollary 4.1.4. For z € C, we have the formal expression

< z g1

0 0 ° q' g
EXp%@n = + Z () - ; |7

: : oo (ffO . fE)n =3)

0 0 In

Proof. This follows from Theorem 4.1.1 by evaluating (4.2) at =), noticing that g](.i) (Z2®) vanishes

for j > 2, then solving for ¢ ;. U]

Remark 4.1.5. Theorem 4.1.1 and Corollary 4.1.4 should be considered generalizations Proposition

2.2.5 of [5] and of the remark that follow it.

Remark 4.1.6. The formulas for the coefficients of Exp;?" in Theorem (4.1.1) may at first seem
quite mysterious and unmotivated. Here we provide an explanation of their origin. From the

calculations in Proposition 3.2.5, one quickly finds that

RESzo (Gg") = —Q.I1Y.

n

On the other hand, by Theorem 3.2.7, we can write

wggl (W:f)(i)gl/(ff(l) e f(ifl))n
" L (3) (1) o (i—1)\n

RES=i) (G§") = RESz) - RES=z) () e/ (1] ) . (414
Wign (W) Dy /(ffO .. fa=Dn

where in the second equality we have used (3.14) 7 times. We then take the expression for the v, ;
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functions from (4.2) to obtain

(wp)(

4 w™) @
—QiII{) = RESz) )

(wh

cugY’ + C1,29

02,19? + 2,29

(%)

p)(i) (Cn1g1  + Cn2g

2

2

2

V4 oaglt) + )

) + ... C2.ngn + 062)

@) + ... c,wgg) + o)

(4)

Since (wg)(i) has a pole of order n at =) and since the functions a, vanish with order at least n at

=@, the oy, functions do not factor into the residue calculation and we obtain

11 Ci2 ... Clin

X Co1 C22 ... Cop
—Q;II%Y = RES<(;

Cn1l Cn2 .- Cpn

(W)@ gt”

(wr)@ gl

C1,1

C2.1

Cn,1

Cl2 ... Cin
Cao ... Cap .
) ) . (2)
Hn

Ch2 .- Cnn

The functions f and g; are all defined over H and thus so are the coefficients c; ;. So, if we knew

that the coordinates of the II,, were linearly independent over H, then we would have the equality

Qi = (cj). Such results of linear independence, however, are in general quite difficult, and to

the knowledge of the author, this particular result is not yet known. Thus this line of reasoning

motivates the formulas for ();, but we must prove it using the methods given above.

Remark 4.1.7. Note that for n = 1, the 7-basis from Proposition 2.1.3 consists of the single

constant function {1}. Thus we can apply the discussion from Remark 4.1.6 to the case for 1-

dimensional Drinfeld A-modules with the notation outlined in §2.1 and we find that

Resz) (Gr,) = — 57

while on the other hand

Res=z) (Gr,) = Reszw (w,) = Reszq) (
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Then, because G, = w, has simple poles at the twists of =,

wd) 1 1

o = ) = o@Dy = S € .
Resza) <ff(1) - f(il)) Reszw) (wp ) FIO | Tp FrO |y
Since n = 1, there is no issue of linear independence of the coordinates of 7,, and we recover (2.7)

without resorting to the methods set out in the proof of Theorem 4.1.1.
4.2 Coefficients of the logarithm function

The coefficients for the logarithm function associated to a rank 1 sign-normalized Drinfeld
module were first studied by Anderson (see [45, Prop. 0.3.8]) and are described in (2.8). The
coefficients for the logarithm associated to the nth tensor power of the Carlitz module were studied
by Anderson and Thakur, who give formulas for the lower right entry of these matrix coefficients
in [5, §2.1]. Recently, Papanikolas has written down explicit formulas using hyperderivatives in
[33, 4.3.1 and Prop. 4.3.6(a)]. In this section we develop new techniques to write down explicit
formulas for the coefficients of the logarithm function Log%m associated to the nth tensor power of
rank 1 sign-normalized Drinfeld modules. Our method was inspired by ideas of Sinha from [41]
(see in particular his “main diagram" in section 4.2.3). However, where Sinha uses homological
constructions to prove the commutativity of his diagram, we take a more direct approach using
Anderson generating functions for ours.

We define the following diagram of maps, where we recall the definition of M from (3.23) and

of €2 from (3.1)

0" N

Tl / (4.15)
— RES= Bxp™

=

and where the maps ¢, T' and RESz are defined in (2.25), (3.3) and (3.23) respectively. We remark
that using the operator 7 — f" one quickly sees that {2 C M.
One of the main goals of this section is to prove that the diagram commutes. Before we prove

this, however, observe that if u € CZ, is not a period of Expff’", then G%n € M" is not in the image
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of Q under T in diagram 4.15. We require a preliminary result which allows us to modify G to

be in the image of 7. For u € C”, write the coordinates of G£™ from (3.16) as

GJ(ty) = (ka(ty), ket y), - Kt )
and then define the vector
k= (ky([n]V), ka(VD + [n = V), ks (2)VD + [n = 2]V), .. k([n — JVO + V)T
Next we define the vector valued function

JE = (1t y), ja(t,y), - .- dult,y) | = GE™ — Kk, (4.16)

and note that j, vanishes at the point [k — 1]V 4 [n — k + 1]V. Also denote

W= (w1<t7y)7w2(t7 y)’ cee >w7L<t7y))T = (G - EIT)(‘];?”) € T(y)n7

where G — E7 is the operator defined in (3.4), and let z := Exp;‘?"(u) and denote its coordinates

z:= (21,20, ...,2) .

Proposition 4.2.1. The vector w is in H|[t,y]|" and equals

2 (t—t(VD +[n—1]V))
2 (= (V) + [ — 2V)

ot (t—t(n — VO + [1]V))
Z - (t = t([n]V D))
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Proof. By Proposition 3.1.7, Proposition 3.2.4 and (2.16) we write

W= (Wi (ty), wh(t y), .. w(ty) | = (G = Bir)(GY) (4.17)
=M; ' [ —c1py"(2) + p"(2) + (t + c2)p)" (2)

+ (1 + ot + ca)z — (Mr + M) (p)"(2) + (y + crt + c3)2)].

In particular, from the last line of the above equation we see that w’ is a vector of rational functions
in the space H (¢, y). Further, for each rational function w, the highest degree term in the numerator
is zxt? and the highest degree term in the denominator is ¢ (coming from the matrix M ). Thus
each w/ is a rational function in H (¢, y) of degree 2 (recall the deg(t) = 2) with sgn(w}) = z. We
also observe that

(G — Ey7)(k) € H(t,y)

and that each coordinate has degree 1. This implies that each w; is in H (¢, y) and has degree 2 with
sgn(w;) = z,. Writing out the action of G — E;7 on the coordinates of J5" we obtain equations

forl1<m<n

m g;“ S (4.18)

From (3.4), (3.7) and (4.17) we see that the only points at which w; might have poles are the zeros

of 0, namely the points

k—1VO 4 n—k+1V and [-(k— DV —[n—k+1]V.

We remark that this shows that the coordinates of w are regular at =) for i > 0, even though the
coordinates of J&" themselves have poles at =(*). Recall from Proposition 3.2.3 that the only poles
of jj, occur at oo and = for ¢ > 0 and from (4.16) that jj, vanishes at [k — 1]V + [n — k + 1]V,
while from (3.6) we observe that gx,1/gs is regular away from infinity except for a simple pole
at [k — 1]V + [n — k + 1]V. Therefore, the equations in (4.18) show that each coordinate wy,
is regular at the points [k — 1JV® + [n — k + 1]V and [—(k — 1)]V® — [n — k + 1]V. Thus,
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the coordinates wy, being rational functions of degree 2 in H (¢, y), which are regular away from
00, are actually in H |t y|. Further, we see from (4.18) that each function wy, vanishes at the point
[k]V®) 4 [n — k]V. Since we know that sgn(w;) = 2, and since we’ve identified one of the zeros

of w;, we find using the Riemann-Roch theorem that w;, = 2 (t — t([k]V1) 4 [n — E]V). O

Theorem 4.2.2. Diagram (4.15) commutes. In other words, for h € (), if we let

(r=f")(h)=geN

and let —RESz(T(h)) = u, then we have £(g) = Exp.™ (u).

Proof. First observe that the case for n = 1 is proved in Theorem 5.1 of [26]. For the rest of the
proof, assume n > 2. Write deg(g) = mn + b with 0 < b < g — 1 and write ¢ in the o-basis for

N described in Proposition 2.1.3 with coefficients bg-;-i) € H as

9= > b T (4.19)
i=0 j=1
where we denote b; = (b1 4, ba, ..., b,:) ", and note that
e(g) =bo+bi+ -+ by, (4.20)

For 0 < i < m let u; be any element in C, such that

ExpS” (u;) = by, 4.21)

The main method for the proof of Theorem 4.2.2 is to write 7'(h) in terms of Anderson gen-
erating functions. To do this we compare the result of 7'(h) under the operator G — F; 7 with the

result of J5" under G — Ey7 for 0 < i < m.
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By the definition (3.4) we see that for any v € C(¢,y)

(G — Ex)(T() = (0,...,0,g" (fy — D). (4.22)

Since f"h — h") = g, using the notation of (4.19) we can write

(G = Exr)(T(h) = (0,...,0,g" 3 D b0 (FfCD L fEDr T @423)

i=0 j=1

Next, we analyze (G — F17)(Jy,) for 0 < i < m. For the equations in (4.18), if we seti = 1,

then we can solve for j,. We then substitute that into the equation for : = 2, then solve that for js,
and so on to get equations for 2 < m < n

jl I+l - jerl = W, + 'LUmflgm—i_l + Wp—2 Jm+1 + -+ w1 gm+17 (424)

g1 9n 9n—1 g2

)

where we understand j, 1 = j? . We note that the functions j; and w; depend implicitly on u;.

Using these equations we find that

.
Jo' + (U,wl,wz+w1@,.--,wn_1+wn_zg—"+---+w1 I ) =T(i/g1).  (425)

g2 g2 In—1

In general we will call 3" := T'(j1/g1), noting the implicit dependence on u;. Then by (4.22)
and by (4.24) with m = n we find

+ Wp—2 +Fw

n In-1 g2

(1) rn 1) rn @ e\ "
a'f a'f a'f
(G—Er)(IE") = 10,...,0,w, + w1 = 1 ) 426

Denote the entry in the nth coordinate of the last equation as

(1) £n (1) rn (1) rn
lu, = wn—l—wnflgl f +wn7291 f +...+w191 f ’
In In—1 92
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so that we can restate (4.24) with m = n as

) g
Do _ 0 g, (4.27)

g1

Observe then by Lemma 2.1.5 and by Proposition 4.2.1 for 1 < k& < n that

1) n
g\ f
On—k+2

_ (1)
Wp—k+1 == bn—k’-‘rl,igl hk7

S0 (4.26) becomes
on () ’
(G —Err)(IL") = <0> 50,97 (bpihy + b1 ihe + - + bl,ihn)>
For the vector u; from (4.21), denote
hui - bn,ihl "— bnfl,ihQ —|— e —|— bl,ihna (428)

and notice that ¢,,, = ggl)hui. Specializing the above discussion to ¢ = 0, we see that the nth
coordinate of (G — Ey7)(I2") matches up with the first n terms of the nth coordinate of (G' —
Ey7)(T(h)) from (4.23).

In general for ¢ > 0 we find that

(1) (k=1)\yn; \ (=F)
(FEVFED L fRyndiag (L I ) (penyeR) ((ff o f )]1) |
g " - ’ 9

and to ease notation, for £ > 1 let us denote the matrix

o B\ s g In
Ry, = (f( 1)f( 2)_“]0( k)) diag ( (—lk)""’ (k)) .
g gn
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Then we use (4.27) k times and apply the fact that 7" is linear to obtain

Rk(]@n)(—k) _T (((ff(l) o f(k))nj1>(—k)>

g1

oY (FO L fEDyngh) (4.29)
=" +T|— |+ 4T Nk
g1 9

Then, if we let the operator (G — Eq7) acton Ry, (I3")"%), applying (4.22) to the last line of (4.29)

we obtain a telescoping sum, and find that
.
(G = Byr) (B2 9) = (0,000,600 (£ p00yniR)

for h,, defined in (4.28). Note again that the terms in the last coordinate of the above vector are
exactly the in + 1 through (i 4+ 1)n terms of the last coordinate of (4.23).

Also, note that each term in the last line in (4.29) is coordinate-wise regular at = except [, ffi",
SO

RES=(Ry(IE™) ) = RES=(IZ™).

Then, recalling that each function wy, and each quotient jy,,/j for 1 < k,m < n is regular at =,

using definitions (4.16) and (4.25) together with Proposition 3.2.5 we see that
RESE(L%”) = RESE(JS") = RESE(GE_") = —u;. (4.30)

Next, define

I=T0"+ Ry + o+ Ry,

and observe by the above discussion that
(G—Eyn)(T(h)—1)=0.

Further, for &’ € Q, by Lemma 3.1.3 (G — Ey7)(T'(R')) = 0 if and only if A’ € €. Since I is the
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sum of elements in the image of the map 7', we see that 7'(h) — I is itself in the image of the map
T. Thus there is some i’ € g such that T'(h') = T'(h) — L. Then, Proposition 3.1.10 together with

Theorem 3.2.7 implies that for some b € IF,[t, y]

Finally, by (4.30), we calculate that

u = —RESz(T(h)) = —RESz(I+ bG") = ug + - - - + uy, + bIL,,
and thus by (4.20) and (4.21) we obtain

Exp}"(u) = Exp)"(ug + - - - + W, + 0II,,) = by + - - - + by, = £(g).

]

Having proven that diagram (4.15) commutes, we now apply the maps from the diagram to

write down formulas for the coefficients of Log?”. First, for d; € C, define the function
c(t,y) = dyhy + -+ dih, € N C A, 4.31)

where h; are from Proposition 2.1.3. Then define the formal sum

B(tay;d) :_Z

=0

40
(ffOf@ . fO)n (4.32)

for the vectord = (di,...d,)" € C". We remark that B(t, y; d) is similar to the function L,(t)

defined by Papanikolas in [34, §6.1] (see also [16, 3.1.2]).

Lemma 4.2.3. There exists a constant Cy > 0 such that for |d;| < Cy, the function B is a rigid

analytic function in I'(U, Op(n(Z))), the space of rigid analytic functions on U with at most a pole
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of order n at =.

Proof. Using (2.3) together with the facts that deg(6) = deg(a) = 2, deg(n) = 3 and deg(m) = g,

for k > 1 we find that f*) € Ty[y] and

I, =0

This implies that
c(t, y)™

‘f(l),__f(i) ,

Since each h; € A, we see that ||h;]|4 is finite, and thus we can choose Cy > 0 small enough such

= Jle(t, || - q{-rta =)/ @) (4.33)

that for all d; € C., with |d;| < Cj the norm

i

as 1 — o0o. This guarantees that for such d;, the function

c(t,y)®

FO 0

— 0
0

0 o)

2 (0@ f0)

)

~ € Toly].

To finish the proof, we simply note that

1 & 0
2 e o

=0

B =

Theorem 4.2.4. For z € C7 inside the radius of convegence of Logf’", if we write

Log;"(z) = ) Pz,
=0
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for n > 2, then for X the invariant differential defined in (1.6)

< ( e >>
P, = ( Resz Vel (4.34)
) @))n
(F0 7))

and P; € Mat,,(H) fori > 0.

Remark 4.2.5. As for Theorem 4.1.1, we remark that the above theorem holds for n = 1, but again

for ease of exposition in the proof we restrict to the case of n > 2.

Proof. One quickly observes from the definition of B, that (7 — f™)(B) = ¢(t,y), and thus B € (.
Denote u := — RES=(7'(B)), so that by Theorem 4.2.2 combined with the definition of the map ¢
in (4.20) and (4.31)

Exp}"(u) = e(c(t,y)) = (di, ds, . .. Ld,)"

We wish to switch our viewpoint to thinking about — RES=z(7'(B)) as a vector-valued function
with input (di, ..., d,)" ,|d;| < Co, where Cj is the constant defined in Lemma 4.2.3. For D, the

hyper-disk in C?, of radius Cj, we define B: Dy — CZ, ford € Dy, as
B(d) = — RES=z(T(B(t,y; d)).
From the above discussion, we find that
Expffmoé : Dy — C

is the identity function. Writing out the definition for B gives

00 n dihy_; (@)
Resz(Bgi)) Ress (3072 Yooy sty 1)

el
I
|
I

, (4.35)

0o n dihy_; (@)
Resz(Bg,)\) Ress (3720 Yooy oty 9nd)
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which we can express as an [F-linear power series with matrix coefficients

(%)
di

: ] < < g]h(l) 5 > >
B = Res= n- - )\
= 1) (0))n
p (ffO .. f@) \<ihen

We conclude that Expfm o Bisan [F,-linear power series which as a function on Dy is the identity.
Recall that Logf?” is the functional inverse of Exp?” on the disk with radius 7. Thus, on the disk

with radius min(Cy, r1,) we have the functional identity
B= Log)™ .

Comparing the coefficients of the above expression, and recalling that f, g; and h; are defined over

H finishes the proof. [

Corollary 4.2.6. For the coefficients P; for v > 0 of the function Log?", the bottom row of P; can

< h(i)kJrl >
o . . (4.36)
(1 (@))n

Mo Ol

Proof. Recall from (2.12) and (2.13) that ord=(g;) = ordz(h;) = j — 1 and from (2.2) that

be written as

ord=(f) = 1. This implies that, for ¢ = 0, each coordinate of the bottom row of the matrix (4.34)

is regular at = except the last coordinate, which equals

Res (g;gl )\) = h1(Z) - Resg (%A) .

Using Lemma 2.1.5, and observing that h; is regular at = and that ¢ — € is a uniformizer at =, a

short calculation gives

In On Vp© [—1] I/n(—E) 1
2 (22A) = Resz [ 220} = Res= |~ 22210\ ) = - :
Res ( fn ) Rese (h2 ) Res~( h(t — 6) m(E) 20+l +e;
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where [—1] : E — E denotes negation on E. Finally, one calculates from the definition of v,, from

(3.7) that v,,(—Z) = —2n — 160 — 3, which implies that

In 1
Resz [ 22\ | = . 4.37
s <f” ) hi(2) (37

Thus, for ¢ = 0, the bottom row of (4.34) equals (0, ..., 0, 1), which is the bottom row of )y = I.
Then, for z > 1 note that the only functions in the bottom row of (4.34) which have zeros or

poles at = are g,, and f™, and that the quotient g,,/ f™ has a simple pole at =, thus

(i) 0
gnhn—k—i—l o hn—k+1 gn
e ((fo) N f@)”)\) S oyl s )

which completes the proof using (4.37). [

Remark 4.2.77. Theorem 4.2.4 and Corollary 4.2.6 should be compared with the middle and last
equalities in (2.8), respectively.

Remark 4.2.8. 1t is natural to ask about the relationship between the coefficients of Logf?” and the
Carlitz polylogarithm as defined by Anderson and Thakur at the end of §2.1 in [5]. Define the mth

polylogarithm associated to the Anderson A-module p by setting

i

(4.38)

1 1
logm,p(z) = Z+Z &mzq - Z+Z (fO .. f@ym|_

i>1 Y i>1

Then, using Corollary 4.2.6 we see that the bottom coordinate of Logf?” can be written in terms of

the nth polylogarithm function as

21 21 *

Z9 Z9 :
Log®" = + . (4.39)

o
*

Zn IOgn,p(hn—k-&-le)
k=1

Zn Zn h1

[1]
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5. ZETA VALUES

5.1 Zeta values

In [5], Anderson and Thakur analyze the lower right coordinate of the coefficient P; of the
logarithm function for tensor powers of the Carlitz module to obtain formulas similar to the ones
we have provided in §4.2. They then define a polylogarithm function and use their formulas to
relate this to zeta values,

a€Fq6)]

sgn(a)=1
for all n > 1. In this section, we prove a similar theorem for tensor powers of Drinfeld A-
modules, but at the present it is unclear how to generalize the special polynomials which Anderson
and Thakur used in their proof (the now eponymous Anderson-Thakur polynomials) to tensor
powers of A-modules, and so we developed new techniques. Presently, we only consider values of

n < q — 1 because these allow us to appeal to formulas from [26].

Remark 5.1.1. We remark that Angles, Pellarin, Taveres Ribeiro and Perkins develop a multivari-
able version of L-series in [7], [8], [36] and [37] and that such considerations could possibly enable

one to obtain formulas for all zeta values; this is an area of ongoing study.

To define a zeta function for a rank 1 sign-normalized Drinfeld module p : A — H|[7]|, we first

define the left ideal of H|[r] for an ideal a C A by

Jo=(pz|a€a)C H[T],

where we recall that @ = x(a) from §1.2. Since H|r] is a left principal ideal domain [24,
Cor. 1.6.3], there is a unique monic generator p, € J,, and we define J(p,) to be the constant
term of p, with respect to 7. Let ¢, € Gal(H/K) denote the Artin automorphism associated to a,

and let the B be the integral closure of A in H. We define the zeta function associated to p twisted
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by the parameter b € B to be

e
Golbis) ==Y =, 5.1)
aCA a(pa)
Theorem 5.1.2. For b € B and for n < q — 1, there exists a vector (x,...,x,C(,(b;n))" € C,
such that
*
d:= Expfm . € H",
*
Cgp(b§ n)

—1)ntlpy (-
where C = % € H.

Remark 5.1.3. We remark that the vector d is explicitly computable as outlined in the proof of

Theorem 5.1.2.

Remark 5.1.4. One would like to be able to express the above theorem in terms of evaluating Logf?”
at a special point and then getting a vector with (,(n) as its bottom coordinate, as is done in [5].
However, one discovers that d is not necessarily within the radius of convergence of Log?", and
in fact d can be quite large! It is possible that one could use Thakur’s idea from [44, Thm. VI] to
decompose d into small pieces which are each individually inside the radius of convergence of the

logarithm for specific examples.

Before giving the proof of Theorem 5.1.2 we require several additional definitions and pre-
liminary results. First, we denote H as the Hilbert class field of K (which is the fraction field
of A), and denote Gal(H/K) as the Galois group of H over K. Then we observe that elements
¢ € Gal(H/K) act on elements in the compositum field HH by applying ¢ to elements of H and
ignoring elements of H. We also define the (isomorphic) Galois group Gal(H/K) and observe
that elements ¢ € Gal(H/K) act on the compositum field HH by applying ¢ to elements of H
and ignoring elements of H. Let p C A be a degree 1 prime ideal, to which there is an associated

point P = (to,yo) € E(F,) such thatp = (0 — to,m — yo), and let ¢ = ¢, € Gal(H/K) denote

73



the Artin automorphism associated to p via class field theory. Define the power sums

S5 = 3 ai Spils) = 3 ai (5.2)

a€A;y acpi+

where A, is the set of monic elements of A and A;. is the set of monic, degree ¢ elements of A.

Then define the sums

2y (b;s) = b Si(s) —bz o(bis) = b Zis (5.3)
€ph+

i>0

We next prove a proposition which allows us to connect (,(b; s) to the sums given above. Much
of our analysis follows similarly to that in [26, §7-8], and we will appeal to it frequently throughout

the remainder of the section.

Proposition 5.1.5. Let p; for 2 < k < h be the degree 1 prime ideals as described above which
represent the non-trivial ideal classes of A where h is the class number of A and set p; = (1).

Then, for s € 7 we can write the zeta function
Co(b5) = Zy, (b3 ) + - + Zy, (b s).

Proof. Define the sum
b¢a

d(pa)®’

zpk (b7 5) =

a~pg

where the sum is over integral ideals a equivalent to pj, in the class group of A, and observe

h
Cp = Z Z’pk'
k=1

Then, for 1 < k < h, the fact that zpk(b; s) = Zy,(b; s) follows from slight modifications to
equations (98)-(100) and Lemma 7.10 from [26]. ]

Now, we let {w;}$°, (the reader should not confuse these with the coordinates w; of w from
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§4.2) be the sequence of linear functions with sgn(w;) = 1 and divisor
div(w;) = (VD = V) + (=VED) 4 (V) = 3(c0) (5.4)
and let {w, ; }7°, be the sequence of functions with sgn(w, ;) = 1 and divisor
div(w,,;) = (V2 —V — P) + (=VE2) 1 (V) + (P) — 4(0). (5.5)

We now extend Theorem 6.5 from [26] to values 1 < s < g — 1, where we recall the definition of

v(t,y) from (2.4).

Proposition 5.1.6. For1 < s < q — 1 we find

S.(s) ( i ) e ( - )
i\S) = ) ) pil\S) = -
wl oo )] wl) - fO e ||

Proof. The proof of this proposition involves a minor alteration to the proof given for Proposition

6.5 in [26]. Namely, for the deformation R; (¢, y) one sets s = m (rather than s = g — 1 as is done
in [26]) then one solves for S;(¢ — m) and sets s = ¢ — m to obtain the formula given above. The

proof for Sy ;(s) is similar. O

Using equations (82) and (117) from [26] we see that

Fv®)

v —0@D(E)

_f
= t—10

which inspires the definition

BHBtaates BB+t
a—a a’—a

g: ; (5.6)

where we recall that V' = (a, ) from (2.1), that ¢; € F, are from (1.5) and for x € H that
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7 = x() as in (1.7). Observe by (2.3) that 3 (=) = f(V®) and hence

(5.7)

Finally, we define

N
>
Il
=
<
—~
o)
<
~—
S

PcGal(H/K)
Proposition 5.1.7. We have f”gb € N, where N is the dual A-motive from (2.10) and f”§b €

Hlt,y).

Proof. Our function G equals the function JF from [26, (125)] (there they set ¢ = @ and 1) = f3),
and so our function §b differs from the function g, from [26, (126)] only by the nth power in our
definition. The proof of this theorem follows as in the proof of Theorem 8.7 from [26], replacing
J by G" and multiplying the divisors by a factor of n where appropriate. We arrive at the statement
that the polar divisor of G, equals —n(Z) — (nq — deg(b))(cc), and that G, vanishes with degree
at least n at V' so that f™ - § € N as desired. Finally, since the coefficients of f and G are all in H,

we conclude that "G, € H|t,y]. O
We are now equipped to give the proof of Theorem 5.1.2.

Proof of Theorem 5.1.2. Our starting point is Proposition 5.1.5,
Co(b; 5) = Zp, (bys) + -+ + Zp, (bs s) (5.8)

where we recall that for a degree 1 prime ideal p and its associated Galois automorphism ¢

Zy(bin) = b (= f(P)* )" Y i =07 (= FP)7)" D Spaln). (5.9)

acp+

If we let [—1] denote the negation isogeny on F, by comparing divisors and leading terms of the
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functions in (2.4) and (2.13) we find

_ (D" () (o [-1])

OO = — vy

(5.10)

. _1\n+1 ofl—
We will denote C' = % B

€ H. Combining (5.3), Proposition 5.1.6, (5.7) and (5.10)

we find < ()>n
©  b((—f9)"
zolt) = o |

Next, we temporarily fix a prime p = p;, for 2 < k < h. The combination of equations (86)

(5.11)

and (118) and Lemma 7.12 from [26] gives

I i 1 I I
1511)+1 t—90 V@) 5(1)(5) f(P)¢_1

1 1

Lo 0D(E)0(E) FP)e (5.12)

since t — O(V®) = —§()(Z). Then, (5.9) and Proposition 5.1.6 together with (5.12) and the fact

that S, o = 0 gives

° (@) " n
Zo(bin) = (—1)"b¢" <f—) i 5.13
p(byn) = (—1) ZZ; s F . @ _ (f ) 1%0) (5.13)
We observe by (2.3) and (5.6) that f¢~' (V@) = (9571) “)(Z) and so by (5.10) this gives
5! —
= (9" )
Therefore, returning to (5.8) we see by (5.11) and (5.14) that
-3 -\ (@)
b ((—=f5%)" n"frg
Z > @ (< T ) Z C<h Z? iy (5.15)
i=0 JeGal(H/K) o =

From the proof of Proposition 5.1.7 we see that deg(fngb) = n(q + 1) + deg(b) and from (2.14)
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that deg(o?(hy,)) = n(j + 1) + k. Let us write deg(b) = en + &' where 0 < & < n — 1 so that
deg(f"G,) = n(q + e+ 1) + V. Since (—1)"(fG,)" € N by Proposition 5.1.7, we can express it

in terms of the basis from Proposition 2.1.3 with coefficients d; ; € K,

qgte n qte n
D" G =3 Y g (haisr) = 3 Y i (FFCY R (5.16)
J=0 k=1 =0 k=1

where we comment that dj, ... = 0 for & > ¥'. Since (=1)"f"G, € H[t,y] by Proposition 5.1.7,
a short calculation involving evaluating (5.16) at 2% for 0 < k < ¢ + e shows that d§j§ € H.

Substituting formula (5.16) into (5.15) and recalling that f(Z) = 0 gives

mln zq+e 1) 7 (i—7)
Zk 1 k]hn k+1

Z C hl . fl J))

We observe that the terms of the above sum are the bottom row of the coefficients P; for ¢ > 0
of Log?” from Corollary 4.2.6 up to the factor of d,(j)j /C'. Then, since Log?” is the inverse power

series of Exp®” if we label d; = (dLjv . ,dw)T e K" for0 < j < q+ e and sum over 7 > 0,

then we find that there exists some vector (x, . .., *, C(,(b;n))") such that
*
<d0 +d 4 alrt) ) — Exp” E e H".
*
CCp(b; n)

5.2 Transcendence implications

In this section we examine some of the transcendence applications of Theorem 5.1.2. This is
in line with Yu’s results on transcendence in [47] for the Carlitz module, where he proves that the
ratio (,(n) /7" is transcendental if ¢—1 { n and rational otherwise. Yu’s work builds on Anderson’s

and Thakur’s theorem in [5], where they express Carlitz zeta values as the last coordinate of the
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logarithm of a special vector in A™ similarly to how we have done in Theorem 5.1.2. In the
last couple decades, there has been a surge of research answering transcendence questions about

arithmetic quantities in function fields, notably [4], [10], [14], [17], [34] and [48].

Theorem 5.2.1. Let p be a rank 1 sign-normalized Drinfeld A-module, let 7, be a fundamental
period of exp, and define Co(b;n) as in (5.1) for b € B, the integral closure of A in the Hilbert
class field of K. Then

dimg Spangz{(,(b;1),...,(,(b;qg — 1), 1,7, ... ,7?3’2} =2(qg—1).

Our main strategy for proving Theorem 5.2.1 is to appeal to techniques Yu develops in [48],
where he proves an analogue of Wiistholz’s analytic subgroup theorem for function fields. Yu’s
theorem applies to Anderson F,[¢]-modules (called ¢-modules), whereas here we deal with A-
modules. Thus, we switch our perspective slightly by forgetting the y-action of p®" in order to
view p®" as an [ [t]-module with extra endomorphisms provided by the y-action. We will denote
this F,[t]-module by p®". Under the construction given in §2.2, the F,[t]-module p*" corresponds
to the dual ¢-motive N when viewed as a C[t, o]-module (we have forgotten the y-action on V),
which we denote by N’. Before giving the proof of Theorem 5.2.1 we require a couple of lemmas

which ensure that p®" satisfies the correct properties as a t-module to apply Yu’s theorem.
Lemma 5.2.2. The Anderson F[t]-module p®" is simple.

Proof. We recall the explicit functor between ¢-modules and dual ¢-motives as given in [27, §5.2].
For a t-module ¢’ with underlying algebraic group J C CI, define the dual ¢-motive N(¢')
(note that this is denoted as M (E) in [27, §5.2]) as Homg, (G, J), the Coo[t, 0]-module of all F-
linear homomorphisms of algebraic groups over C. One defines the C[t, o]-module structure on
N(¢') by having C, act by pre-composition with scalar multiplication, ¢ act as pre-composition
with the gth-power Frobenius and ¢ acting by t - m = ¢,m for m € N(¢'). Note that N (p*") =
Homg, (G,, G}}) is naturally isomorphic to C.[7]" where o acts for p(7) € Co[7]" by 0 - p(7) =

p(7) - 7 and C, acts by scalar multiplication on the right. To maintain clarity, when we mean C,
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with the action described above we will denote it as a C/_. Also note that N (p®") is isomorphic to
N' =T(U,0g(nV)) as C|[t, o]-modules.

Now suppose that J C CZ defines a non-trivial algebraic subgroup of G/, invariant under
p®"(F,[t]), defined by non-zero F,-linear polynomials p;(zy,...,z,) € Klx1,...,7,] for 1 <
J < m. We may assume that one of the polynomials, which we will denote as p(z1, ..., z,) has a

non-zero term in x;1. Then note that we have the injection of C/_[t, o]-modules given by inclusion

HOIH]Fq (Ga, J) — HOm[Fq (Gm GZ))

which allows us to view Homg, (G, J) as a C_[t, o]-submodule of C_[7]", where the o-action is
given by right multiplication by 7 as descrived above. Then observe that the map given induced by
the polynomial p

p« : Homg, (G, G}) — Homg, (G,, G,)

is a C/_-vector space map, that Homg, (G,,G,) = C,_[7] and that Homp (G,, J) C ker(p,). By
considering degrees in 7, we see that the C/_-vector subspace (C/_[7],0,...,0) C C._[7]" maps
to an infinite dimensional C/_-vector subspace of C/_[7]| under p,. This implies that the quotient
vector space, Homg, (G4, G)/ Homg, (G, J), also has infinite dimension over C..

On the other hand, recall that N’ = T'(U, O g(—nV (1)) is isomorphic to N(p®") as Co.[t, 0]-
modules and that N is an ideal of the ring C.[t, y]. Given a C[t, o]-submodule J* C N’ we may
choose a non-zero element h € J', and we claim that o(h) is linearly independent from h over
IF,[t]. If not, then we would have

Bh = frh=Y (5.17)

for some 3 € F,(t). However, this implies that the rational function f"h(~")/h is fixed under the

negation isogeny [—1] on F, and in particular, for 7 # 0 we have

ordzit1) (h) — ord_zu+1) (h) + ord_zu (h) — ordzw (h) = 0. (5.18)
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Since h is a polynomial in ¢ and y, we see that ordz) (h) — ord_ze) (h) = 0 for |i| > 0, thus (5.18)

shows that ord=.)(h) — ord_zu (k) = 0 for all i. But from (5.17) we see that
ord=(f") 4+ ordza) (h) — ord_za)(h) + ord_z(h) — ord=(h) = 0,

which is a contradiction, since ord=(f") = n. So J’ contains a rank 2 C.[t]-submodule and thus
J' has finite index in N’ as a C,-vector space. We conclude that all the C[t, o]-submodules of
N’ have finite index over C, which contradicts our observation in the preceding paragraph, thus

p%" must be simple as a t-module. O
Lemma 5.2.3. The Anderson F,[t]-module p*™ has endomorphism algebra equal to A.

Proof. Recall that endomorphisms of p®" are IF-linear endomorphisms « of C7, such that ap>" =
pe"avfor all a € F[t]. Thus A is certainly contained in End(5®™). On the other hand, the ¢-module
p®"™ and the A-module p®™ both have the same exponential function Exp;@" and same period lattice
Af?” (given in Theorem 3.2.7) associated to them. We note, however, that whereas A?” 1sarank 1
A-module, when viewed as an F,[t]-module it is rank 2. If we let End”(5®") = End(p*") @,y
F,(t) as an [F,(t)-vector space, then [12, Prop. 2.4.3] implies that [End’(5®") : F,(t)] < 2. Since
A C End(p®") is a rank 2 F[t]-module, we see that [End®(5®") : F,(t)] = 2, and thus End(5%")
is a rank 2 F,[t]-module containing A. Further, A ®g,j F,(t) = K, and thus End’(p®") = K
as an F,(t)-vector space. Since End(p®") is finitely generated over A, it is also integrally closed
over A and thus End(p®") = A.

O

Proof of Theorem 5.2.1. This proof follows nearly identically to the proof of [48, Prop. 4.1]. First,

assume by way of contradiction that

dimg Spang{¢,(b; 1), ..., G(big — 1), Ly, ..., w02} < 2(q — 1),

so that there is a K -linear relation among the Cp(b; i) and 772 forl1<i<qg—1land0<j<q—2.
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Then, let G, be the 1-dimensional trivial ¢-module and set

q—1 —2
G =G x (Hﬁ@) X ( /3®j).
i=1 j=1

For1l <i<gq—1setz; = (*,...,x,C((bi))" € C. tobe the vector from Theorem 5.1.2 such

Q

that Exp$”(z;) € H', where H is the Hilbert class field of K. For 1 < j < ¢ — 2, letII; € C,
be a fundamental period of Exp?j such that the bottom coordinate of II; is an 4 multiple of Wg as

described in Theorem 3.2.7. Define the vector

wm1x (H) . (ﬁm) c a(C.),

and note Exp(u) € G(H), where Exp,;, is the exponential function on G. Our assumption that
there is a K-linear relation among the (,(b;i) and 7/ implies that u is contained in a d [F,[t]]-
invariant hyperplane of G(C,,) defined over K. This allows us to apply [48, Thm. 3.3], which
says that u lies in the tangent space to the origin of a proper ¢t-submodule H C G. Then, Lemmas
5.2.2 and 5.2.3 together with [48, Thm 1.3] imply that there exists a linear relation of the form
agy(b; j) + bm) = 0 for some a,b € H and 1 < j < g — 2. Since (,(b;j) € K, and since
H C K, this implies that 7TZ € K. However, we see from the product expansion for 7, in
[26, Thm. 4.6 and Rmk. 4.7] that 7rf)' € K if and only if ¢ — 1|, which cannot happen because
7 < q — 2. This provides a contradiction, and proves the theorem.

]

Corollary 5.24. For 1 < ¢ < q — 1, the quantities (,(b;i) are transcendental. Further, for

0 < j < q— 1 the ratio Cp(b;i)/ﬂg € Kifandonlyifi=7j=q— 1.

Proof. The transcendence of (,(b; ), as well as the statement that (,(b; i) /m? ¢ K fori,j # q — 1
follows directly from Theorem 5.2.1. On the other had, if : = j = ¢ — 1, then [22, Thm. 2.10]

guarantees that {,(b; i) /7! € K. O
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6. EXAMPLES AND SUMMARY

6.1 Examples and summary

Example 6.1.1. In the case of tensor powers of the Carlitz module (see [33] for a detailed account
on tensor powers of the Carlitz module), the formulas in Theorems 4.1.1 and 4.2.4 for the coeffi-
cients of Expg" and Logg" can be worked out completely explicitly using hyper-derivatives. For
instance, we find that g; = (¢ — 0)"~! and that the shtuka function is f = (¢ — ), so the left hand

side of (4.1) is
B 1
T gyt — gayn . (t — 0y

We can expand 7y, in terms of powers of (f — #) by using hyper-derivatives, as described in [33,

§2.3], namely

Using this we recover the coefficients of Exp%" as given in formula (4.3.2) and Proposition 4.3.6(b)
from [33]. The formulas for coefficients of the logarithm given in (4.3.4) and Proposition 4.3.6(a)

from [33] can be derived similarly using Theorem 4.2.4.

Example 6.1.2. Let £ : y* = t> — ¢ — 1 be defined over F3, and note that A = F,[t, y] has class

number 1. Then from [45] we find that

_y—n—mn(t—0)
J= t—60—-1

The Drinfeld module p associated to the coordinate ring of £' is detailed in Example 9.1 in [26].
We form the 2-dimensional Anderson A-module p®? as outlined in section §2.2, where we recall

from (2.12) that

div(g) = —2(V) + (00) + ([2]V), div(gs) = —2(V) + (B) + (VD + V).
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If we denote 7"y as translation by —V on £, then we can quickly write down formulas for ¢; and
go by observing that g; o 7"y and g5 o 1", are both polynomials with relatively simple divisors,

from which we calculate that

B ”4ny+t—0—1
nt2 + nth +nb% +nt —nl +n’

g1

24+ 020+ 0?0+ 0?t — 20 — P+ 2+t + 02+ iy —t+ 0
P24+ 020 + ?02 + Pt — 20+ 2+ 2+t + 02+t -0+ 1

g2 =

We further compute that
=yt -0+1

hi = e
b it — 00—t + 0?2+ 0+ 202 +dy 2+t + 02+t — 0
° n*+1 '
Then using Corollary 3.1.5 we calculate that
= " —n*(n*—n>—1) !
0 9 ENCE

We then calculate that the bottom coordinate of II; from Theorem 3.2.7 is

—(n* +1)? 2
(P =n=n) 7

Using these, we calculate the first few terms of the expression from Corollary 4.1.4 as

4 2 12 6

n—n n—n
&n z z P g 2220 I8 A2 q? e
Exp = + 27+ 274+ 0(=7),
4 7_,5_.3 15_, 11, ,9_ 7
0 0 n —n—n n°—n +n"—m
PR I B S L |

and calculate an example of the vector from Corollary 4.2.6, which is the bottom row of P,
1
hé) _ 777_7]5_773 77ss_i_nai_l
hifr = PSP+ P )
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We calculate that the function G from (5.6)is § = (n +y)/(0 — t) — y and that for b = 1 we

can express (—1)2f2G, = (£9)? in the form given in (5.16) as

_n3 5/3 3 B _ 5/9+ 1/3
(1‘39)2:—77 T hythgt—t— 1h§ D2ens V4 7:7 d

(=2) -2 1 (=2) —1)\2
211 n?/3 + 2/9—th (ff( )) +h (ff( )>-

This allows us to write the formulas in Theorem 5.1.2 as

1 1 1 0 on *
—n3 + 7’ —nB 4 - - Epr n’
n2+1 n2+1 n2+1 0 _"72+1C(2)

Thus the special vector z = (x, —1%/(n* + 1)((2))" is in the period lattice for Exp?™ which by
Theorem 3.2.7 implies that the bottom coordinate of z is a K -multiple of 7r/2,, the fundamental

period associated to p. Hence ((2)/7> € K as implied by Goss’s [22, Thm. 2.10].

Example 6.1.3. Now let ¢ = 4 and let E/FF, be defined by y*> + y = t* + ¢, where ¢ € F, is a
root of the polynomial ¢* + ¢ + 1 = 0. Then we know from [45, §2.3] that A = F,[6, 7] has class

number 1, that V' = (6,7 + 1) and that

_y+77+94(t+0)
N t+0 '

f

Setting the dimension n = 2 and the parameter b = 1, from (5.6) we find that

Cn4y+1l yt4y+1

J 0+t tt+t

and that 51 = G2. Then we compute the expansion from (5.16) as

251 = (0" +0)'ha + hy + (0" + 0) /AT 2 4 (0" + 0) 25TV £ 4 (00 + )Y ORI (£

S G e e e G e I F A
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whereupon Theorem 5.1.2 gives

1 . (6* + 6)* . (6* +0)* . 1 @+ + (0 +0)
(0*+0)~" (60* +6) (0" +0)° (04 +0)~" (0% +0) + (0* +0)°
*
= Expf?"

(0 +6)7'¢(2)

Summary. In this dissertation, we gave an explicit description of tensor powers of rank 1 sign-
normalized Drinfeld modules, gave a formulas for their periods, gave formulas for the coefficients
of the exponential and logarithm functions, related these formulas to zeta values and proved a

theorem about their transcendence.
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