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ABSTRACT

We study tensor powers of rank 1 sign-normalized Drinfeld A-modules, where A is the coor-

dinate ring of an elliptic curve over a finite field. Using the theory of A-motives, we find explicit

formulas for the A-action of these modules. Then, by developing the theory of vector-valued An-

derson generating functions, we give formulas for the period lattice of the associated exponential

function. We then give formulas for the coefficients of the logarithm and exponential functions

associated to these A-modules. Finally, we show that there exists a vector whose bottom coordi-

nate contains a Goss zeta value, whose evaluation under the exponential function is defined over

the Hilbert class field. This allows us to prove the transcendence of certain Goss zeta values and

periods of Drinfeld modules as well as the transcendence of certain ratios of those quantities.
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1. INTRODUCTION

1.1 Introduction

The Carlitz module and its tensor powers are well understood. We have explicit formulas for

multiplication maps of both the Carlitz module and for its tensor powers (see [13] for the Carlitz

module and [33, §3] for tensor powers of the Carlitz module). Further, we have a nice product

formula for π̃, the Carlitz period, and a formula for the bottom coordinate of the fundamental

period associated with tensor powers of the Carlitz module (see [5, §2.5]).

In his work towards the Langland’s program, Drinfeld introduced the notion of Drinfeld mod-

ules (see also [24], [30] or [46] for a thorough account of Drinfeld modules), which are a general-

ization of the Carlitz module. Since their introduction, many researchers have worked to develop

an explicit theory for Drinfeld modules which parallels that for the Carlitz module, notably Goss

in [22] and [23], Anderson in [2] and [3], Thakur in [44] and [45], Dummit and Hayes in [18],

and Hayes in [29]. To discuss the results of the present thesis, we first recall a few basic facts

about rank 1 sign-normalized Drinfeld A-modules over rings A, where A is the affine coordinate

ring of an elliptic curve E/Fq (see §2.1 for a more thorough review of Drinfeld modules). Define

A = Fq[t, y], where t and y are related via a cubic Weierstrass equation for E. Also define an

isomorphic copy of A, which we denote A = Fq[θ, η], where θ and η satisfy the same cubic Weier-

strass equation as t and y. Let K be the fraction field of A, let K∞ be the completion of K at its

infinite place, and let C∞ be the completion of an algebraic closure of K∞. Let H be the Hilbert

class field of K, which can be taken to be a subfield of K∞. A rank 1 sign-normalized Drinfeld

module is an Fq-algebra homomorphism

ρ : A→ L[τ ]

satisfying certain naturally defined conditions, where L ⊂ C∞ is some algebraically closed field

containing H and L[τ ] is the ring of twisted polynomials in the qth power Frobenius endomor-
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phism τ (see §2.1 for definitions). Associated to this Drinfeld module there is a point V ∈ E(H)

called the Drinfeld divisor, satisfying the equation with respect to the group law on E

V (1) − V + Ξ =∞,

where Ξ = (θ, η) ∈ E(K) and V (1) is the image of V under the qth power Frobenius isogeny.

We specify that V be in the formal group of E at the infinite place of K, so that V is uniquely

determined by the above equation. We define the shtuka function f ∈ H(t, y) associated to E to

have

div(f) = (V (1))− (V ) + (Ξ)− (∞),

and require that the sign of f equals 1 so that f is uniquely determined (see §1.2 for the definition

of sign).

Generalizing the Carlitz module further, Anderson introduced the notion of tensor products of

Drinfeld modules in [1], which provide higher dimensional analogues of (1-dimensional) Drinfeld

modules. Then, in the remarkable paper [5], Anderson and Thakur develop much of the explicit

theory for the arithmetic of the nth tensor power of the Carlitz module, including the aforemen-

tioned formula for the bottom coordinate of the fundamental period of the exponential function.

In a more recent paper, Papanikolas [33] uses hyperderivatives to give extremely explicit formulas

for multiplication maps and the fundamental period of tensor powers of the Carlitz module, along

with with remarkable log-algebraicity theorems. Both Anderson and Thakur’s and Papanikolas’s

techniques allow them to connect the logarithm function to function field zeta values.

The goal of this thesis is to give a detailed account of tensor powers of rank 1 sign normalized

A-modules and their applications to zeta values. The notion of using Drinfeld modules to study L-

functions, zeta functions, and their special values over functions fields has been pursued vigorously

in the last few years and has born much fruit (see [6], [25], [31], [35], [38] and [42]).

The main focus of this thesis is the study of tensor powers of rank 1 sign-normalized Drinfeld

modules over the affine coordinate ring of an elliptic curve. These modules provide a further gen-
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eralization of the Carlitz module and are an example of Anderson A-modules. An n-dimensional

Anderson A-module is an A-module homomorphism

ρ : A→ Matn(L)[τ ]

satisfying certain naturally defined conditions, where Matn(L)[τ ] is the ring of twisted polynomi-

als in the qth power Frobenius endomorphism τ , which extends to matrices entry-wise (see §2.2

for the full definition of Anderson A-modules).

The main theorems of this thesis include the following. We give formulas for the A-action

of tensor powers of rank 1 sign-normalized A-Drinfeld modules, as well as for the fundamental

period of the exponential function associated to this module. This generalizes both the work of

Papanikolas and the author on Drinfeld modules in [26] as well as that of Anderson and Thakur

on tensor powers of the Carlitz module in [5]. One of the main new aspects of this work, which

distinguishes it from that of Anderson and Thakur, is that we prove many of our results in a vector-

valued setting. In particular, we define and study vector-valued Anderson generating functions (see

(3.15)), and define new operators which act on these vector-valued functions (see §3.1). We also

give explicit formulas for the coefficients of the exponential and the logarithm function associated

to tensor powers of rank 1 sign-normalized Drinfeld modules, and show that evaluating the expo-

nential function at a special vector with a zeta value in its bottom coordinate gives a vector in Hn.

We remark that our techniques only allow us to study small zeta values. As an application of the

main theorems we use techniques of Yu from [48] to show that these zeta values and the periods

connected to the Drinfeld module are transcendental over K. This generalizes both the work of

Thakur on Drinfeld modules and zeta values in [45] as well as that of Anderson and Thakur on

tensor powers of the Carlitz module in [5].

The methods which Anderson and Thakur apply to obtain formulas for the coefficients for the

exponential and logarithm functions for tensor powers of the Carlitz module involve recursive ma-

trix calculations, which allow them to analyze a particular coordinate of those coefficients. In the
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case of tensor powers of Drinfeld modules, however, the matrices involved are much more com-

plicated and do not give clean formulas as they do in the Carlitz case. We develop new techniques

to analyze the coefficients of the logarithm and exponential function inspired partially by work of

Papanikolas and the author in [26] and partially by ideas of Sinha in [41]. Further, Anderson and

Thakur use special polynomials (called Anderson-Thakur polynomials) in [5] to relate evaluations

of the logarithm function to zeta values. It is not yet clear how to generalize these Anderson-

Thakur polynomials to tensor powers of Drinfeld modules, and so instead we use a generalization

of techniques developed by Papanikolas and the author in [26] to prove formulas for zeta values.

We comment that this technique allows us to study zeta values only for 1 ≤ s ≤ q− 1; developing

techniques to study zeta values for all n ≥ 1 is a topic of ongoing study (see Remark 5.1.1).

After setting out the notation and background in §1.2, in §2.1 we begin by defining A-motives

and dual A-motives, which are tensor powers of 1-dimensional motives. We realize these A-

motives and dual A-motives as spaces of functions

M = Γ(U,OE(nV )), N = Γ(U,OE(−nV (1))),

respectively, where U = SpecL[t, y] is the affine curve (L ×Fq E) \ {∞}. The spaces M and N

are generated as a free L[τ ]-module and a free L[σ]-module by the sets of functions

{g1, . . . , gn} ⊂M, {h1, . . . , hn} ⊂ N, (1.1)

respectively, where gi, hi ∈ L(t, y) are naturally defined (see (2.12) and (2.13) for specific defini-

tions). The functions gi and hi appear repeatedly throughout this thesis, and one can think of them

as a generalization of the shtuka function to the n-dimensional setting.

To ease notation throughout the thesis, for a fixed dimension n, we define

Ni ∈ Matn(Fq) (1.2)
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for an integer i ≥ 1 to be the matrix with 1’s along the ith super-diagonal and 0’s elsewhere and

define Ni for i ≤ −1 to be the matrix with 1’s along the ith sub-diagonal and 0’s elsewhere.

We also define E1 to be the matrix with a single 1 in the lower left corner and zeros elsewhere

and in general define Ei to be Ni−n. We also define Ni(α1, . . . , αn−i) to be the matrix with the

entries α1, α2, . . . , αn−i along the ith super diagonal and similarly for Ni−n(α1, . . . , αn−i) and

Ei(α1, . . . , αi). Also let ∗> denote the transpose of a matrix.

Using M and N , in §2.2 we define an Anderson A-motive ρ⊗n, which is the nth tensor power

of a (1-dimensional) rank 1 sign-normalized Drinfeld module ρ, and analyze the structure of ρ⊗nt

and ρ⊗ny . We find that

ρ⊗nt = (θI +N1(a1, . . . , an−1) +N2) + (anE1 + E2)τ, (1.3)

where ai are naturally defined constants in H (see (2.21) and Corollary (3.1.5)), and that ρ⊗ny is

defined similarly (see (2.22)). By way of comparison, recall that for the nth tensor power of the

Carlitz module (see Example 2.2.1), we can write

C⊗nt = (θI +N1) + E1τ.

We denote the exponential and logarithm functions associated to ρ⊗n as

Exp⊗nρ (z) =
∞∑
i=0

Qiz
(i), Log⊗nρ (z) =

∞∑
i=0

Piz
(i),

where Qi, Pi ∈ Matn(H) and denote the period lattice of Exp⊗nρ as Λ⊗nρ .

For g =
∑
cj,kt

jyk ∈ L[t, y], let g(1) denote the Frobenius twist of g, which is defined as

g(1) =
∑

cqj,kt
jyk, (1.4)

and let g(i) denote the ith iteration of twisting. In §3.1 we define an A-module of rigid analytic
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functions Ω0 which vanish under the operator τ − fn, where τ acts by twisting. We then proceed

to define an n-dimensional “vector version" of the operator τ − fn which we denote

G− E1τ ∈ Matn(H(t, y))[τ ],

which acts on vectors of rigid analytic functions, and in Lemma 3.1.3 we solidify the connection

between these two operators. These vector operators allow us in §3.2 to connect the fundamental

period Πn of Exp⊗nρ with the space Ω0 and obtain formulas for Πn. To state the main theorem on

periods, we begin by recalling the function

ωρ = ξ1/(q−1)

∞∏
i=0

ξq
i

f (i)
,

from [26, §4], where ξ = −(m + β/α) (see (2.3) for the definition of m). We also define vector

valued Anderson generating functions,

E⊗nu (t) =
∞∑
i=0

Exp⊗nρ
(
d[θ]−i−1u

)
ti ∈ Tn,

where u ∈ C∞ and T is a Tate algebra (see (1.10) for the definition of T), and prove several

properties about them. We relate the function ωnρ to E⊗nu using the vector operator G − E1τ from

§3.1. Using these techniques, we get the following information about the period lattice.

Theorem 3.2.7. If we denote

Πn = −


ResΞ(ωnρ g1λ)

...

ResΞ(ωnρ gnλ)

 ,

where gi are the functions from (1.1) and λ is an (suitably normalized) invariant differential on E,

then the structure of the period lattice of Exp⊗nρ is given by

Λ⊗nρ = {d[a]Πn | a ∈ A},
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where d[a] is the constant term of ρ⊗na . Further, if πρ is a fundamental period of the exponential

function associated to the (1-dimensional) Drinfeld module ρ, then the last coordinate of Πn ∈ Cn
∞

is
g1(Ξ)

a1a2 . . . an−1

· πnρ ,

where the constants ai are the same as in (1.3).

In section §4.1 we move on to analyzing the coefficients of the exponential function Exp⊗nρ

associated to tensor powers of rank 1 Drinfeld A-modules. First, we define functions for 1 ≤ ` ≤ n

and i ≥ 1

γi,` =
g`

(ff (1) . . . f (i−1))n

and find that there is a unique expression for γi,` of the form

γi,` = c`,1g
(i)
1 + c`,2g

(i)
2 + . . . c`,ng

(i)
n +

∑
j,k

dj,kαj,k,

for c`,m, dj,k ∈ H , where the functions αj,k ∈ H(t, y) satisfy naturally defined conditions given in

§4.1. We denote Ci = 〈cj,k〉, and we obtain our first main theorem about the coefficients of the

exponential function.

Theorem 4.1.1. For dimension n ≥ 2 and z ∈ C∞, if we write

Exp⊗nρ (z) =
∞∑
i=0

Qiz
(i),

then for i ≥ 0, the exponential coefficients Qi = Ci and Qi ∈ Matn(H).

We prove this theorem by observing a recursive matrix equation which uniquely identifies the

coefficients of the exponential function (see Lemma 4.1.3), and then proving that the matrices Ci

satisfy the recursive equation. After a bit more analysis, we obtain more exact formulas for the

first column of Qi.
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Corollary 4.1.4. For z ∈ C∞ we have the expression

Exp⊗nρ



z

0

...

0


=



z

0

...

0


+
∞∑
i=0

zq
i

g
(i)
1 (ff (1) . . . f (i−1))n

·



g1

g2

...

gn


∣∣∣∣∣
Ξ(i)

.

Next, we transition to studying the coefficients of the logarithm function in §4.2. Our main

technique in this section involves proving the commutativity of diagram (4.15), which is inspired

by work of Sinha in [41]. We then define a single variable function which, using the machin-

ery from the diagram, allows us to recover the logarithm function. This gives formulas for the

logarithm coefficients in terms of residues of quotients of the functions gi, hi and f .

Theorem 4.2.4. For z inside the radius of convegence of Log⊗nρ , if we let

Log⊗nρ (z) =
∞∑
i=0

Piz
(i)

for n ≥ 2 and let λ be an (suitably normalized) invariant differential on E, then Pi ∈ Matn(H)

for i ≥ 0 and

Pi =

〈
ResΞ

(
gjh

(i)
n−k+1

(ff (1) . . . f (i))n
λ

)〉
1≤j,k≤n

.

With a little further analysis we obtain cleaner formulas for the bottom row of the logarithm

coefficients.

Corollary 4.2.6. For the coefficients Pi of the function Log⊗nρ , the bottom row of Pi, for i ≥ 0, can

be written as 〈
h

(i)
n−k+1

h1(f (1) . . . f (i))n

∣∣∣∣
Ξ

〉
1≤k≤n

.

In section §5.1 we show that evaluating the exponential function at a special vector with a Goss

zeta value in its bottom coordinate is in Hn. To state our results, we recall the extension of a rank

1 sign-normalized Drinfeld module ρ to integral ideals a ⊂ A due to Hayes [29] (see §5.1), which
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maps a 7→ ρa ∈ H[τ ]. We define ∂(ρa) to be the constant term of ρa with respect to τ and let

φa ∈ Gal(H/K) denote the Artin automorphism associated to a, and let the B be the integral

closure of A in H . We define a zeta function associated to ρ twisted by the parameter b ∈ B to be

ζρ(b; s) :=
∑
a⊆A

bφa

∂(ρa)s
.

Theorem 5.1.2. For b ∈ B and for n ≤ q − 1, there exists a constant C ∈ H and a vector

(∗, . . . , ∗, Cζρ(b;n))> ∈ Cn
∞ such that

d := Exp⊗nρ



∗
...

∗

Cζρ(b;n)


∈ Hn,

where C ∈ H and d ∈ Hn are explicitly computable as outlined in the proof.

In §5.2 we discuss the transcendence implications of theorem 5.1.2. Using techniques similar

to Yu’s in [48] we prove the following theorem.

Theorem 5.2.1. Let ρ be a rank 1 sign-normalized Drinfeld module, let πρ be a fundamental period

of the exponential function associated to ρ and define ζρ(b;n) as above. Then

dimK SpanK{ζρ(b; 1), . . . , ζρ(b; q − 1), 1, πρ, . . . , π
q−2
ρ } = 2(q − 1).

From Theorem 5.2.1 we get a corollary which relates to a theorem of Goss (see [22, Thm.

2.10]).

Corollary 5.2.4. For 1 ≤ i ≤ q − 1, the quantities ζρ(b; i) are transcendental. Further, for

0 ≤ j ≤ q − 1 the ratio ζρ(b; i)/πjρ ∈ K if and only if i = j = q − 1.

Finally in §6.1 we give examples of the constructions in our main theorems.
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1.2 Background and notation

We require much of the same notation as [26, §2] and we use similar exposition in this section.

Let p be a prime and q = pr for some integer r > 0 and let Fq be the field with q elements. Define

the elliptic curve E over Fq with Weierstrass equation

E : y2 + c1ty + c3y = t3 + c2t
2 + c4t+ c6, ci ∈ Fq, (1.5)

with the point at infinity designated as∞. Let A = Fq[t, y] be the affine coordinate ring of E, the

functions on E regular away from∞, and let K = Fq(t, y) be its fraction field. Let

λ =
dt

2y + c1t+ c3

(1.6)

be a fixed invariant differential on E. Also define isomorphic copies of A and K with an indepen-

dent set of variables θ and η, which also satisfy (1.5), which we label

A = Fq[θ, η], and K = Fq(θ, η).

Define the canonical isomorphisms

ι : K→ K, χ : K → K (1.7)

such that ι(t) = θ and ι(y) = η and so on. We remark that the maps ι and χ extend to finite

algebraic extensions of K and K respectively.

Let ord∞ be the valuation of K at the infinite place, and let deg := − ord∞, both normalized

so that

deg(θ) = 2, deg(η) = 3.

Define an absolute value on K by setting |g| = qdeg(g) for g ∈ K. Also define ord∞, deg and | · |

on K similarly. Let K∞ be the completion of K at the infinite place, and let C∞ be the completion
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of an algebraic closure of K∞. Designate the point Ξ = (θ, η) ∈ E(K).

Extend the absolute value on C∞ to a seminorm on M = 〈mi,j〉 ∈ Mat`×m(C∞) as in [33,

§2.2] by defining

|M | = max
i,j

(|mi,j|).

Note for c ∈ C∞ and M,N ∈ Mat`×m(C∞) that

|cM | = |c| · |M |, |M +N | ≤ |M |+ |N |,

and for matrices M ∈ Matk×`(C∞) and N ∈ Mat`×m(C∞) that

|MN | ≤ |M | · |N |,

but that the seminorm is not multiplicative in general.

In order to define a sign function, we first note that as an Fq-vector space, A has a basis

{ti, tjy}, for i, j ≥ 0 where each term has a unique degree. Thus, when expressed in this basis, an

element a ∈ A has a leading term which allows us to define

sgn : A \ {0} → F×q ,

by letting sgn(a) ∈ F×q be the coefficient of the leading term of a ∈ A \ {0}. This sign function

extends naturally to K×. Define a sign function analogously for A and K, which we also call sgn.

Then, for any field extension L/Fq, the coordinate ring of E over L is L[t, y] = L⊗FqA, and using

the same notion of leading term, we define a group homomorphism

s̃gn : L(t, y)× → L×,

which extends the function sgn on K×.

Now, let L/Fq be an algebraically closed extension of fields containing A. Define τ : L → L

11



to be the qth power Frobenius map and define L[τ ] as the ring of twisted polynomials in τ , subject

to the relation for c ∈ L

τc = cqτ.

For g =
∑
cj,kt

jyk ∈ L[t, y], let g(1) denote the Frobenius twist of g, which is defined as

g(1) =
∑

cqj,kt
jyk, (1.8)

and let g(i) denote the ith iteration of twisting. The twisting operation also extends naturally to

matrices in Mat`×m(L(t, y)) by twisting entry-wise. We use this notion of twisting to define the

ring Matn(L)[τ ] as the non-commutative ring of polynomials in τ subject to the relation τM =

M (1)τ for M ∈ Matn(L). In the setting of Anderson A-modules, we view Matn(L)[τ ] as a ring

of operators acting on Ln for n ≥ 1 via twisting, i.e. for ∆ =
∑
Miτ

i, with Mi ∈ Matn(L) and

a ∈ Ln,

∆(a) =
∑

Mia
(i). (1.9)

Further, for X ∈ E(L), we define X(1) = Fr(X), where Fr : E → E is the qth power Frobenius

isogeny. We extend twisting to divisors in the obvious way, noting that for g ∈ L(t, y)

div(g(1)) = div(g)(1).

We define the Tate algebra for c ∈ C∞,

Tc =

{ ∞∑
i=0

bit
i ∈ C∞[[t]]

∣∣∣∣ ∣∣cibi∣∣→ 0

}
, (1.10)

where Tc is the set of power series which converge on the closed disk of radius |c|. For convenience,

we set T := T1. Define the Gauss norm ‖·‖c for vectors of functions h =
∑

dit
i ∈ Tnc for some
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fixed dimension n > 0 with di ∈ Cn
∞ by setting

‖h‖c = max
i
|cidi|,

where | · | is the seminorm described above. Extend this norm to Tc[y]n for h1,h2 ∈ Tnc by setting

‖h1 + yh2‖c = max(‖h1‖c, ‖ηh2‖c). Note that each of these algebras are complete under their

respective norms. Using the definition given from [20, Chs. 3–4], we note that the two rings T[y]

and Tθ[y] are affinoid algebras corresponding to rigid analytic affinoid subspaces of E/C∞. Let

E be the rigid analytic variety associated to E and let U ⊂ E be the inverse image under t of the

closed disk of radius |θ| in C∞ centered at 0. Then observe that U is the affinoid subvariety of

E associated to Tθ[y], and that Frobenius twisting extends to T and T[y] and their fraction fields.

As proved in [34, Lem. 3.3.2], T and T[y] have A and Fq[t] as their fixed rings under twisting,

respectively.

We extend the action of Matn(L)[τ ] on Ln described in (1.9) to an action of Matn(T[y])[τ ] on

T[y]n in the natural way.

13



2. A-MOTIVES AND A-MODULES

2.1 Tensor powers of A-motives

We briefly review the theory of A-motives and dual A-motives corresponding to rank 1 sign-

normalized Drinfeld-Hayes modules as set out in [26, §3]. First note that we can pick a unique

point V in E(H) whose coordinates have positive degree (see the discussion preceding [26, (13)])

such that V satisfies the equation on E

(1− Fr)(V ) = V − V (1) = Ξ, (2.1)

If we set V = (α, β), then deg(α) = 2 and deg(β) = 3 and sgn(α) = sgn(β) = 1. Define H to

be the Hilbert class field of K, which equals H = K(α, β). There is a unique function in H(t, y),

called the shtuka function, with s̃gn(f) = 1 and with divisor

div(f) = (V (1))− (V ) + (Ξ)− (∞). (2.2)

We can write

f =
ν(t, y)

δ(t)
=
y − η −m(t− θ)

t− α
=
y + β + c1α + c3 −m(t− α)

t− α
, (2.3)

where m is the slope between the collinear points V (1),−V and Ξ, and deg(m) = q. We see

div(ν) = (V (1)) + (−V ) + (Ξ)− 3(∞), (2.4)

div(δ) = (V ) + (−V )− 2(∞). (2.5)

Let L/K be an algebraically closed field, and let U = SpecL[t, y] be the affine curve (L×Fq E) \

{∞}.
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We let

M0 = Γ(U,OE(V )) =
⋃
i≥0

L((V ) + i(∞)),

where L((V ) + i(∞)) is the L-vector space of functions g on E with div(g) ≥ −(V )− i(∞). We

make M0 into a left L[t, y, τ ]-module by letting τ act by

τg = fg(1), g ∈M0,

and letting L[t, y] act by left multiplication. We find thatM0 is a projective L[t, y]-module of rank 1

as well as a free L[τ ]-module of rank 1 with basis {1}. Define the dual A-motive

N0 = Γ
(
U,OE(−(V (1)))

)
⊆ L[t, y]. (2.6)

If we let σ = τ−1, then we can define a left L[t, y, σ]-module structure on N0 by setting

σh = fh(−1).

With this action N0 is a dual A-motive in the sense of Anderson (see [4]), and we note that N0 is

an ideal of L[t, y] and that it is a free left L[σ]-module of rank 1 generated by δ(1) (see [26, §3] for

proofs of these facts).

A Drinfeld A-module over L is an Fq-algebra homomorphism

ρ : A→ L[τ ],

such that for all a ∈ A,

ρa = ι(a) + b1τ + · · ·+ bnτ
n.

The rank r of ρ is the unique integer such that n = r deg a for all a. Thus, a rank 1 sign-normalized

Drinfeld module has r = 1 and that bn = sgn(a).
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For a Drinfeld A-module ρ, we denote the exponential and logarithm function as

expρ(z) =
∞∑
i=0

zq
i

di
, logρ(z) =

∞∑
i=0

zq
i

`i
∈ H[[z]], d0 = `0 = 1.

Formulas for the coefficients of expρ and logρ are given in [26, Thm. 3.4 and Cor. 3.5] as

expρ(z) =
∞∑
i=0

zq
i

(ff (1) · · · f (i−1))|Ξ(i)

, (2.7)

logρ(z) =
∞∑
i=0

ResΞ

(
λ̃(i+1)

ff (1) · · · f (i)

)
zq

i

=
∞∑
i=0

(
δ(i+1)

δ(1)f (1) · · · f (i)

∣∣∣∣
Ξ

)
zq

i

, (2.8)

where λ̃ ∈ Ω1
E/H(−(V ) + 2(∞)) is the unique differential 1-form such that ResΞ(λ̃(1)/f) = 1.

Denote the period lattice of expρ as Λρ. Theorem 4.6 from [26] states that Λρ is a rank 1 free

A-module and is generated by the fundamental period

πρ = −ξ
q/(q−1)

θq − α

∞∏
i=1


1− θ

αqi

1−
(

m

mθ − η

)qi
· θ +

(
1

mθ − η

)qi
· η

 , (2.9)

where ξ = −(m+ β/α).

We now proceed to developing the theory for n-dimensional tensor powers of A-motives and

dual A-motives. This generalizes the theory for the n-dimensional t-motives for the Carlitz module

(see [33, §3.6] for the Carlitz module and [27] for Drinfeld modules). For a fixed dimension n ≥ 1,

we define the n-fold tensor power of M0,

M⊗n
0 = M0 ⊗L[t,y] · · · ⊗L[t,y] M0,

and similarly for N⊗n0 . We wish to analyze M⊗n
0 and N⊗n0 and identify them as a spaces of

functions over U .
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Proposition 2.1.1. For n ≥ 1, we have the following L[t, y]-module isomporphisms

M⊗n
0
∼= Γ(U,OE(nV )) and N⊗n0

∼= Γ(U,OE(−nV (1))).

Proof. Define the map

ψ : M0 ⊗L[t,y] · · · ⊗L[t,y] M0 → Γ(U,OE(nV ))

on simple tensors for ai ∈M0 as

a1 ⊗ · · · ⊗ an 7→ a1 · · · an.

Looking at divisors, one quickly sees that a1 · · · an is indeed in Γ(U,OE(nV )) as desired. Then

it follows quickly from Proposition 5.2 of [28] that the map ψ is an L[t, y]-module isomorphism.

The proof that N⊗n0
∼= Γ(U,OE(−nV (1))) follows similarly.

From here on forward, we will denote

M := M⊗n
0 = Γ(U,OE(nV )), N := N⊗n0 = Γ(U,OE(−nV (1))). (2.10)

We turn M into an L[t, y, τ ]-module and N into an L[t, y, σ]-module by defining the action for

a ∈M and b ∈ N as

τa = fna(1) and σb = fnb(−1). (2.11)

Remark 2.1.2. The τ action defined on M in (2.11) is the same as the diagonal action on M⊗n
0 ,

namely for ai ∈M0

ψ(τ(a1 ⊗ · · · ⊗ an)) = ψ(τa1 ⊗ · · · ⊗ τan) = ψ(fa1 ⊗ · · · ⊗ fan) = fnψ(a1 ⊗ · · · ⊗ an).

Thus the map ψ from Proposition 2.1.1 is actually an L[t, y, τ ]-module isomorphism.
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For a fixed dimension n ≥ 2, we define a set of functions which generate M as a free L[τ ]-

module and define a second set of functions which generate N as a free L[σ]-module. We remark

that for the case of n = 1, the present considerations do reduce to those detailed in [26, §3] for

motives attached to rank 1 Drinfeld modules, but for ease of exposition we assume that n ≥ 2.

Let [n] denote the multiplication-by-n map on E. Define a sequence of functions gi ∈ M for

1 ≤ i ≤ n with s̃gn(gi) = 1 and with divisors

div(g1) = −n(V ) + (n− 1)(∞) + ([n]V )

div(g2) = −n(V ) + (n− 2)(∞) + (Ξ) + (V (1) + [n− 1]V )

div(g3) = −n(V ) + (n− 3)(∞) + 2(Ξ) + ([2]V (1) + [n− 2]V )

...

div(gn−1) = −n(V ) + (∞) + (n− 2)(Ξ) + ([n− 2]V (1) + [2]V )

div(gn) = −n(V ) + (n− 1)(Ξ) + ([n− 1]V (1) + V ),

and define functions hi ∈ N with s̃gn(hi) = 1 and with divisors

div(h1) = n(V (1))− (n+ 1)(∞) + (−[n]V (1))

div(h2) = n(V (1))− (n+ 2)(∞) + (Ξ) + (−[n− 1]V (1) − V )

div(h3) = n(V (1))− (n+ 3)(∞) + 2(Ξ) + (−[n− 2]V (1) − [2]V )

...

div(hn−1) = n(V (1))− (2n− 1)(∞) + (n− 2)(Ξ) + (−[2]V (1) − [n− 2]V )

div(hn) = n(V (1))− (2n)(∞) + (n− 1)(Ξ) + (−V (1) − [n− 1]V ).

For ease of reference later on, we succinctly state that

div(gj) = −n(V ) + (n− j)(∞) + (j − 1)(Ξ) + ([j − 1]V (1) + [n− (j − 1)]V ), (2.12)
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div(hj) = n(V (1))− (n+ j)(∞) + (j − 1)(Ξ) + (−[n− (j − 1)]V (1) − [j − 1]V ). (2.13)

Recall that a divisor on E is principal if and only if the sum of the divisor is trivial on E [40,

Cor. III.3.5] (we will use this fact implicitly going forward), and thus the divisors in (2.12) and

(2.13) are principal by (2.1). Also note that the functions gi and hi are uniquely defined because of

the s̃gn condition and note that gi, hi ∈ H(t, y).

Proposition 2.1.3. For n ≥ 2, the set of functions {gi}ni=1 are a basis for M as a free L[τ ]-module

and the set of functions {hi}ni=1 are a basis for N as a free L[σ]-module.

Proof. First observe that by the definition of the action of τ from (2.11) that the L-vector space

generated by the functions τ jgi for 1 ≤ i ≤ n and j ≥ 0 is contained in M . Then observe that

each of the functions gi lives in the 1-dimensional Riemann-Roch space

gi ∈ L(n(V )− (n− i)(∞)− (i− 1)(Ξ)).

Further, by the Riemann-Roch theorem

L(n(V )) =
n⋃
j=1

L(n(V )− (n− j)(∞)− (j − 1)(Ξ)),

so that L(n(V )) is equal to the L-span of the functions gi. Finally, observe that

deg(τ jgi) = deg((ff (1) . . . f (j−1))ng
(j)
i ) = (j − 1)n+ i,

so that the degree of each τ jgi is unique and that these degrees includes each nonnegative integer,

thus

M =
∞⋃
i=1

L(n(V ) + i(∞))

is equal to the L-span of the set {τ jgi} for 1 ≤ i ≤ n and j ≥ 0. The proof for the σ-basis

of the dual A-motive N follows similarly, once we note that each hi belongs to a 1-dimensional
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Riemann-Roch space

hi ∈ L(−n(V (1)) + (n+ j)(∞)− (j − 1)(Ξ)).

We leave the details of this case to the reader.

When it is convenient, we will extend the definitions of the functions gi and hi for i > n by

writing i = jn+ k, where 1 ≤ k ≤ n, and then denoting,

gi := τ j(gk) = (ff (1) . . . f (j−1))ng
(j)
k and hi := σj(hk) = (ff (−1) . . . f (1−j))nh

(−j)
k . (2.14)

For ease of notation later on, we also define (where ∗> denotes the transpose)

g := (g1, . . . , gn)>. (2.15)

Remark 2.1.4. The A-motive N is dual to the A-motive M in a precise sense as outlined in [27,

Prop. 4.3]. But, as we do not need this for the rest of the thesis, we omit the details. We do,

however, record a lemma about the relationship between the functions gi and hi which we will

need later.

Lemma 2.1.5. We obtain the following identities of functions for 1 ≤ j ≤ n− 1

g1h
(−1)
1 = t− t([n]V ),

gj+1hn−(j−1) = fn · (t− t([j]V (1) + [n− j]V )).

Proof. The first identity is proved trivially, simply by comparing divisors from (2.12) and (2.13),

and noting that

s̃gn(g1) = s̃gn(h1) = s̃gn(t) = 1.
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The second follows similarly, noting that for 1 ≤ j ≤ n− 1

div(gj+1hn−(j−1)) = div(fn · (t− t([j]V (1) + [n− j]V ))),

and thus the two sides are equal up to a multiplicative constant. Then, since

s̃gn(gj+1hn−(j−1)) = s̃gn(fn · (t− t([j]V (1) + [n− j]V ))) = 1,

the equality of functions follows.

Remark 2.1.6. The L[t, y, τ ]-module N and the L[t, y, σ]-module M with the actions described

in (2.11) is an A-motive and a dual A-motive, respectively, in the precise sense described by

Anderson (see [27, §4]). Because we do not require this fact going forward in the present thesis,

we omit the details.

2.2 Anderson A-modules

In this section we show how to construct an Anderson A-module from the A-motive M of

the previous section. An n-dimensional Anderson A-module is an Fq-algebra homomorphism

ρ : A→ Matn(L)[τ ], such that for a ∈ A

ρa = d[a] + A1τ + · · ·+ Amτ
m,

where d[a] = ι(a)I + N for some nilpotent matrix N ∈ Matn(L), and we remark that d : A →

Matn(L) is a ring homomorphism. The map ρ⊗n describes an action of A on the underlying space

Ln in the sense defined in (1.9), allowing us to view Ln as an A-module. Anderson A-modules

are a generalization of the t-modules introduced by Anderson in [1]; they are studied thoroughly

in [27, §5].

Example 2.2.1 (Tensor Powers of the Carlitz Module). For A = Fq[t], define an n-dimensional
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Anderson A-moduleC⊗n : Fq[t]→ Matn(Fq[θ])[τ ] (with the normalization deg(t) = 1) by setting

C⊗nt = (θI +N1) + E1τ.

Thus, for z ∈ Ln,

C⊗nt (z) = (θI +N1)z + E1z
(1),

and we extend C⊗n to all of A by setting Ctm = Cm
t and using Fq-linearity. The map C⊗n is an

Anderson A-module and is called the nth tensor power of the Carlitz module.

Work by Anderson in [1, Thm. 3] for the A = Fq[t] case, then later by Böckle and Hartl in [9,

§8.6] for the more general rings A, shows that associated to every Anderson A-module, there is a

unique, Fq-linear power series, which we label

Expρ(z) =
∞∑
i=0

Qiz
(i) ∈ Matn×1(C∞[[z]]),

where z = (z1, . . . , zn)>, defined so that Q0 = I and that for all a ∈ A and z ∈ Cn
∞

Expρ(d[a]z) = ρa(Expρ(z)). (2.16)

We call Expρ the exponential function associated to ρ, and note that it is entire on Cn
∞. We also

define the logarithm function associated to A to be the formal inverse of Expρ. We label its

coefficients

Logρ(z) =
∞∑
i=0

Piz
(i) ∈ Matn×1(C∞[[z]]),

and note that Logρ also satisfies a functional equation for each a ∈ A

Logρ(ρa(z)) = d[a] Logρ(z). (2.17)

The function Logρ has a finite radius of convergence in Cn
∞, which we denote rL.
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Given the A-motive M and the dual A-motive N defined in (2.1.1), we now describe how

to use these motives to define an Anderson A-module. This method generalizes a technique of

Thakur [45, 0.3.5] for Drinfeld modules, and also has roots in unpublished work of Anderson (see

[27, §5.2]). We also refer the reader to [11] for a thorough account of the functoriality of this

process in the case of t-modules. We begin by defining the t- and y-action of the A-module, from

which the rest of the action of A can be defined. These actions are defined in terms of constants

coming from the functions gi and hi from (2.12).

Proposition 2.2.2. There exist constants ai, bi, yi, y′i ∈ H such that we can write for 1 ≤ i ≤ n

tgi = θgi + aigi+1 + gi+2,

ygi = ηgi + yigi+1 + y′igi+2 + gi+3,

thi = θhi + bihi+1 + hi+2,

where we recall the definitions of gi and hi for i > n from (2.14).

Proof. Note that tgi ∈M , and hence we can write

tgi = c1g1 + c2g2 + · · ·+ cmgm,

for ci ∈ C∞. Examining the order of vanishing at∞ of gj from (2.12) and recalling that t has a

pole of order 2 at∞, we see that cj = 0 for j < i and j > i+ 2. So

tgi = cigi + ci+1gi+1 + ci+2gi+2.

Then, noting that s̃gn(gi) = s̃gn(t) = 1 and evaluating both sides at Ξ shows that ci+2 = 1 and

that ci = θ, respectively. Further, all the functions gi are in H(t, y), and so the constants ci are as

well, which finishes the proof of the first equation. The proofs of the other two equations follow

similarly; we leave the details to the reader.
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Given the relationship between the basis elements gi and hj described in Lemma 2.1.5, we also

expect the coefficients ai and bj to be related.

Proposition 2.2.3. For the coefficients defined in Proposition 2.2.2, for j ≤ n− 1,

aj = bn−j and an = bqn.

Proof. From Proposition 2.2.2 we calculate that

0 = (θ − t)
(

gj
gj+2

− hn−j
hn−j+2

)
+ aj

gj+1

gj+2

− bn−j
hn−j+1

hn−j+2

. (2.18)

Then using Lemma 2.1.5 yields the equality of functions

hn−j
hn−j+2

=
t− t

(
[j + 1]V (1) + [n− (j + 1)]V

)
t− t ([j − 1]V (1) + [n− (j − 1)]V )

· gj
gj+2

,

and so (2.18) becomes

(θ − t)
(

gj
gj+2

)(
1−

t− t
(
[j + 1]V (1) + [n− (j + 1)]V

)
t− t ([j − 1]V (1) + [n− (j − 1)]V )

)
= −aj

gj+1

gj+2

+ bn−j
hn−j+1

hn−j+2

.

From (2.12) and (2.13) we quickly see that

degt

(
(θ − t)

(
gj
gj+2

)(
1−

t− t
(
[j + 1]V (1) + [n− (j + 1)]V

)
t− t ([j − 1]V (1) + [n− (j − 1)]V )

))
= 0,

whereas

degt

(
aj
gj+1

gj+2

)
= degt

(
bn−j

hn−j+1

hn−j+2

)
= −1.

Then, since s̃gn(gi) = s̃gn(hi) = 1, in order for the degree on the left hand side to match the

degree on the right hand side, we must have that aj = bn−j for j ≤ n − 1. To get the equality
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an = bqn, we again use Proposition 2.2.2 to write

0 =
(θ − t)gn
fngn+2

+ an ·
gn+1

gn+2

+ 1,

0 =
(θq − t)h(1)

n

(f (1))nh
(1)
n+2

+ bqn ·
h

(1)
n+1

h
(1)
n+2

+ 1.

Subtract these two equations and recall for n+ 1 ≤ k ≤ 2n that hk = fnh
(−1)
k−n and gk = fng

(1)
k−n to

get

0 =
(θ − t)gn
fng

(1)
2

− (θq − t)h(1)
n

(f (1))nh2

+ an ·
g

(1)
1

g
(1)
2

− bqn ·
h1

h2

. (2.19)

Again, using Lemma 2.1.5 implies that

(θ − t)gn
fng

(1)
2

· (t− θq)(t− t(V (2) + [n− 1]V (1)))

(t− θ)(t− t([n− 1]V (1) + V ))
=

(θq − t)h(1)
n

(f (1))nh2

,

so equation (2.19) turns into

(θ − t)gn
fng

(1)
2

(
1− (t− θq)(t− t(V (2) + [n− 1]V (1)))

(t− θ)(t− t([n− 1]V (1) + V ))

)
= −an ·

g
(1)
1

g
(1)
2

+ bqn ·
h1

h2

. (2.20)

Again, we have

degt

(
(θ − t)gn
fng

(1)
2

(
1− (t− θq)(t− t(V (2) + [n− 1]V (1)))

(t− θ)(t− t([n− 1]V (1) + V ))

))
= 0

whereas

degt

(
−an ·

g
(1)
1

g
(1)
2

)
= degt

(
bqn ·

h1

h2

)
= −1.

Then, since s̃gn(gi) = s̃gn(hi) = 1, in order for the degree on the left hand side to match the

degree on the right hand side of (2.20), we must have that an = bqn.

We begin defining the Anderson A-module associated to M , which is the nth tensor power of
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the Drinfeld module ρ associated to M0, by defining

ρ⊗nt := d[θ] +Eθτ :=



θ a1 1 0 . . . 0 0 0

0 θ a2 1 . . . 0 0 0

0 0 θ a3 . . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 . . . θ an−2 1

0 0 0 0 . . . 0 θ an−1

0 0 0 0 . . . 0 0 θ



+



0 0 0 . . . 0

...
...

... . . . ...

0 0 0 . . . 0

1 0 0 . . . 0

an 1 0 . . . 0


τ (2.21)

and

ρ⊗ny := d[η] + Eητ :=



η y1 z1 1 . . . 0 0 0

0 η y2 z2 . . . 0 0 0

0 0 η y3 . . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 . . . η yn−2 zn−2

0 0 0 0 . . . 0 η yn−1

0 0 0 0 . . . 0 0 η



+



0 0 0 0 . . . 0

...
...

...
... . . . ...

0 0 0 0 . . . 0

1 0 0 0 . . . 0

zn−1 1 0 0 . . . 0

yn zn 1 0 . . . 0


τ,

(2.22)

where ai, yi and zi are given in Proposition 2.2.2.

To simplify notation later, we define strictly upper triangular matrices Nθ and Nη by

Nθ = d[θ]− θI and Nη = d[η]− ηI. (2.23)

With the definitions of ρ⊗nt and ρ⊗ny , we define the Fq-linear map

ρ⊗na : A→ Matn(H[τ ])
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for any a ∈ A by writing a =
∑
cit

i + y
∑
dit

i with ci, di ∈ Fq, and extending using linearity and

the composition of maps ρ⊗nta = (ρ⊗nt )a. A priori, the map ρ is just an Fq-linear map, but we will

shortly show that it actually is an Fq-algebra homormophism and defines an Anderson A-module.

Remark 2.2.4. In general the coefficients ai, yi and zi are not integral over H , which could lead

to our chosen model for ρ⊗n having bad reduction over certain places of A. We suspect that it

is possible to choose a normalization which has everywhere good reduction, but this would come

at the expense of having more complicated formulas e.g. not having 1’s across the last non-zero

super diagonals of ρ⊗nt and ρ⊗ny .

Our main strategy for showing that the map ρ⊗n is actually an Anderson A-module involves

constructing a second Anderson A-module ρ′ using techniques of Hartl and Juschka, then showing

that the maps ρ⊗n and ρ′ align. In what follows, for convenience, we fix the algebraically closed

field L from §2.1 to be C∞. For g ∈ N = Γ(U,OE(−nV (1))), define the map

ε : N → Cn
∞,

by writing g in the basis for the dual A-motive arranged as

g =d1,0h1 + d1,1h
(−1)
1 fn + · · ·+ d1,mh

(−m)
1 (ff (−1) · · · f (−m+1))n

+ d2,0h2 + d2,1h
(−1)
2 fn + · · ·+ d2,mh

(−m)
2 (ff (−1) · · · f (−m+1))n

...

+ dn,0hn + dn,1h
(−1)
n fn + · · ·+ dn,mh

(−m)
n (ff (−1) · · · f (−m+1))n,

(2.24)

where di,j ∈ C∞ and at least one of the di,m is non-zero, then defining

ε(g) =



dn,0

dn−1,0

...

d1,0


+



dn,1

dn−1,1

...

d1,1



(1)

+ · · ·+



dn,m

dn−1,m

...

d1,m



(m)

. (2.25)
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Note that the map ε is a special case of the map δ1 defined in [27, Prop. 5.6]. One observes

immediately from the definition that ε is Fq-linear. We then obtain a proposition similar to Lemma

3.6 from [26].

Proposition 2.2.5. The map ε : N → Cn
∞ is surjective and

ker(ε) = (1− σ)N =
{
g ∈ N | g = h(1) − fnh for some h ∈ Γ(U,OE(−n(V )))

}
.

Proof. This proposition is a special case of [27, Prop. 5.6] (note that our map ε is called δ1

in loc. cit.), and so we encourage the reader to look there for full details. Because it is useful

for certain computational examples, we briefly sketch a direct proof of Proposition 2.2.5. For

h ∈ Γ(U,OE(−n(V ))), we have h(1) ∈ N and σ(h(1)) = fnh, so the two objects on the right are

the same. Also, if we write h(1) using the basis and notation from (2.24), after a short calculation

we find that ε(h(1)) = ε(fnh), and thus (1 − σ)N ⊆ ker(ε). To show that ker(ε) ⊆ (1 − σ)N ,

we note that by the proof of Proposition 2.1.3 each function on the right hand side of (2.24) has

unique degree. Then for g ∈ ker(ε), we can construct a function h ∈ Γ(U,OE(−n(V ))) satisfying

g = h(1) − fnh through the following process. We first note that degree considerations force

deg(h) = deg(g) − n, then we observe that h(1) ∈ N and so we can write h(1) in terms of the

same basis used in (2.24) with coefficients d′i,j ∈ C∞. Next, we set g = h(1) − fnh and compare

coefficients of equal degree terms on each side. The fact that g ∈ ker(ε) allows us to solve for

the coefficients d′i,j uniquely in terms of the coefficients of g, which proves that such a function

h ∈ Γ(U,OE(−n(V ))) exists.

We then combine Proposition 2.2.5 with a theorem of Hartl and Juschka [27, Proposition 5.6]

to obtain the following proposition.

Proposition 2.2.6. The map ρ⊗n is an Anderson A-module.

Proof. Since N is free of rank n and finitely generated as a C∞[σ]-module, the quotient module

N/(1 − σ)N is isomorphic as a C∞-vector space to Cn
∞. We choose a basis for N/(1 − σ)N
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consisting of the functions hi, the images of hi under the quotient map, then observe by Proposition

2.2.5 that this isomorphism is given by ε. This gives rise to the following commutative diagram,

N/(1− σ)N
ε
> Cn

∞

N/(1− σ)N

a

∨
ε
> Cn

∞

ρ′a
∨

(2.26)

where the vertical map on the left is multiplication by a ∈ A and the vertical map on the right is the

map induced by multiplication by a under the isomorphism ε. This diagram describes an action of

A on the space Cn
∞, and a priori, the induced action ρ′a is in EndFq(Cn

∞). However, Proposition 5.6

of Hartl and Juschka [27] shows that ρ′a is actually in Matn(C∞[σ]) and that it defines an Anderson

A-module. To write down the action of ρ′a, we only need to analyze the action of a on the basis

elements hi (we drop the overline notation, since there is no confusion), and since A is generated

as an algebra by t and y, we only need to consider the action of t and y on the basis elements. We

first note that for 1 ≤ i ≤ n − 2 and di ∈ C∞ by Proposition 2.2.2 and by the definition of ε in

(2.25)

ε(tdn−i+1hi) = ε(dn−i+1(θhi + bihi+1 + hi+2)) = dn−i+1(0, . . . , 0, 1, bi, θ, 0, . . . , 0)>

while we also have

ε(td2hn−1) = ε(d2(θhn−1 + bn−1hn + σ(h1))) = d2(bi, θ, 0, . . . , 0)> + dqn−1(0, . . . , 0, 1)>

ε(td1hn) = ε(d1(θhn + bnσ(h1) + σ(h2))) = d1(θ, 0, . . . , 0)> + dqn(0, . . . , 0, 1, bqn)>.

Using the identities from Proposition 2.2.3, and piecing this all together, yields

ε(t(dnh1 + · · ·+ d1hn)) = (d[θ] + Eθτ)(d1, . . . , dn)> = ρ⊗nt (d1, . . . , dn)>.
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Similar analysis gives

ε(y(dnh1 + · · ·+ dnhn)) = ρ⊗ny (d1, . . . , dn)>.

Therefore, the operators ρ′t = ρ⊗nt and ρ′y = ρ⊗ny , and we see that the map ρ defined in (2.21) is

actually an A-module homomorphism and defines an Anderson A-module.

Remark 2.2.7. We comment that it is likely possible to prove that ρ is an Anderson A-module by

appealing to Mumford’s work in [32] as does Thakur in [45], however, we prefer the approach

inspired by Hartl and Juschka in [27].

Having proved that ρ⊗n is an Anderson A-module, we will label the exponential and logarithm

function associated to ρ⊗n as

Exp⊗nρ (z) =
∞∑
i=0

Qiz
(i) ∈ Matn×1(C∞[[z]]) (2.27)

and

Log⊗nρ (z) =
∞∑
i=0

Piz
(i) ∈ Matn×1(C∞[[z]]). (2.28)
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3. ANDERSON GENERATING FUNCTIONS AND PERIODS

3.1 Operators and the space Ω0

In [5, §2.5] Anderson and Thakur define an Fq[t]-module of functions for the Carlitz module,

which they call Ωn (our notation for this module is Ω0), which vanish under the operator τ−(t−θ)n

(we remark that the shtuka function for the Carlitz module is (t−θ)). They then connect this space

of functions to the period lattice of the exponential function by expressing a function h ∈ Ωn

in terms of t − θ, then analyzing the principal part h in this expansion. Of particular note, they

construct an ancillary vector-valued function h̃ which they use to aid their calculations in the proof

of their period formulas. In the case of tensor powers of Drinfeld A-modules, we apply similar

techniques using a space of functions Ω0 which vanish under the operator τ − fn. However, we

found it necessary to rely entirely upon the equivalent version of h̃, rather than using it as an

ancillary tool. Because of this, in this section we develop a vector setting in which we can embed

the space Ω0 and analyze vector-valued operators on it.

For a fixed a dimension n define

B := Γ
(
U,OE(−n(V ) + n(Ξ))

)
where U is the inverse image under t of the closed disk in C∞ of radius |θ| centered at 0 defined in

§1.2. Define the A-module

Ω = {h ∈ B | h(1) − fnh ∈ N}, (3.1)

where we recall the definition of N from §2.1. Also define a submodule of Ω as

Ω0 = {h ∈ B | h(1) − fnh = 0}. (3.2)
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For a function h(t, y) ∈ Ω, define the map T : Ω→ T[y]n by

T (h(t, y)) =



h(t, y) · g1

h(t, y) · g2

...

h(t, y) · gn


, (3.3)

where the functions gi are the basis elements defined in (2.12). We observe immediately that T is

Fq-linear and injective.

Remark 3.1.1. The map T can be viewed as a generalization of the ˜ operator defined by Anderson

and Thakur in the proof of 2.5.5 of [5], where they define for h(t) ∈ T,

h̃(t) =



h(t) · 1

h(t) · (t− θ)
...

h(t) · (t− θ)n−1


.

Note that the function t− θ, aside from being a uniformizer at Ξ, is also the shtuka function for the

Carlitz module, and that it shows up in the τ -basis for the A-motive associated to the nth tensor

power of the Carlitz module (see [33, §3.6]). It is not immediately obvious which of these notions

leads to the correct generalization of ˜ for Anderson A-modules. After noticing properties such as

Lemma 3.1.2 and Theorem 3.2.7, however, it seems clear that the definition of T (·) is the correct

generalization for the present concerns.

Define operators on the space T[y]n which act in the sense defined in §1.2 by setting

Dt := ρ⊗nt − t, and Dy = ρ⊗ny − y.

Lemma 3.1.2. For h ∈ Ω0,

Dt(T (h)) = Dy(T (h)) = 0.
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Proof. Using (2.2.2) and the fact that h ∈ Ω0, observe that

t · T (h) =



th(t, y) · g1

th(t, y) · g2

...

th(t, y) · gn


=



h(t, y) · (θg1 + a1g2 + g3)

h(t, y) · (θg2 + a2g3 + g4)

...

h(t, y) · (θgn + ang
(1)
1 fn + g

(1)
2 fn)


= d[θ]T (h) + E · T (h)(1).

Thus we see that ρ⊗nt (h̃) = t · T (h) and so Dt(T (h)) = 0. A similar argument shows that

Dy(T (h)) = 0.

Define an additional operator on T[y]n,

G− E1τ :=



g2/g1 −1 0 . . . 0

0 g3/g2 −1 . . . 0

0 0 g4/g3 . . . 0

...
...

... . . . ...

0 0 0 . . . g
(1)
1 fn/gn


−



0 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0

...
...

... . . . ...

1 0 0 . . . 0


τ. (3.4)

A quick calculation shows that for any h ∈ Ω0

[G− E1τ ] (T (h)) = 0,

and thus the operator G − E1τ can be viewed as a vector version of the operator τ − fn. In fact,

the relationship is even stronger, as proved in the following lemma.

Lemma 3.1.3. A vector J(t, y) ∈ T[y]n satisfies (G−E1τ)(J) = 0 if and only if there exists some

function h(t, y) ∈ Ω0 such that

J(t, y) = T (h(t, y)).

Proof. We have already seen above that (G − E1τ)(T (h)) = 0 for all h ∈ Ω0. For the other

direction, suppose that J(t, y) ∈ T[y]n satisfies (G − E1τ)(J) = 0. Then, if we denote J =
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(j1, . . . , jn)>, writing out the action of G− E1τ on each coordinate gives equations

j1
g2

g1

− j2 = 0

j2
g3

g2

− j3 = 0

... (3.5)

jn−1
gn
gn−1

− jn = 0

jn
g

(1)
1 fn

gn
− j(1)

1 = 0.

Solving the first equation for j2 and then substituting it into the second, and so on, gives the equality

of vectors 

j1

j2
...

jn


=



j1

j1 · g2/g1

...

j1 · gn/g1


.

From this, we also get the equality (τ − fn)(j1/g1) = 0, so we see that J = T (j1/g1) with

j1/g1 ∈ Ω0 as desired.

We use the quotient functions gk+1/gk frequently throughout this section, so we briefly describe

some of their properties. Using the notation for k > n for gk from (2.14), the quotients have

divisors

div(gk+1/gk) = (Ξ)− (∞) + ([k]V (1) + [n− k]V )− ([k − 1]V (1) + [n− (k − 1)]V ), (3.6)

for 1 ≤ k ≤ n. Thus we can write these functions as a quotient of a linear function of degree 3 and

a linear function of degree 2, which we label

νk(t, y)

δk(t)
:=

y − η −mk(t− θ)
t− t([k − 1]V (1) + [n− (k − 1)]V )

=
gk+1

gk
, (3.7)
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for 1 ≤ k ≤ n, where mk is the slope between the points [k]V (1) + [n− k]V and [−(k− 1)]V (1)−

[n− (k − 1)]V .

Remark 3.1.4. The functions gk+1/gk share many similarities with the shtuka funciton f , and the

vector (g2/g1, . . . , gn1/gn)> can be viewed as a vector version of the shtuka function; in fact, the

divisor of gk+1/gk matches with the divisor of the shtuka function, except that the points V (1) and

V in div(f) from (2.2) are shifted by ([k − 1]V (1) + [n− k]V ).

With the above analysis we are now equipped to give explicit formulas for the coefficients ai

from Proposition 2.2.2, which determine the action of ρ⊗nt .

Corollary 3.1.5. The coefficients ai from Proposition 2.2.2 are given by

ai =
2η + c1θ + c3

θ − t([i]V (1) + [n− i]V )

Proof. Dividing both sides of the first equation from Proposition 2.2.2 by gi+1 and evaluating at

the point −Ξ gives

ai = −gi+2

gi+1

∣∣∣∣
−Ξ

.

Using expression (3.7) for k = i+ 1 we find

−gi+2

gi+1

∣∣∣∣
−Ξ

=
2η + c1θ + c3

θ − t([i]V (1) + [n− i]V )
.

Remark 3.1.6. In order to get formulas for yi and zi one can equate the coordinates on both sides

of the identity

ρ⊗nη2+c1ηθ+c3η
= ρ⊗nθ3+c2θ2+c4θ+c6

and solve for the coefficients yi and zi in terms of ai. We do not use this fact going forward, and

thus we omit the details.
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Define the operator

Mτ := N1 + E1τ,

where we recall the definition of the matrices Ni and Ei from (1.2). Denote the diagonal matrix

Mm := diag(z1 − a2, z2 − a3, . . . , zn−1 − an, zn − a(1)
1 ), (3.8)

where ai and zi are the constants from Proposition 2.2.2 and denote the diagonal matrix of functions

in H[t, y]

Mδ := diag(δ1, δ2, . . . , δn). (3.9)

Proposition 3.1.7. We have the operator decomposition

(G− E1τ) = M−1
δ (Dy − (Mτ +Mm)Dt).

Proof. We first compute using the definitions (2.21) and (2.22) and the definitions given above that

Dy −MτDt −MmDt = M ′, (3.10)

where

M ′ := M ′
1 +M ′

2τ

:=


η−y−(θ−t)(z1−a2) y1−(θ−t)−a1(z1−a2) 0 ... 0

0 η−y−(θ−t)(z2−a3) y2−(θ−t)−a2(z2−a3) ... 0
0 0 η−y−(θ−t)(z3−a4) ... 0

...
...

... . . . ...
0 0 0 ... yn−1−(θ−t)−an−1(zn−1−an)

0 0 0 ... η−y−(θ−t)(zn−a(1)
1 )



+


0 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0
...

...
... . . . ...

yn−(θ−t)−an(zn−a(1)
1 ) 0 0 ... 0

 τ.
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If we define g := (g1, . . . , gn)>, then by Proposition 2.2.2 we observe that

d[θ]g + Eθf
ng(1) = 0 and d[η]g + Eηf

ng(1).

Then from (3.10), we observe that

M ′
1g +M ′

2f
ng(1) = 0. (3.11)

Examining the coordinates of the above equation gives the equations for 1 ≤ k ≤ n− 1

gk+1

gk
=
y − η − (θ − t)(zk − ak+1)

t− θ + yk − ak(zk − ak+1)
, (3.12)

and
fng

(1)
1

gn
=
y − η − (θ − t)(zn − a(1)

1 )

t− θ + yn − an(zn − a(1)
1 )

.

Comparing these formulas with the notation established in (3.7) shows that for 1 ≤ k ≤ n− 1

mk = zk − ak+1 and δk = t− θ + yk − akmk

and

mn = zn − a(1)
1 and δn = t− θ + yn − anmn.

With these observations, we then identify

M ′ = Mδ(G− E1τ),

so that

(G− E1τ) = M−1
δ (Dy − (Mτ +Mm)Dt).
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Remark 3.1.8. Note the similarity of this decomposition to that in [26, Prop. 4.1].

Corollary 3.1.9. Define the following matrices

M1 = M ′
1

∣∣
t=0,y=0

and M2 = M ′
2

∣∣
t=0,y=0

,

with M ′
1 and M ′

2 as in (3.10). Then

ρ⊗ny − (Mτ +Mm)ρ⊗nt = M1 +M2τ.

Proof. After multiplying both sides by Mδ, the matrices in Proposition 3.1.7 have coefficients in

K[t, y], and equating the constant terms gives the corollary.

Define the function

ωρ = ξ1/(q−1)

∞∏
i=0

ξq
i

f (i)
, ξ = −mθ − η

α
= −

(
m+

β

α

)
, (3.13)

where m, α, and β are given in §2.1 and recall that ωρ ∈ T[y]× (see [26, §4], for details of

convergence). Note that

(ωnρ )(1) = fnωnρ , (3.14)

and thus ωnρ ∈ Ω0. The idea behind the function ωρ comes originally from a similar function ωC

defined for tensor powers of the Carlitz module by Anderson and Thakur in [5, §2.5]. Papanikolas

and the author genrealized the function ωC to Drinfeld modules in [26]. Angl’es, Pellarin and

Tavares Ribeiro also used this function in [8].

Proposition 3.1.10. The function ωnρ generates Ω0 as a free A-module.

Proof. The proof follows similarly to the proof of [26, Prop. 4.3]. Since all of the zeros and poles

of ωnρ lie outside the inverse image under t of the closed unit disk in C∞ the function ωnρ ∈ T[y]×.

Then, for any h ∈ Ω0 the quotient h/ωnρ is fixed under twisting and thus is in A, and we see that

h = aωnρ for some a ∈ A.
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3.2 Anderson generating functions and periods

Anderson and Thakur studied the period lattice of the n-fold tensor power of the Carlitz module

in [5], where they find succinct formulas for the last coordinate of a fundamental period. On

the other hand, Gekeler, Goss, Thakur, Papanikolas and Lutes and Papanikolas and Chang have

studied the fundamental period associated to (1-dimensional) Drinfeld modules (see [21, §III],

[24, §7.10], [31, Ex. 4.15], [43, §3], [14] and [15]). More recently, Papanikolas and the author

studied periods of rank 1 sign-normalized Drinfeld modules in [26] using Anderson generating

functions. This section generalizes the work of both Anderson and Thakur and of Papanikolas and

the author; we develop the theory of periods of n-fold tensor powers of rank 1 sign-normalized

Drinfeld modules. We remark that because of the additional complexity arising from generalizing

in both these directions, our methods required several new ideas, distinct from the works mentioned

above. In particular, while the residue formula presented in Proposition 3.2.5 is nearly trivial in the

1-dimensional case, its proof for the n-dimensional case required several new technical insights to

account for the higher order poles present in vector-valued Anderson generating functions.

We now define and study vector-valued Andreson generating functions in dimension n. Such

functions are used in the proof of Theorem 2.5.5 in [5] for the case of tensor powers of the Carlitz

module; here we define them for Anderson A-modules. For u = (u1, ..., un)> ∈ Cn
∞ define

E⊗nu (t) :=


e1(t)

...

en(t)

 :=
∞∑
i=0

Exp⊗nρ
(
d[θ]−i−1u

)
ti, (3.15)

then define

G⊗nu (t, y) := E⊗nd[η]u(t) + (y + c1t+ c3)E⊗nu (t). (3.16)

We will shortly discuss the convergence of E⊗nu and G⊗nu as functions in Tate algebras, but

before proceeding we require two brief lemmas.

Lemma 3.2.1. Given an upper triangular matrix M ∈ Matn(T) with eigenvalues λi ∈ T, the
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series
∞∑
i=0

M i

converges with respect to ‖·‖ and equals (I −M)−1 if and only if |λi| < 1 for all 1 ≤ i ≤ n.

Proof. This is essentially a standard result from linear algebra, so we only sketch the proof. We

write M = D + N where D is the diagonal matrix consisting of eigenvalues and N is a strictly

upper triangular matrix. Then we write M i = (D + N)i and expand (D + N)i to find that any

term with n or more copies of N vanishes. Thus ‖M i‖ → 0 as i→ 0 if and only if |λi| < 1.

Lemma 3.2.2. The coordinates of the matrix

(d[η]− y) (d[θ]− t)−1 ,

are regular at Ξ, where d : A→ Matn(H) is the ring homomorphism from §2.2.

Proof. For ease of exposition in this proof we will assume that the elliptic curve E has the simpli-

fied Weierstrass equation E : y2 = t3 + At + B for A,B ∈ Fq. The lemma holds for the more

general Weierstrass equation (1.5) and we leave the extra details to the reader. Observe using the

simplified Weierstrass equation together with the fact that d : A → Matn(H) is a (commutative)

ring homomorphism that

(d[η]− y) (d[θ]− t)−1 = (d[η]− y)(d[η] + y)(d[η] + y)−1 (d[θ]− t)−1

= (d[η2]− y2)(d[η] + y)−1 (d[θ]− t)−1

= ((d[θ3]− t3) + A(d[θ]− t))(d[η] + y)−1 (d[θ]− t)−1

= ((d[θ2] + td[θ]− t2) + A)(d[η] + y)−1,

where in the last equality we factored out (d[θ] − t) and canceled. Note that (d[η] + y)−1 and

(d[θ2] + td[θ]− t2) +A are coordinate-wise regular at Ξ and thus so is (d[η]− y) (d[θ]− t)−1.

For the case of n = 1 and A = Fq[θ], El-Guindy and Papanikolas give a detailed proof that
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Anderson generating functions are in T and that they have a meromorphic continuation to C∞ in

[19] - the original result is due to Anderson. We give a similar theorem for E⊗nu and G⊗nu .

Proposition 3.2.3. For u ∈ Cn
∞, the function E⊗nu ∈ Tn and we have the following identity of

functions in Tn

E⊗nu (t) =
∞∑
j=0

Qj

(
d[θ](j) − tI

)−1
u(j),

where Qi are the coefficients of Exp⊗nρ from (2.27). Further, the function G⊗nu extends to a mero-

morphic function on U = (C∞ ×Fq E) \ {∞} with poles in each coordinate only at the points Ξ(i)

for i ≥ 0.

Proof. Writing in the definition of Exp⊗nρ from (2.27) and expanding gives the sum

E⊗nu (t) =
∞∑
i=0

(
∞∑
j=0

Qj

(
d[θ]−i−1u

)(j)

)
ti. (3.17)

Recall from (2.23) that d[θ] = θI +Nθ where Nθ is nilpotent with order n, so we can write

(
d[θ]−i−1

)
=
(
(θI +Nθ)

−i−1
)

=

((
1

θ
I − 1

θ2
Nθ + · · ·+ (−1)n−1

θn
Nn−1
θ

)i+1
)

=

([ ∑
k1+···+kn=i+1

(
i+ 1

k1, . . . , kn

) n∏
s=1

(
1

θs
N s−1
θ

)ks])

=

((
1

θi+1
I + d1

1

θi+2
Nθ + · · ·+ dn−1

1

θi+n
Nn−1
θ

))
,

(3.18)

where in the last two lines we used the multinomial theorem then collected like terms using some

constants di ∈ Fq. Using the last line of (3.18) we find that

∣∣∣∣∣
∞∑
j=0

Qj

(
d[θ]−i−1u

)(j)

∣∣∣∣∣ ≤ max
j

{
|Qj| · |θ|−iq

j

max
1≤k≤n

{∣∣∣∣ 1

θk
Nk−1
θ

∣∣∣∣}qj · |u|qj
}
, (3.19)
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where | · | is the matrix seminorm defined in §1.2. Let us denote

N0 = max
1≤k≤n

{∣∣∣∣ 1

θk
Nk−1
θ

∣∣∣∣} ,
which equals some constant independent of i and j. Then, the fact that Exp⊗nρ is an entire function

on Cn
∞, implies that the factor

|Qj| · max
1≤k≤n

{∣∣∣∣ 1

θk
Nk−1
θ

∣∣∣∣}qj · |u|qj
goes to zero as j →∞, and thus is bounded independent of j. Thus by (3.19)

∣∣∣∣∣
∞∑
j=0

Qj

(
d[θ]−i−1u

)(j)

∣∣∣∣∣
goes to zero as i → ∞, which proves that E⊗nu ∈ Tn. Further, using the above analysis, we find

that ∣∣∣Qj

(
d[θ]−i−1u

)(j)
∣∣∣→ 0,

as max(i, j) → 0, and thus we are allowed to rearrange the terms of the double sum (3.17) and

maintain convergence in Tn (see [39, §1.2]).

Next, observe that the eigenvalues of the matrix d[θ]−1t are all equal to t/θ, and that ‖t/θ‖ < 1,

and hence by Lemma 3.2.1 we have the geometric series identity in Tn

∞∑
i=0

d[θ]−i−1ti =
(
d[θ](j) − tI

)−1
.
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Using this we rearrange the terms of E⊗nu to get the equality in Tn

E⊗nu =
∞∑
j=0

Qj

(
∞∑
i=0

d[θ]−i−1ti

)(j)

u(j)

=
∞∑
j=0

Qj

(
d[θ](j) − tI

)−1
u(j).

Using the above equation, we see that

G⊗nu =
∞∑
j=0

Qj

(
d[θ](j) − tI

)−1 (
d[η](j) + (y + c1t+ c3)I

)
u(j) ∈ T[y]n. (3.20)

We then observe, using analysis similar to that in (3.18), that for any m ≥ 0 the sum

∞∑
j=0

Qj

(
d[θ](j) − tI

)−1 (
d[η](j) + (y + c1t+ c3)I

)
u(j)

−
m∑
j=0

Qj

(
d[θ](j) − tI

)−1 (
d[η](j) + (y + c1t+ c3)I

)
u(j)

converges for any point (t, y) ∈ U with |t| < |θ|m+1, providing a meromorphic continuation of

G⊗nu to U . We also observe that the only possible poles in each coordinate of

m∑
j=0

Qj

(
d[θ](j) − tI

)−1 (
d[η](j) + (y + c1t+ c3)I

)
u(j) ∈ H(t, y)n (3.21)

occur at ±Ξ(i) for i ≤ m. We calculate that each coordinate of G⊗nu does actually have poles at the

positive twists of Ξ (see the proof of Proposition 3.2.5 for more details). On the other hand, under

the substitution given by negation on E, namely (t, y) 7→ (t,−y − c1t− c3) we see that

(
d[θ](j) − tI

) (
d[η](j) + (y + c1t+ c3)I

)
7→
(
d[θ](j) − tI

) (
d[η](j) − yI

)
,

and so by Lemma 3.2.2 we see that each coordinate of (3.21) is regular at −Ξ(j) for j ≥ 0. Thus

the meromorphic continuation described above has the correct properties.
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Lemma 3.2.4. For u ∈ Cn
∞, we obtain two identities

(a) Dt(G
⊗n
u ) = Exp⊗nρ (d[η]u) + (y + c1t+ c3) Exp⊗nρ (u)

(b) Dy(G
⊗n
u ) =− c1 Exp⊗nρ (d[η]u) + Exp⊗nρ (d[θ2]u) + (t+ c2) Exp⊗nρ (d[θ]u)

+ (t2 + c2t+ c4) Exp⊗nρ (u).

Proof. First observe that

E⊗nd[θ]u = ρ⊗nt (E⊗nu ) =
∞∑
i=0

ρ⊗nt
(
Exp⊗nρ

(
d[θ]−i−1u

))
ti = Exp⊗nρ (u) + tE⊗nu , (3.22)

and thus

Dt(E
⊗n
u ) = Exp⊗nρ (u).

Part (a) of the lemma follows directly from this. For part (b), observe that

ρ⊗ny (E⊗nu ) =
∞∑
i=0

(
Exp⊗nρ

(
d[η]d[θ]−i−1u

))
ti = E⊗nd[η]u,

and so using (1.5)

ρ⊗ny (E⊗nd[η]u) = E⊗nd[η2]u

= Ed[θ3+c2θ2+c4θ+c6−c1θη−c3η]u

= Ed[θ3]u + c2Ed[θ2]u + c4Ed[θ]u + c6Eu − c1Ed[θη]u − c3Ed[η]u

Then substituting in the above equation, canceling and using (1.5) we write

Dy(G
⊗n
u ) = ρy(E

⊗n
d[η]u)− yE⊗nd[η]u + (y + c1t+ c3)E⊗nd[η]u − (y2 + c1ty + c3y)E⊗nu

= Ed[θ3]u + c2Ed[θ2]u + c4Ed[θ]u + c6Eu − c1Ed[θη]u − c3Ed[η]u

+ (c1t+ c3)E⊗nd[η]u − (t3 + c2t
2 + c4t+ c6)E⊗nu
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We then use (3.22) to get part (b) of the lemma.

Define M to be the subring of T[y] consisting of all elements in T[y] which have a meromorphic

continuation to all of U (see [20]). Now define the map

RESΞ : Mn → Cn
∞,

for a vector of functions (z1(t, y), ..., zn(t, y))> ∈Mn as

RESΞ


z1(t, y)

...

zn(t, y)

 =


ResΞ(z1(t, y)λ)

...

ResΞ(zn(t, y)λ)

 , (3.23)

where λ is the invariant differential of E from (1.6). We remark that in defining the maps T and

RESΞ(i) , we were partially inspired by ideas of Sinha in [41, §4.6.6]. We now analyze the residues

of the Anderson generating function G⊗nu under the map RESΞ.

Proposition 3.2.5. If we write u = (u1, ..., un)> ∈ Cn
∞, then

RESΞ(G⊗nu ) = −(u1, ..., un)>.

Proof. Again, for ease of exposition in this proof we will assume that the elliptic curve E has the

simplified Weierstrass equation E : y2 = t3 + At + B for A,B ∈ Fq. The proposition holds for

the more general Weierstrass equation (1.5) and we leave the extra details to the reader. Equation

(3.20) gives

G⊗nu =
∞∑
j=0

Qj

(
d[θ](j) − tI

)−1 (
d[η](j) + yI

)
u(j),

so when we calculate RESΞ(G⊗nu λ), we find that the only possible contributions to the residues

come from the j = 0 term, since
(
d[θ](j) − tI

)−1 is regular at Ξ in each coordinate for j ≥ 1. In
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particular, we find that

RESΞ(G⊗nu ) = RESΞ

(
(d[η] + yI) (d[θ]− tI)−1 u

)
,

and further that

(d[η] + yI) (d[θ]− tI)−1 λ = (d[η] + yI) (d[θ]− tI)−1 · dt
2y

=
1

2
(2d[η]− (d[η]− y)) (d[θ]− tI)−1

(
1

y
− d[η]−1 + d[η]−1

)
dt

=
1

2
(2d[η]− (d[η]− y)) (d[θ]− tI)−1

(
d[η]

y

−1

(d[η]− yI) + d[η]−1

)
dt

(3.24)

After multiplying out the factors in the last line of (3.24), using Lemma 3.2.2 we find that the only

term whose coordinates have poles at Ξ is (d[θ]− t)−1. Thus we see that

(d[η] + yI) (d[θ]− tI)−1 λ = (d[θ]− t)−1dt+ r(t, y)dt,

where r(t, y) ∈ H(t, y)n is some function which is regular at Ξ in each coordinate. Recall the

definition of the matrix

d[θ]− tI =



(θ − t) a1 1 . . . 0

0 (θ − t) a2 . . . 0

0 0 (θ − t) . . . 0

...
...

... . . . ...

0 0 0 . . . (θ − t)


,

where the constants ai ∈ H are from Proposition 2.2.2. Because the matrix is upper triangular, we
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see immediately that the inverse matrix has the form

(d[θ]− tI)−1 =



1
θ−t ∗ ∗ . . . ∗

0 1
θ−t ∗ . . . ∗

0 0 1
θ−t . . . ∗

...
...

... . . . ...

0 0 0 . . . 1
θ−t


,

where each off diagonal entry denoted by ∗ is a sum of the form

n∑
k=k0

dk
(t− θ)k

for k0 ≥ 0 and some (possibly zero) constants dk ∈ H . Using the cofactor expansion of the inverse,

we find that k0 ≥ 2 for each coordinate, and thus the off diagonal entries will not contribute to the

residue. Thus, since t− θ is a uniformizer at Ξ, for some functions ri(t) ∈ H(t, y) which have no

residue at Ξ we find that

RESΞ(G⊗nu ) =


ResΞ

(
( u1

θ−t + r1(t))dt
)

...

ResΞ

(
( un
θ−t + rn(t))dt

)
 = −


u1

...

un

 . (3.25)

Proposition 3.2.6. The composition of maps

RESΞ ◦T : Ω0 → Cn
∞

is an injective A-module homomorphism, where A acts on Ω0 by multiplication and on Cn
∞ by

ρ⊗n, and its image is λ⊗nρ = ker(Exp⊗nρ ).

Proof. The proof follows similarly to the proof of [26, Thm. 4.5]. For an arbitrary h ∈ Ωn, each
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coordinate of T (h) is in T[y], so we can write

T (h) =
∞∑
i=0

bi+1t
i + (y + c1t+ c3)

∞∑
i=0

ci+1t
i

uniquely for bi, ci ∈ Cn
∞. Then using Lemma 3.1.2, we observe that

∞∑
i=0

ρ⊗nt (bi+1)ti + (y + c1t+ c3)
∞∑
i=0

ρ⊗nt (ci+1)ti = ρ⊗nt (T (h))

= tT (h)

=
∞∑
i=0

bi+1t
i+1 + (y + c1t+ c3)

∞∑
i=0

ci+1t
i+1,

from which we see that if we set b0 = c0 = 0, then for i ≥ 0

ρ⊗nt (bi+1) = bi, ρ⊗nt (ci+1) = ci. (3.26)

Similarly we find that for i ≥ 0

ρ⊗ny (ci) = bi. (3.27)

Since |bi|, |ci| → 0 as i → ∞, there is some i0 > 0 such that bi+1 and ci+1 both lie within the

radius of convergence of Log⊗nρ for i > i0. Thus by (2.17) and (3.26), for i > i0 we have

d[θi] Log⊗nρ (bi) = d[θi+1] Log⊗nρ (bi+1), d[θi] Log⊗nρ (ci) = d[θi+1] Log⊗nρ (ci+1),

and we note that these two quantities are independent of i. We set

Πn := d[θi] Log⊗nρ (ci),

for some i > i0, and note that

d[η]Πn = d[η]d[θi] Log⊗nρ (ci) = d[θi]d[η] Log⊗nρ (ci) = d[θi] Log⊗nρ (ρ⊗ny (ci)) = d[θi] Log⊗nρ (bi).
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Using (2.16) together with the above discussion we see that

Exp⊗nρ (Πn) = Exp⊗nρ (d[θi] Log⊗nρ (ci)) = ρ⊗n
ti

(ci) = ρ⊗nt (c1) = c0 = 0,

which implies that Πn ∈ λ⊗nρ . Further, we see that

bi = Exp⊗nρ
(
d[η]d[θ−i]Πn

)
, ci = Exp⊗nρ

(
d[θ−i]Πn

)
,

and thus

T (h) = G⊗nΠn
= E⊗nd[η]Πn

+ (y + c1t+ c3)E⊗nΠn
.

By Proposition 3.2.5, we see that RESΞ(T (h)) = −Πn, and thus RESΞ(T (Ω0)) ⊆ λ⊗nρ . Since

G⊗nΠn
= G⊗nΠ′n

if and only if Πn = Π′n, the map RESΞ ◦T is injective. Finally, let Π′n ∈ λ⊗nρ , so that

Lemma 3.2.4 shows that

Dt(G
⊗n
Π′n

) = Dy(G
⊗n
Π′n

) = 0.

Thus, using Proposition 3.1.7 we find that

(G− E1τ)(G⊗nΠ′n
) = 0,

and hence by Lemma 3.1.3 G⊗nΠ′n
= T (h) for some function h ∈ Ω0. Finally, by Proposition 3.2.5

RESΞ(T (h)) = RESΞ(G⊗nΠ′n
) = Π′n

which shows that λ⊗nρ ⊂ RESΞ(T (Ω0)). To see that RESΞ ◦T is an A-module homomorphism,

for h ∈ Ω0, using the above discussion we find that

RESΞ(T (th)) = RESΞ(tG⊗nΠ′n
),
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for some Π′n ∈ Λ⊗nρ and using analysis similar to that in the proof of Proposition 3.2.5 that

RESΞ(tG⊗nΠ′n
) = RESΞ((t− d[θ])G⊗nΠ′n

+ d[θ]G⊗nΠ′n
) = d[θ] RESΞ(G⊗nΠ′n

) = d[θ] RESΞ(T (h)).

It follows similarly that RESΞ(T (yh)) = d[η] RESΞ(T (h)), which finishes the proof.

Theorem 3.2.7. If we denote

Πn = −RESΞ(T (ωnρ )),

then T (ωnρ ) = G⊗nΠn
and λ⊗nρ = {d[a]Πn | a ∈ A}. Further, if πρ is a fundamental period of the (1-

dimensional) Drinfeld exponential function expρ from (2.9), then the last coordinate of Πn ∈ Cn
∞

is
g1(Ξ)

a1a2 . . . an−1

· πnρ ,

where the constants ai are from Proposition 2.2.2.

Proof. The first two statements follow immediately from Propositions 3.1.10 and 3.2.6. Then

recall from [26] that πρ = −ResΞ(ωρλ), whereupon the last statement follows by noting that the

last coordinate of −RESΞ(T (ωnρ )) equals

−ResΞ(ωnρ gnλ) = −ResΞ

(
(t− θ)n−1ωnρλ

)
·
(

gn
(t− θ)n−1

∣∣∣∣
Ξ

)
= πnρ ·

(
gn

(t− θ)n−1

∣∣∣∣
Ξ

)
,

since (t−θ)n−1ωnρ has a simple pole at Ξ and since gn/(t−θ)n−1 is regular at Ξ. The formula then

follows by dividing the first equation of Proposition 2.2.2 through by gi+1 then evaluating at Ξ to

get
(t− θ)gi
gi+1

∣∣∣∣
Ξ

= ai.
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4. COEFFICIENTS OF EXP AND LOG

4.1 Coefficients of the exponential function

The coefficients of the exponential function for rank 1 sign-normalized Drinfeld modules are

well understood (see (2.7)). Further, the coefficients for the exponential function of the nth tensor

power of the Carlitz module are also well understood. These coefficients were first studied by An-

derson and Thakur in [5, §2.2], and have recently been written down explicitly using hyperderiva-

tives by Papanikolas in [33, 4.3.6]. In this section we give explicit formulas for the coefficients of

the exponential function for the nth tensor power of a rank 1 sign-normalized Drinfeld module.

In order to write down a formula for the coefficients of Exp⊗nρ we must first analyze certain

functions which arise when calculating residues of the vector-valued Anderson generating func-

tions G⊗nu . For a fixed dimension n, for 1 ≤ ` ≤ n and for i ≥ 0, define the functions

γi,` =
g`

(ff (1) . . . f (i−1))n
, (4.1)

where for i = 0 we understand γ0,` = g`. Using (2.2) and (2.12) we see that the polar part of the

divisor of γi,` equals

−n(V (i))− n(Ξ(i−1))− n(Ξ(i−2))− · · · − (n− (`− 1))(Ξ).

We temporarily fix an index `. Using the Riemann-Roch theorem, we observe that we can find

unique functions αj,k with s̃gn(αj,k) = 1 in each of the following 1-dimensional spaces, Further,

using the Riemann-Roch theorem we observe that we can find functions each of the following
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1-dimensional spaces, which we denote

α1,1 ∈ L(n(V (i))− n(Ξ(i)) + (Ξ))

α1,2 ∈ L(n(V (i))− n(Ξ(i)) + 2(Ξ)− (∞))

α1,3 ∈ L(n(V (i))− n(Ξ(i)) + 3(Ξ)− 2(∞))

...

α1,n ∈ L(n(V (i))− n(Ξ(i)) + n(Ξ)− (n− 1)(∞))

α2,1 ∈ L(n(V (i))− n(Ξ(i)) + (Ξ(1)) + n(Ξ)− (n)(∞))

α2,2 ∈ L(n(V (i))− n(Ξ(i)) + 2(Ξ(1)) + n(Ξ)− (n+ 1)(∞))

...

α2,n ∈ L(n(V (i))− n(Ξ(i)) + n(Ξ(1)) + n(Ξ)− (2n− 1)(∞))

...

αi,1 ∈ L(n(V (i))− n(Ξ(i)) + (Ξ(i−1)) + · · ·+ n(Ξ(1)) + n(Ξ)− ((i− 1)n)(∞))

αi,2 ∈ L(n(V (i))− n(Ξ(i)) + 2(Ξ(i−1)) + · · ·+ n(Ξ(1)) + n(Ξ)− ((i− 1)n+ 1)(∞))

...

αi,n ∈ L(n(V (i))− n(Ξ(i)) + n(Ξ(i−1)) + · · ·+ n(Ξ(1)) + n(Ξ)− (in− 1)(∞)).

More succinctly we could write for 1 ≤ j ≤ i and 1 ≤ k ≤ n

αj,k ∈ L(n(V (i))−n(Ξ(i))+k(Ξ(j−1))+n(Ξ(j−2))+· · ·+n(Ξ(1))+n(Ξ)−(n(j−1)+k−1)(∞)).

Then, for appropriate constants dj,k ∈ H we subtract off the principal part of the power series

expansion of g`/(ff (1) . . . f (i−1))n at Ξ(m), for 1 ≤ m ≤ j − 1, to find that

γi,` −
∑
j,k

dj,kαj,k ∈ L
(
n(V (i))

)
= SpanH(g

(i)
1 , g

(i)
2 , . . . , g(i)

n ).
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So for further constants c`,1, · · · , c`,n ∈ H we can write

γi,` = c`,1g
(i)
1 + c`,2g

(i)
2 + . . . c`,ng

(i)
n +

∑
j,k

dj,kαj,k, (4.2)

where we note that each of the functions αj,k vanishes with order n at Ξ(i) and that the coefficients

c`,k are implicitly dependent on i. To ease notation, for each 1 ≤ ` ≤ n we will write α` :=∑
j,k dj,kαj,k and write the equations from (4.2) for 1 ≤ ` ≤ n in matrix form as



γi,1

γi,2
...

γi,n


=



c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n

...
... . . . ...

cn,1 cn,2 . . . cn,n





g1

g2

...

gn



(i)

+



α1

α2

...

αn


(4.3)

with

γi =



γi,1

γi,2
...

γi,n


, Ci = 〈cj,k〉, and αi =



α1

α2

...

αn


,

so that

γi = Cig
(i) + αi. (4.4)

Theorem 4.1.1. With the notation as above, for dimension n ≥ 2 and z ∈ C∞, if we write

Exp⊗nρ (z) =
∞∑
i=0

Qiz
(i),

then for i ≥ 0, the exponential coefficients Qi = Ci and Qi ∈ Matn(H).

Remark 4.1.2. We remark that in the case for n = 1, if one interprets the empty divisors in (2.12)

correctly, then Theorem 4.1.1 still holds. However, for clarity of exposition, we restrict to n ≥ 2.

Before giving the proof of Theorem 4.1.1, we require a lemma about the coefficients of the
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exponential function.

Lemma 4.1.3. Given a sequence of matrices Qi ∈ Matn(H) for i ≥ 0 with Q0 = I , the matrices

Qi are the coefficients of Exp⊗nρ if and only if they satisfy the recurrence relation

M2Q
(1)
i−1 + E1Q

(1)
i−1d[θ](i) = Qid[η](i) − (N1 +Mm)Qid[θ](i) −M1Qi, i ≥ 1. (4.5)

where M1 and M2 are defined in Corollary 3.1.9 and Mm is defined in (3.8). Further, the coeffi-

cients Qi ∈ Matn(H).

Proof. First note that by (2.16)

(ρ⊗ny − (Mτ +Mm)ρ⊗nt )(Exp⊗nρ (z)) = Exp⊗nρ (d[η]z)− (Mτ +Mm) Exp⊗nρ (d[θ]z).

Then, using Corollary 3.1.9,

(M1 +M2τ)(Exp⊗nρ (z)) = Exp⊗nρ (d[η]z)− (Mτ +Mm) Exp⊗nρ (d[θ]z),

and expanding Exp⊗nρ on both sides in terms of its coefficients Qi and equating like terms gives

the equality

M2Q
(1)
i−1 + E1Q

(1)
i−1d[θ](i) = Qid[η](i) − (N1 +Mm)Qid[θ](i) −M1Qi.

Thus the coefficients of the exponential function satisfy the recurrence relation (4.5). Next, for

j ≥ 0, let {Q′j} ⊂ Matn(H) be a sequence of matrices satisfying recurrence relation (4.5). We

will show that {Q′j} is uniquely determined by Q0, and thus if we fix Q0 = I , the matrices {Q′j}

will be the coefficients of Exp⊗nρ . Given a term Q′i−1 of the sequence {Q′j} for i ≥ 1, define

Wi = M2(Q′i−1)(1) + E1(Q′i−1)(1)d[θ](i),
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so that by (4.5)

Wi = Q′id[η](i) − (Mm +N1)Q′id[θ](i) −M1Q
′
i. (4.6)

Then, denote M1 = Md + Mn, where Md is the diagonal part of M1 and Mn is the nilpotent

(super-diagonal) part. Then collect the diagonal and off-diagonal terms of (4.6) to obtain

Wi = (ηq
i

I − θqiMm −Md)Q
′
i +Q′iN

(i)
η − θq

i

N1Q
′
i −MmQ

′
iN

(i)
θ −N1Q

′
iN

(i)
θ −MnQ

′
i, (4.7)

where we recall the definition of Nθ and Nη from (2.23). Next, we denote the matrix MD =

ηq
i
I − θqiMm −Md, and note that it is diagonal and invertible. Define

βi : Matn(H)→ Matn(H)

to be the Fq-linear map given for Y ∈ Matn(H) by

Y 7→M−1
D (Y N (i)

η − θq
i

N1Y −MmY N
(i)
θ −N1Y N

(i)
θ −MnY ). (4.8)

Note that βi is a nilpotent map with order at most 2n − 1, since each matrix in definition (4.8),

except MD, is strictly upper triangular, and thus each term of β2n−1
i will have at least n strictly

upper triangular matrices on either the left or the right of each matrix Y . Then, using the map βi

and rearranging slightly we can rewrite (4.7) as

Q′i + βi(Q
′
i) = M−1

D Wi. (4.9)

Applying βji to (4.9), multiplying by (−1)j , then adding these together for j ≥ 1 gives a telescop-

ing sum. Since βi is nilpotent with order at most 2n− 1, we find

Q′i =
2n−1∑
j=0

(−1)jβji (M
−1
D Wi). (4.10)
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Thus we have determined Q′i uniquely in terms of Q′i−1, and so each element in the sequence {Q′j}

is determined by Q0. If we require that Q0 = I , then the matrices {Q′j} are the coefficients of

Exp⊗nρ . Further, since MD and each matrix in the definition of βi is in Matn(H), we see that the

exponential function coefficients Qi ∈ Matn(H).

We now return to the proof of Theorem (4.1.1).

Proof of Theorem (4.1.1). We first recall that γ0,` = g` and hence by (4.2) we have C0 = I = Q0,

so that the theorem is true trivially for i = 0. We then show that the sequence of matrices {Ci}

satisfies the recurrence in Lemma 4.1.3 for i ≥ 1. First observe that by Proposition 2.2.2

d[θ]g = tg − fnEθg(1) and d[η]g = yg − fnEηg(1), (4.11)

with g defined as in (2.15). Using (4.11), we write

(
M2C

(1)
i−1 + E1C

(1)
i−1d[θ](i) − Cid[η](i) + (N1 +Mm)Cid[θ](i) +M1Ci

)
g(i)

=
(
M2C

(1)
i−1 + tE1C

(1)
i−1 − yCi + t(N1 +Mm)Ci +M1Ci

)
g(i)

−
(
E1C

(1)
i−1E

(i)
θ − CiE

(i)
η + (N1 +Mm)CiE

(i)
θ

)
fng(i).

We examine the first term in the right hand side of the above equation, which we denote

T1 =
(
M2C

(1)
i−1 + tE1C

(1)
i−1 − yCi + t(N1 +Mm)Ci +M1Ci

)
g(i), (4.12)

and the second term, which we denote

T2 =
(
E1C

(1)
i−1E

(i)
θ − CiE

(i)
η + (N1 +Mm)CiE

(i)
θ

)
fng(i), (4.13)
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separately. By the discussion immediately following (4.4) we see that (4.12) equals

T1 = (M2 + tE1)γ
(1)
i−1 + (−yI + t(Mm +N1) +M1)γi + α

(1)
i−1 + αi

= M ′
2γ

(1)
i−1 +M ′

1γi + α
(1)
i−1 + αi,

with M ′
1 and M ′

2 as given in (3.10). Then, writing out the coordinates of γ using the functions γi,`

from (4.1) and finding a common denominator gives

T1 =
1

(ff (1) . . . f (i−1))n

(
M ′

1g +M ′
2f

ng(1) + α
(1)
i−1 + αi

)
=

1

(ff (1) . . . f (i−1))n

(
α

(1)
i−1 + αi

)
,

since M ′
1g + M ′

2f
ng(1) = 0 by (3.11). Thus T1 vanishes coordinate-wise with order at least n

at Ξ(i), because the functions α` from (4.4) each vanish with order at least n at Ξ(i). Further, the

presence of the factored-out fng(i) shows that T2 from (4.13) also vanishes coordinate-wise with

order at least n at Ξ(i). Thus we see that

(
M2C

(1)
i−1 + E1C

(1)
i−1d[θ](i) − Cid[η](i) + (N1 +Mm)Cid[θ](i) +M1Ci

)
g(i)

consists of a constant matrix in Matn(H) multiplied by g(i), and equals a vector of functions

which vanishes coordinate-wise with order at least n at Ξ(i). However, recall from (2.12) that

ordΞ(i)(g
(i)
j ) = j − 1, and thus

(
M2C

(1)
i−1 + E1C

(1)
i−1d[θ](i) − Cid[η](i) + (N1 +Mm)Cid[θ](i) +M1Ci

)
= 0

identically, which proves that {Ci} satisfies the recursion equation (4.5) and proves the proposition.
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Corollary 4.1.4. For z ∈ C∞ we have the formal expression

Exp⊗nρ



z

0

...

0


=



z

0

...

0


+
∞∑
i=0

zq
i

g
(i)
1 (ff (1) . . . f (i−1))n

·



g1

g2

...

gn


∣∣∣∣∣
Ξ(i)

.

Proof. This follows from Theorem 4.1.1 by evaluating (4.2) at Ξ(i), noticing that g(i)
j (Ξ(i)) vanishes

for j ≥ 2, then solving for c`,1.

Remark 4.1.5. Theorem 4.1.1 and Corollary 4.1.4 should be considered generalizations Proposition

2.2.5 of [5] and of the remark that follow it.

Remark 4.1.6. The formulas for the coefficients of Exp⊗nρ in Theorem (4.1.1) may at first seem

quite mysterious and unmotivated. Here we provide an explanation of their origin. From the

calculations in Proposition 3.2.5, one quickly finds that

RESΞ(i)

(
G⊗nΠn

)
= −QiΠ

(i)
n .

On the other hand, by Theorem 3.2.7, we can write

RESΞ(i)

(
G⊗nΠn

)
= RESΞ(i)



ωnρ g1

ωnρ g2

...

ωnρ gn


= RESΞ(i)



(ωnρ )(i)g1/(ff
(1) . . . f (i−1))n

(ωnρ )(i)g2/(ff
(1) . . . f (i−1))n

...

(ωnρ )(i)gn/(ff
(1) . . . f (i−1))n


, (4.14)

where in the second equality we have used (3.14) i times. We then take the expression for the γ`,i
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functions from (4.2) to obtain

−QiΠ
(i)
n = RESΞ(i)



(ωnρ )(i)(c1,1g
(i)
1 + c1,2g

(i)
2 + . . . c1,ng

(i)
n + α1)

(ωnρ )(i)(c2,1g
(i)
1 + c2,2g

(i)
2 + . . . c2,ng

(i)
n + α2)

...

(ωnρ )(i)(cn,1g
(i)
1 + cn,2g

(i)
2 + . . . cn,ng

(i)
n + αn)


.

Since (ωnρ )(i) has a pole of order n at Ξ(i) and since the functions α` vanish with order at least n at

Ξ(i), the α` functions do not factor into the residue calculation and we obtain

−QiΠ
(i)
n = RESΞ(i)



c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n

...
... . . . ...

cn,1 cn,2 . . . cn,n





(ωnρ )(i)g
(i)
1

(ωnρ )(i)g
(i)
2

...

(ωnρ )(i)g
(i)
n


= −



c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n

...
... . . . ...

cn,1 cn,2 . . . cn,n


· Π(i)

n .

The functions f and gi are all defined over H and thus so are the coefficients cj,k. So, if we knew

that the coordinates of the Πn were linearly independent over H , then we would have the equality

Qi = 〈cj,k〉. Such results of linear independence, however, are in general quite difficult, and to

the knowledge of the author, this particular result is not yet known. Thus this line of reasoning

motivates the formulas for Qi, but we must prove it using the methods given above.

Remark 4.1.7. Note that for n = 1, the τ -basis from Proposition 2.1.3 consists of the single

constant function {1}. Thus we can apply the discussion from Remark 4.1.6 to the case for 1-

dimensional Drinfeld A-modules with the notation outlined in §2.1 and we find that

ResΞ(i)(Gπρ) = − 1

di
π(i)
ρ ,

while on the other hand

ResΞ(i)(Gπρ) = ResΞ(i)(ωρ) = ResΞ(i)

(
ω

(i)
ρ

ff (1) . . . f (i−1)

)
.
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Then, because Gπρ = ωρ has simple poles at the twists of Ξ,

ResΞ(i)

(
ω

(i)
ρ

ff (1) . . . f (i−1)

)
= ResΞ(i)(ω(i)

ρ ) · 1

ff (1) . . . f (i−1)

∣∣∣∣
Ξ(i)

= −π(i)
ρ ·

1

ff (1) . . . f (i−1)

∣∣∣∣
Ξ(i)

.

Since n = 1, there is no issue of linear independence of the coordinates of πρ, and we recover (2.7)

without resorting to the methods set out in the proof of Theorem 4.1.1.

4.2 Coefficients of the logarithm function

The coefficients for the logarithm function associated to a rank 1 sign-normalized Drinfeld

module were first studied by Anderson (see [45, Prop. 0.3.8]) and are described in (2.8). The

coefficients for the logarithm associated to the nth tensor power of the Carlitz module were studied

by Anderson and Thakur, who give formulas for the lower right entry of these matrix coefficients

in [5, §2.1]. Recently, Papanikolas has written down explicit formulas using hyperderivatives in

[33, 4.3.1 and Prop. 4.3.6(a)]. In this section we develop new techniques to write down explicit

formulas for the coefficients of the logarithm function Log⊗nρ associated to the nth tensor power of

rank 1 sign-normalized Drinfeld modules. Our method was inspired by ideas of Sinha from [41]

(see in particular his “main diagram" in section 4.2.3). However, where Sinha uses homological

constructions to prove the commutativity of his diagram, we take a more direct approach using

Anderson generating functions for ours.

We define the following diagram of maps, where we recall the definition of M from (3.23) and

of Ω from (3.1)
Ω

τ−fn
> N

ε
> Cn

∞

Mn

T

∨ −RESΞ
> Cn

∞

Exp⊗nρ

>
(4.15)

and where the maps ε, T and RESΞ are defined in (2.25), (3.3) and (3.23) respectively. We remark

that using the operator τ − fn one quickly sees that Ω ⊂M.

One of the main goals of this section is to prove that the diagram commutes. Before we prove

this, however, observe that if u ∈ Cn
∞ is not a period of Exp⊗nρ , thenG⊗nu ∈Mn is not in the image
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of Ω under T in diagram 4.15. We require a preliminary result which allows us to modify G⊗nu to

be in the image of T . For u ∈ Cn
∞, write the coordinates of G⊗nu from (3.16) as

G⊗nu (t, y) = (k1(t, y), k2(t, y), . . . , kn(t, y))>,

and then define the vector

k = (k1([n]V ), k2(V (1) + [n− 1]V ), k3([2]V (1) + [n− 2]V ), . . . , kn([n− 1]V (1) + V ))>.

Next we define the vector valued function

J⊗nu := (j1(t, y), j2(t, y), . . . , jn(t, y))> := G⊗nu − k, (4.16)

and note that jk vanishes at the point [k − 1]V (1) + [n− k + 1]V . Also denote

w := (w1(t, y), w2(t, y), . . . , wn(t, y))> := (G− E1τ)(J⊗nu ) ∈ T(y)n,

where G− E1τ is the operator defined in (3.4), and let z := Exp⊗nρ (u) and denote its coordinates

z := (z1, z2, . . . , zn)>.

Proposition 4.2.1. The vector w is in H[t, y]n and equals

w =



z1 · (t− t(V (1) + [n− 1]V ))

z2 · (t− t([2]V (1) + [n− 2]V ))

...

zn−1 · (t− t([n− 1]V (1) + [1]V ))

zn · (t− t([n]V (1)))


.
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Proof. By Proposition 3.1.7, Proposition 3.2.4 and (2.16) we write

w′ :=(w′1(t, y), w′2(t, y), . . . , w′n(t, y))> := (G− E1τ)(G⊗nu ) (4.17)

=M−1
δ

[
− c1ρ

⊗n
y (z) + ρ⊗nt2 (z) + (t+ c2)ρ⊗nt (z)

+ (t2 + c2t+ c4)z− (Mτ +Mm)(ρ⊗ny (z) + (y + c1t+ c3)z)
]
.

In particular, from the last line of the above equation we see that w′ is a vector of rational functions

in the spaceH(t, y). Further, for each rational functionw′i, the highest degree term in the numerator

is zkt2 and the highest degree term in the denominator is t (coming from the matrix M−1
δ ). Thus

each w′i is a rational function in H(t, y) of degree 2 (recall the deg(t) = 2) with s̃gn(w′i) = zk. We

also observe that

(G− E1τ)(k) ∈ H(t, y)

and that each coordinate has degree 1. This implies that each wi is inH(t, y) and has degree 2 with

s̃gn(wi) = zk. Writing out the action of G − E1τ on the coordinates of J⊗nu we obtain equations

for 1 ≤ m ≤ n

jm
gm+1

gm
− jm+1 = wm. (4.18)

From (3.4), (3.7) and (4.17) we see that the only points at which wk might have poles are the zeros

of δk, namely the points

[k − 1]V (1) + [n− k + 1]V and [−(k − 1)]V (1) − [n− k + 1]V.

We remark that this shows that the coordinates of w are regular at Ξ(i) for i ≥ 0, even though the

coordinates of J⊗nu themselves have poles at Ξ(i). Recall from Proposition 3.2.3 that the only poles

of jk occur at∞ and Ξ(i) for i ≥ 0 and from (4.16) that jk vanishes at [k− 1]V (1) + [n− k+ 1]V ,

while from (3.6) we observe that gk+1/gk is regular away from infinity except for a simple pole

at [k − 1]V (1) + [n − k + 1]V . Therefore, the equations in (4.18) show that each coordinate wk

is regular at the points [k − 1]V (1) + [n − k + 1]V and [−(k − 1)]V (1) − [n − k + 1]V . Thus,
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the coordinates wk, being rational functions of degree 2 in H(t, y), which are regular away from

∞, are actually in H[t, y]. Further, we see from (4.18) that each function wk vanishes at the point

[k]V (1) + [n− k]V . Since we know that s̃gn(wi) = zk, and since we’ve identified one of the zeros

of wi, we find using the Riemann-Roch theorem that wk = zk(t− t([k]V (1) + [n− k]V ).

Theorem 4.2.2. Diagram (4.15) commutes. In other words, for h ∈ Ω, if we let

(τ − fn)(h) = g ∈ N

and let −RESΞ(T (h)) = u, then we have ε(g) = Exp⊗nρ (u).

Proof. First observe that the case for n = 1 is proved in Theorem 5.1 of [26]. For the rest of the

proof, assume n ≥ 2. Write deg(g) = mn + b with 0 ≤ b ≤ q − 1 and write g in the σ-basis for

N described in Proposition 2.1.3 with coefficients b(−i)
j,i ∈ H as

g =
m∑
i=0

n∑
j=1

b
(−i)
j,i (ff (−1) . . . f (1−i))nh

(−i)
n−j+1, (4.19)

where we denote bi = (b1,i, b2,i, . . . , bn,i)
>, and note that

ε(g) = b0 + b1 + · · ·+ bm. (4.20)

For 0 ≤ i ≤ m let ui be any element in C∞ such that

Exp⊗nρ (ui) = bi, (4.21)

The main method for the proof of Theorem 4.2.2 is to write T (h) in terms of Anderson gen-

erating functions. To do this we compare the result of T (h) under the operator G − E1τ with the

result of J⊗nui
under G− E1τ for 0 ≤ i ≤ m.
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By the definition (3.4) we see that for any γ ∈ C∞(t, y)

(G− E1τ)(T (γ)) = (0, . . . , 0, g
(1)
1 (fnγ − γ(1)))>. (4.22)

Since fnh− h(1) = g, using the notation of (4.19) we can write

(G− E1τ)(T (h)) = (0, . . . , 0, g
(1)
1

m∑
i=0

n∑
j=1

b
(−i)
j,n−i+1(ff (−1) . . . f (1−j))nh

(−j)
i )>. (4.23)

Next, we analyze (G− E1τ)(Jui) for 0 ≤ i ≤ m. For the equations in (4.18), if we set i = 1,

then we can solve for j2. We then substitute that into the equation for i = 2, then solve that for j3,

and so on to get equations for 2 ≤ m ≤ n

j1
gm+1

g1

− jm+1 = wm + wm−1
gm+1

gn
+ wn−2

gm+1

gn−1

+ · · ·+ w1
gm+1

g2

, (4.24)

where we understand jn+1 = j
(1)
1 . We note that the functions jk and wk depend implicitly on ui.

Using these equations we find that

J⊗nui
+

(
0, w1, w2 + w1

g3

g2

, . . . , wn−1 + wn−2
gn
g2

+ · · ·+ w1
gn
gn−1

)>
= T (j1/g1) . (4.25)

In general we will call I⊗nui
:= T (j1/g1), noting the implicit dependence on ui. Then by (4.22)

and by (4.24) with m = n we find

(G− E1τ)(I⊗nui
) =

(
0, . . . , 0, wn + wn−1

g
(1)
1 fn

gn
+ wn−2

g
(1)
1 fn

gn−1

+ · · ·+ w1
g

(1)
1 fn

g2

)>
. (4.26)

Denote the entry in the nth coordinate of the last equation as

`ui := wn + wn−1
g

(1)
1 fn

gn
+ wn−2

g
(1)
1 fn

gn−1

+ · · ·+ w1
g

(1)
1 fn

g2

,
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so that we can restate (4.24) with m = n as

j1g
(1)
1 fn

g1

= j
(1)
1 + `ui . (4.27)

Observe then by Lemma 2.1.5 and by Proposition 4.2.1 for 1 ≤ k ≤ n that

wn−k+1
g

(1)
1 fn

gn−k+2

= bn−k+1,ig
(1)
1 hk,

so (4.26) becomes

(G− E1τ)(I⊗nui
) =

(
0, . . . , 0, g

(1)
1 (bn,ih1 + bn−1,ih2 + · · ·+ b1,ihn)

)>
For the vector ui from (4.21), denote

hui = bn,ih1 + bn−1,ih2 + · · ·+ b1,ihn, (4.28)

and notice that `ui = g
(1)
1 hui . Specializing the above discussion to i = 0, we see that the nth

coordinate of (G − E1τ)(I⊗nu0
) matches up with the first n terms of the nth coordinate of (G −

E1τ)(T (h)) from (4.23).

In general for i > 0 we find that

(f (−1)f (−2) . . . f (−k))ndiag

(
g1

g
(−k)
1

, . . . ,
gn

g
(−k)
n

)
(I⊗nui

)(−k) = T

((
(ff (1) . . . f (k−1))nj1

g1

)(−k)
)
,

and to ease notation, for k ≥ 1 let us denote the matrix

Rk := (f (−1)f (−2) . . . f (−k))ndiag

(
g1

g
(−k)
1

, . . . ,
gn

g
(−k)
n

)
.
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Then we use (4.27) k times and apply the fact that T is linear to obtain

Rk(I
⊗n
ui

)(−k) = T

((
(ff (1) . . . f (k))nj1

g1

)(−k)
)

= I⊗nui
+ T

(
`

(−1)
ui

g1

)
+ · · ·+ T

(
(f (1) . . . f (−1))n`

(−k)
ui

g
(1−k)
1

)
.

(4.29)

Then, if we let the operator (G−E1τ) act on Rk(I
⊗n
ui

)(−k), applying (4.22) to the last line of (4.29)

we obtain a telescoping sum, and find that

(G− E1τ)(Rk(I
⊗n
ui

)(−k)) =
(

0, . . . , 0, g
(1)
1 (ff (−1) . . . f (1−k))nh(−k)

ui

)>
,

for hui defined in (4.28). Note again that the terms in the last coordinate of the above vector are

exactly the in+ 1 through (i+ 1)n terms of the last coordinate of (4.23).

Also, note that each term in the last line in (4.29) is coordinate-wise regular at Ξ except I⊗nui
,

so

RESΞ(Rk(I
⊗n
ui

)(−k)) = RESΞ(I⊗nui
).

Then, recalling that each function wk and each quotient jk+m/jk for 1 ≤ k,m ≤ n is regular at Ξ,

using definitions (4.16) and (4.25) together with Proposition 3.2.5 we see that

RESΞ(I⊗nui
) = RESΞ(J⊗nui

) = RESΞ(G⊗nui
) = −ui. (4.30)

Next, define

I = I⊗nu0
+R1I

⊗n
u1

+ · · ·+RmI
⊗n
um ,

and observe by the above discussion that

(G− E1τ)(T (h)− I) = 0.

Further, for h′ ∈ Ω, by Lemma 3.1.3 (G− E1τ)(T (h′)) = 0 if and only if h′ ∈ Ω0. Since I is the

66



sum of elements in the image of the map T , we see that T (h)− I is itself in the image of the map

T . Thus there is some h′ ∈ Ω0 such that T (h′) = T (h)− I. Then, Proposition 3.1.10 together with

Theorem 3.2.7 implies that for some b ∈ Fq[t, y]

T (h)− I = T (h′) = bG⊗nΠn
.

Finally, by (4.30), we calculate that

u = −RESΞ(T (h)) = −RESΞ(I + bG⊗nΠn
) = u0 + · · ·+ um + bΠn,

and thus by (4.20) and (4.21) we obtain

Exp⊗nρ (u) = Exp⊗nρ (u0 + · · ·+ um + bΠn) = b0 + · · ·+ bm = ε(g).

Having proven that diagram (4.15) commutes, we now apply the maps from the diagram to

write down formulas for the coefficients of Log⊗nρ . First, for dj ∈ C∞ define the function

c(t, y) = dnh1 + · · ·+ d1hn ∈ N ⊂ A, (4.31)

where hj are from Proposition 2.1.3. Then define the formal sum

B(t, y;d) = −
∞∑
i=0

c(i)

(ff (1)f (2) . . . f (i))n
(4.32)

for the vector d = (d1, . . . dn)> ∈ Cn
∞. We remark that B(t, y;d) is similar to the function Lα(t)

defined by Papanikolas in [34, §6.1] (see also [16, 3.1.2]).

Lemma 4.2.3. There exists a constant C0 > 0 such that for |dj| ≤ C0, the function B is a rigid

analytic function in Γ(U,OE(n(Ξ))), the space of rigid analytic functions on U with at most a pole
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of order n at Ξ.

Proof. Using (2.3) together with the facts that deg(θ) = deg(α) = 2, deg(η) = 3 and deg(m) = q,

for k ≥ 1 we find that f (k) ∈ Tθ[y] and

∥∥f (k)
∥∥
θ

= qq
k+1

.

This implies that ∥∥∥∥ c(t, y)(i)

f (1) . . . f (i)

∥∥∥∥
θ

= ‖c(t, y)‖q
i

θ · q(
−n(qi+2−q2)/(q−1)). (4.33)

Since each hi ∈ A, we see that ‖hi‖θ is finite, and thus we can choose C0 > 0 small enough such

that for all dj ∈ C∞ with |dj| ≤ C0 the norm

∥∥∥∥ c(t, y)(i)

f (1) . . . f (i)

∥∥∥∥
θ

→ 0

as i→∞. This guarantees that for such dj , the function

∞∑
i=0

c(i)

(f (1)f (2) . . . f (i))n
∈ Tθ[y].

To finish the proof, we simply note that

B = − 1

fn
·
∞∑
i=0

c(i)

(f (1)f (2) . . . f (i))n
.

Theorem 4.2.4. For z ∈ Cn
∞ inside the radius of convegence of Log⊗nρ , if we write

Log⊗nρ (z) =
∞∑
i=0

Piz
(i),
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for n ≥ 2, then for λ the invariant differential defined in (1.6)

Pi =

〈
ResΞ

(
gjh

(i)
n−k+1

(ff (1) . . . f (i))n
λ

)〉
1≤j,k≤n

(4.34)

and Pi ∈ Matn(H) for i ≥ 0.

Remark 4.2.5. As for Theorem 4.1.1, we remark that the above theorem holds for n = 1, but again

for ease of exposition in the proof we restrict to the case of n ≥ 2.

Proof. One quickly observes from the definition ofB, that (τ−fn)(B) = c(t, y), and thusB ∈ Ω.

Denote u := −RESΞ(T (B)), so that by Theorem 4.2.2 combined with the definition of the map ε

in (4.20) and (4.31)

Exp⊗nρ (u) = ε(c(t, y)) = (d1, d2, . . . , dn)>.

We wish to switch our viewpoint to thinking about −RESΞ(T (B)) as a vector-valued function

with input (d1, . . . , dn)> , |di| < C0, where C0 is the constant defined in Lemma 4.2.3. For D0 the

hyper-disk in Cn
∞ of radius C0, we define B̃ : D0 → Cn

∞, for d ∈ D0, as

B̃(d) = −RESΞ(T (B(t, y;d)).

From the above discussion, we find that

Exp⊗nρ ◦ B̃ : D0 → Cn
∞

is the identity function. Writing out the definition for B̃ gives

B̃ = −


ResΞ(Bg1λ)

...

ResΞ(Bgnλ)

 =


ResΞ(

∑∞
i=0

∑n
j=1

(djhn−j+1)(i)

(ff (1)f (2)...f (i))n
g1λ)

...

ResΞ(
∑∞

i=0

∑n
j=1

(djhn−j+1)(i)

(ff (1)f (2)...f (i))n
gnλ)

 , (4.35)
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which we can express as an Fq-linear power series with matrix coefficients

B̃ =
∞∑
i=0

〈
ResΞ

(
gjh

(i)
n−k+1

(ff (1) . . . f (i))n
λ

)〉
1≤j,k≤n


d1

...

dn


(i)

.

We conclude that Exp⊗nρ ◦ B̃ is an Fq-linear power series which as a function on D0 is the identity.

Recall that Log⊗nρ is the functional inverse of Exp⊗nρ on the disk with radius rL. Thus, on the disk

with radius min(C0, rL) we have the functional identity

B̃ = Log⊗nρ .

Comparing the coefficients of the above expression, and recalling that f , gi and hi are defined over

H finishes the proof.

Corollary 4.2.6. For the coefficients Pi for i ≥ 0 of the function Log⊗nρ , the bottom row of Pi can

be written as 〈
h

(i)
n−k+1

h1(f (1) . . . f (i))n

∣∣∣∣
Ξ

〉
1≤k≤n

. (4.36)

Proof. Recall from (2.12) and (2.13) that ordΞ(gj) = ordΞ(hj) = j − 1 and from (2.2) that

ordΞ(f) = 1. This implies that, for i = 0, each coordinate of the bottom row of the matrix (4.34)

is regular at Ξ except the last coordinate, which equals

Res

(
gnh1

fn
λ

)
= h1(Ξ) · ResΞ

(
gn
fn
λ

)
.

Using Lemma 2.1.5, and observing that h1 is regular at Ξ and that t − θ is a uniformizer at Ξ, a

short calculation gives

ResΞ

(
gn
fn
λ

)
= ResΞ

(
δn
h2

λ

)
= ResΞ

(
−νn ◦ [−1]

h1(t− θ)
λ

)
= −νn(−Ξ)

h1(Ξ)
· 1

2η + c1θ + c3

,
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where [−1] : E → E denotes negation on E. Finally, one calculates from the definition of νn from

(3.7) that νn(−Ξ) = −2η − c1θ − c3, which implies that

ResΞ

(
gn
fn
λ

)
=

1

h1(Ξ)
. (4.37)

Thus, for i = 0, the bottom row of (4.34) equals (0, . . . , 0, 1), which is the bottom row of Q0 = I .

Then, for i ≥ 1 note that the only functions in the bottom row of (4.34) which have zeros or

poles at Ξ are gn and fn, and that the quotient gn/fn has a simple pole at Ξ, thus

ResΞ

(
gnh

(i)
n−k+1

(ff (1) . . . f (i))n
λ

)
=

h
(i)
n−k+1

(f (1) . . . f (i))n

∣∣∣∣
Ξ

ResΞ

(
gn
fn
λ

)
,

which completes the proof using (4.37).

Remark 4.2.7. Theorem 4.2.4 and Corollary 4.2.6 should be compared with the middle and last

equalities in (2.8), respectively.

Remark 4.2.8. It is natural to ask about the relationship between the coefficients of Log⊗nρ and the

Carlitz polylogarithm as defined by Anderson and Thakur at the end of §2.1 in [5]. Define the mth

polylogarithm associated to the Anderson A-module ρ by setting

logm,ρ(z) = z +
∑
i≥1

1

`i,m
zq

i

= z +
∑
i≥1

1

(f (1) . . . f (i))m

∣∣∣∣
Ξ

· zqi . (4.38)

Then, using Corollary 4.2.6 we see that the bottom coordinate of Log⊗nρ can be written in terms of

the nth polylogarithm function as

Log⊗nρ



z1

z2

...

zn


=



z1

z2

...

zn


+



∗
...

∗∑n
k=1

logn,ρ(hn−k+1zk)

h1

∣∣∣∣
Ξ


. (4.39)
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5. ZETA VALUES

5.1 Zeta values

In [5], Anderson and Thakur analyze the lower right coordinate of the coefficient Pi of the

logarithm function for tensor powers of the Carlitz module to obtain formulas similar to the ones

we have provided in §4.2. They then define a polylogarithm function and use their formulas to

relate this to zeta values,

ζ(n) =
∑
a∈Fq [θ]

sgn(a)=1

1

an
,

for all n ≥ 1. In this section, we prove a similar theorem for tensor powers of Drinfeld A-

modules, but at the present it is unclear how to generalize the special polynomials which Anderson

and Thakur used in their proof (the now eponymous Anderson-Thakur polynomials) to tensor

powers of A-modules, and so we developed new techniques. Presently, we only consider values of

n ≤ q − 1 because these allow us to appeal to formulas from [26].

Remark 5.1.1. We remark that Anglès, Pellarin, Taveres Ribeiro and Perkins develop a multivari-

able version of L-series in [7], [8], [36] and [37] and that such considerations could possibly enable

one to obtain formulas for all zeta values; this is an area of ongoing study.

To define a zeta function for a rank 1 sign-normalized Drinfeld module ρ : A→ H[τ ], we first

define the left ideal of H[τ ] for an ideal a ⊆ A by

Ja = 〈ρa | a ∈ a〉 ⊆ H[τ ],

where we recall that a = χ(a) from §1.2. Since H[τ ] is a left principal ideal domain [24,

Cor. 1.6.3], there is a unique monic generator ρa ∈ Ja, and we define ∂(ρa) to be the constant

term of ρa with respect to τ . Let φa ∈ Gal(H/K) denote the Artin automorphism associated to a,

and let the B be the integral closure of A in H . We define the zeta function associated to ρ twisted
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by the parameter b ∈ B to be

ζρ(b; s) :=
∑
a⊆A

bφa

∂(ρa)s
, (5.1)

Theorem 5.1.2. For b ∈ B and for n ≤ q − 1, there exists a vector (∗, . . . , ∗, Cζρ(b;n))> ∈ Cn
∞

such that

d := Exp⊗nρ



∗
...

∗

Cζρ(b;n)


∈ Hn,

where C = (−1)n+1h1(−Ξ)

θ−t([n]V (1))
∈ H .

Remark 5.1.3. We remark that the vector d is explicitly computable as outlined in the proof of

Theorem 5.1.2.

Remark 5.1.4. One would like to be able to express the above theorem in terms of evaluating Log⊗nρ

at a special point and then getting a vector with ζρ(n) as its bottom coordinate, as is done in [5].

However, one discovers that d is not necessarily within the radius of convergence of Log⊗nρ , and

in fact d can be quite large! It is possible that one could use Thakur’s idea from [44, Thm. VI] to

decompose d into small pieces which are each individually inside the radius of convergence of the

logarithm for specific examples.

Before giving the proof of Theorem 5.1.2 we require several additional definitions and pre-

liminary results. First, we denote H as the Hilbert class field of K (which is the fraction field

of A), and denote Gal(H/K) as the Galois group of H over K. Then we observe that elements

φ ∈ Gal(H/K) act on elements in the compositum field HH by applying φ to elements of H and

ignoring elements of H . We also define the (isomorphic) Galois group Gal(H/K) and observe

that elements φ ∈ Gal(H/K) act on the compositum field HH by applying φ to elements of H

and ignoring elements of H. Let p ⊆ A be a degree 1 prime ideal, to which there is an associated

point P = (t0, y0) ∈ E(Fq) such that p = (θ − t0, η − y0), and let φ = φp ∈ Gal(H/K) denote
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the Artin automorphism associated to p via class field theory. Define the power sums

Si(s) =
∑
a∈Ai+

1

as
, Sp,i(s) =

∑
a∈pi+

1

as
, (5.2)

where A+ is the set of monic elements of A and Ai+ is the set of monic, degree i elements of A.

Then define the sums

Z(1)(b; s) = b
∑
i≥0

Si(s) = b
∑
A+

1

as
, Zp(b; s) = bφ

−1

(−f(P )φ
−1

)s
∑
a∈p+

1

as
. (5.3)

We next prove a proposition which allows us to connect ζρ(b; s) to the sums given above. Much

of our analysis follows similarly to that in [26, §7-8], and we will appeal to it frequently throughout

the remainder of the section.

Proposition 5.1.5. Let pk for 2 ≤ k ≤ h be the degree 1 prime ideals as described above which

represent the non-trivial ideal classes of A where h is the class number of A and set p1 = (1).

Then, for s ∈ Z we can write the zeta function

ζρ(b; s) = Zp1(b; s) + · · ·+ Zph(b; s).

Proof. Define the sum

Z̃pk(b; s) =
∑
a∼pk

bφa

∂(ρa)s
,

where the sum is over integral ideals a equivalent to pk in the class group of A, and observe

ζρ =
h∑
k=1

Z̃pk .

Then, for 1 ≤ k ≤ h, the fact that Z̃pk(b; s) = Zpk(b; s) follows from slight modifications to

equations (98)-(100) and Lemma 7.10 from [26].

Now, we let {wi}∞i=2 (the reader should not confuse these with the coordinates wi of w from
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§4.2) be the sequence of linear functions with s̃gn(wi) = 1 and divisor

div(wi) = (V (i−1) − V ) + (−V (i−1)) + (V )− 3(∞) (5.4)

and let {wp,i}∞i=2 be the sequence of functions with s̃gn(wp,i) = 1 and divisor

div(wp,i) = (V (i−2) − V − P ) + (−V (i−2)) + (V ) + (P )− 4(∞). (5.5)

We now extend Theorem 6.5 from [26] to values 1 ≤ s ≤ q − 1, where we recall the definition of

ν(t, y) from (2.4).

Proposition 5.1.6. For 1 ≤ s ≤ q − 1 we find

Si(s) =

(
ν(i)

w
(1)
i · f (1) · · · f (i)

)s ∣∣∣∣∣
Ξ

, Sp,i(s) =

(
ν(i−1)

w
(1)
p,i · f (1) · · · f (i−1)

)s ∣∣∣∣∣
Ξ

.

Proof. The proof of this proposition involves a minor alteration to the proof given for Proposition

6.5 in [26]. Namely, for the deformation Ri,s(t, y) one sets s = m (rather than s = q− 1 as is done

in [26]) then one solves for Si(q −m) and sets s = q −m to obtain the formula given above. The

proof for Sp,i(s) is similar.

Using equations (82) and (117) from [26] we see that

δ(1)

w
(1)
i

∣∣∣∣
Ξ

=
f

t− θ

∣∣∣∣
V (i)

=
f(V (i))

−δ(i)(Ξ)
,

which inspires the definition

G :=
β + β + c1α + c3

α− α
− β

q
+ β + c1α + c3

αq − α
, (5.6)

where we recall that V = (α, β) from (2.1), that ci ∈ Fq are from (1.5) and for x ∈ H that

75



x = χ(x) as in (1.7). Observe by (2.3) that G(i)(Ξ) = f(V (i)) and hence

δ(1)

w
(1)
i

∣∣∣∣
Ξ

= −
(
G

δ

)(i) ∣∣∣∣
Ξ

. (5.7)

Finally, we define

G̃b =
∑

φ∈Gal(H/K)

b
φ
(Gφ)n.

Proposition 5.1.7. We have fnG̃b ∈ N , where N is the dual A-motive from (2.10) and fnG̃b ∈

H[t, y].

Proof. Our function G equals the function F from [26, (125)] (there they set φ = α and ψ = β),

and so our function G̃b differs from the function gb from [26, (126)] only by the nth power in our

definition. The proof of this theorem follows as in the proof of Theorem 8.7 from [26], replacing

F by Gn and multiplying the divisors by a factor of n where appropriate. We arrive at the statement

that the polar divisor of G̃b equals −n(Ξ) − (nq − deg(b))(∞), and that G̃b vanishes with degree

at least n at V so that fn · G̃ ∈ N as desired. Finally, since the coefficients of f and G are all in H ,

we conclude that fnG̃b ∈ H[t, y].

We are now equipped to give the proof of Theorem 5.1.2.

Proof of Theorem 5.1.2. Our starting point is Proposition 5.1.5,

ζρ(b; s) = Zp1(b; s) + · · ·+ Zph(b; s) (5.8)

where we recall that for a degree 1 prime ideal p and its associated Galois automorphism φ

Zp(b;n) = bφ
−1

(−f(P )φ
−1

)n
∑
a∈p+

1

an
= bφ

−1

(−f(P )φ
−1

)n
∞∑
i=0

Sp,i(n). (5.9)

If we let [−1] denote the negation isogeny on E, by comparing divisors and leading terms of the
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functions in (2.4) and (2.13) we find

(δ(1))n =
(−1)n+1(h1)(h1 ◦ [−1])

t− t([n]V (1))
. (5.10)

We will denote C = (−1)n+1(h1◦[−1])

t−t([n]V (1))

∣∣∣∣
Ξ

∈ H . Combining (5.3), Proposition 5.1.6, (5.7) and (5.10)

we find

Z(1)(b;n) =
∞∑
i=0

b
(

(−fG)(i)
)n

C · h1 (f (1) · · · f (i))
n

∣∣∣∣∣
Ξ

. (5.11)

Next, we temporarily fix a prime p = pk for 2 ≤ k ≤ h. The combination of equations (86)

and (118) and Lemma 7.12 from [26] gives

1

w
(1)
p,i+1

= − f
φ−1

t− θ

∣∣∣∣
V (i)

· 1

δ(1)(Ξ)
· 1

f(P )φ−1 = fφ
−1

∣∣∣∣
V (i)

· 1

δ(1)(Ξ)δ(i)(Ξ)
· 1

f(P )φ−1 , (5.12)

since t − θ(V (i)) = −δ(i)(Ξ). Then, (5.9) and Proposition 5.1.6 together with (5.12) and the fact

that Sp,0 = 0 gives

Zp(b;n) = (−1)nbφ
−1
∞∑
i=0

(
f (i)

δ(1)f (1) · · · f (i)

)n ∣∣∣∣∣
Ξ

·
(
fφ
−1
)n ∣∣∣∣

V (i)

(5.13)

We observe by (2.3) and (5.6) that fφ−1(
V (i)

)
=
(
Gφ
−1)(i)

(Ξ) and so by (5.10) this gives

Zp(b;n) =
∞∑
i=0

b
φ
−1 (

(−fGφ
−1

)n
)(i)

Ch1 (f (1) · · · f (i))
n

∣∣∣∣∣
Ξ

. (5.14)

Therefore, returning to (5.8) we see by (5.11) and (5.14) that

ζρ(b;n) =
∞∑
i=0

∑
φ∈Gal(H/K)

b
φ
(

(−fGφ)n
)(i)

Ch1 (f (1) · · · f (i))
n

∣∣∣∣∣
Ξ

=
∞∑
i=0

(
(−1)nfnG̃b

)(i)

Ch1 (f (1) · · · f (i))
n

∣∣∣∣∣
Ξ

. (5.15)

From the proof of Proposition 5.1.7 we see that deg(fnG̃b) = n(q + 1) + deg(b) and from (2.14)
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that deg(σj(hk)) = n(j + 1) + k. Let us write deg(b) = en + b′ where 0 ≤ b′ ≤ n − 1 so that

deg(fnG̃b) = n(q + e + 1) + b′. Since (−1)n(f G̃b)
n ∈ N by Proposition 5.1.7, we can express it

in terms of the basis from Proposition 2.1.3 with coefficients dk,j ∈ K,

(−1)nfnG̃b =

q+e∑
j=0

n∑
k=1

dk,jσ
j(hn−k+1) =

q+e∑
j=0

n∑
k=1

dk,j(ff
(−1) . . . f (1−j))nh

(−j)
n−k+1, (5.16)

where we comment that dk,q+e = 0 for k > b′. Since (−1)nfnG̃b ∈ H[t, y] by Proposition 5.1.7,

a short calculation involving evaluating (5.16) at Ξ(k) for 0 ≤ k ≤ q + e shows that d(j)
k,j ∈ H .

Substituting formula (5.16) into (5.15) and recalling that f(Ξ) = 0 gives

ζρ(b;n) =
∞∑
i=0

∑min(i,q+e)
j=0

∑n
k=1 d

(i)
k,jh

(i−j)
n−k+1

C · h1 (f (1) · · · f (i−j))
n

∣∣∣∣∣
Ξ

.

We observe that the terms of the above sum are the bottom row of the coefficients Pi for i ≥ 0

of Log⊗nρ from Corollary 4.2.6 up to the factor of d(i)
k,j/C. Then, since Log⊗nρ is the inverse power

series of Exp⊗nρ , if we label dj = (d1,j, . . . , dn,j)
> ∈ Kn

for 0 ≤ j ≤ q + e and sum over i ≥ 0,

then we find that there exists some vector (∗, . . . , ∗, Cζρ(b;n))>) such that

(
d0 + d

(1)
1 + · · ·+ d

(q+e)
q+e

)
= Exp⊗nρ



∗
...

∗

Cζρ(b;n)


∈ Hn.

5.2 Transcendence implications

In this section we examine some of the transcendence applications of Theorem 5.1.2. This is

in line with Yu’s results on transcendence in [47] for the Carlitz module, where he proves that the

ratio ζρ(n)/π̃n is transcendental if q−1 - n and rational otherwise. Yu’s work builds on Anderson’s

and Thakur’s theorem in [5], where they express Carlitz zeta values as the last coordinate of the
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logarithm of a special vector in An similarly to how we have done in Theorem 5.1.2. In the

last couple decades, there has been a surge of research answering transcendence questions about

arithmetic quantities in function fields, notably [4], [10], [14], [17], [34] and [48].

Theorem 5.2.1. Let ρ be a rank 1 sign-normalized Drinfeld A-module, let πρ be a fundamental

period of expρ and define ζρ(b;n) as in (5.1) for b ∈ B, the integral closure of A in the Hilbert

class field of K. Then

dimK SpanK{ζρ(b; 1), . . . , ζρ(b; q − 1), 1, πρ, . . . , π
q−2
ρ } = 2(q − 1).

Our main strategy for proving Theorem 5.2.1 is to appeal to techniques Yu develops in [48],

where he proves an analogue of Wüstholz’s analytic subgroup theorem for function fields. Yu’s

theorem applies to Anderson Fq[t]-modules (called t-modules), whereas here we deal with A-

modules. Thus, we switch our perspective slightly by forgetting the y-action of ρ⊗n in order to

view ρ⊗n as an Fq[t]-module with extra endomorphisms provided by the y-action. We will denote

this Fq[t]-module by ρ̂⊗n. Under the construction given in §2.2, the Fq[t]-module ρ̂⊗n corresponds

to the dual t-motive N when viewed as a C∞[t, σ]-module (we have forgotten the y-action on N ),

which we denote by N ′. Before giving the proof of Theorem 5.2.1 we require a couple of lemmas

which ensure that ρ̂⊗n satisfies the correct properties as a t-module to apply Yu’s theorem.

Lemma 5.2.2. The Anderson Fq[t]-module ρ̂⊗n is simple.

Proof. We recall the explicit functor between t-modules and dual t-motives as given in [27, §5.2].

For a t-module φ′ with underlying algebraic group J ⊂ Cn
∞, define the dual t-motive N(φ′)

(note that this is denoted as M̌(E) in [27, §5.2]) as HomFq(Ga, J), the C∞[t, σ]-module of all Fq-

linear homomorphisms of algebraic groups over C∞. One defines the C∞[t, σ]-module structure on

N(φ′) by having C∞ act by pre-composition with scalar multiplication, σ act as pre-composition

with the qth-power Frobenius and t acting by t ·m = φ′tm for m ∈ N(φ′). Note that N(ρ̂⊗n) =

HomFq(Ga,Gn
a) is naturally isomorphic to C∞[τ ]n where σ acts for p(τ) ∈ C∞[τ ]n by σ · p(τ) =

p(τ) · τ and C∞ acts by scalar multiplication on the right. To maintain clarity, when we mean C∞
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with the action described above we will denote it as a C′∞. Also note that N(ρ̂⊗n) is isomorphic to

N ′ = Γ(U,OE(nV )) as C∞[t, σ]-modules.

Now suppose that J ⊂ Cn
∞ defines a non-trivial algebraic subgroup of Gn

a , invariant under

ρ̂⊗n(Fq[t]), defined by non-zero Fq-linear polynomials pj(x1, . . . , xn) ∈ K[x1, . . . , xn] for 1 ≤

j ≤ m. We may assume that one of the polynomials, which we will denote as p(x1, . . . , xn) has a

non-zero term in x1. Then note that we have the injection of C′∞[t, σ]-modules given by inclusion

HomFq(Ga, J) ↪→ HomFq(Ga,Gn
a),

which allows us to view HomFq(Ga, J) as a C′∞[t, σ]-submodule of C′∞[τ ]n, where the σ-action is

given by right multiplication by τ as descrived above. Then observe that the map given induced by

the polynomial p

p∗ : HomFq(Ga,Gn
a)→ HomFq(Ga,Ga)

is a C′∞-vector space map, that HomFq(Ga,Ga) ∼= C′∞[τ ] and that HomFq(Ga, J) ⊂ ker(p∗). By

considering degrees in τ , we see that the C′∞-vector subspace (C′∞[τ ], 0, . . . , 0) ⊂ C′∞[τ ]n maps

to an infinite dimensional C′∞-vector subspace of C′∞[τ ] under p∗. This implies that the quotient

vector space, HomFq(Ga,Gn
a)/HomFq(Ga, J), also has infinite dimension over C∞.

On the other hand, recall that N ′ = Γ(U,OE(−nV (1))) is isomorphic to N(ρ̂⊗n) as C∞[t, σ]-

modules and that N ′ is an ideal of the ring C∞[t, y]. Given a C∞[t, σ]-submodule J ′ ⊂ N ′ we may

choose a non-zero element h ∈ J ′, and we claim that σ(h) is linearly independent from h over

Fq[t]. If not, then we would have

βh = fnh(−1) (5.17)

for some β ∈ Fq(t). However, this implies that the rational function fnh(−1)/h is fixed under the

negation isogeny [−1] on E, and in particular, for i 6= 0 we have

ordΞ(i+1)(h)− ord−Ξ(i+1)(h) + ord−Ξ(i)(h)− ordΞ(i)(h) = 0. (5.18)
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Since h is a polynomial in t and y, we see that ordΞ(i)(h)−ord−Ξ(i)(h) = 0 for |i| � 0, thus (5.18)

shows that ordΞ(i)(h)− ord−Ξ(i)(h) = 0 for all i. But from (5.17) we see that

ordΞ(fn) + ordΞ(1)(h)− ord−Ξ(1)(h) + ord−Ξ(h)− ordΞ(h) = 0,

which is a contradiction, since ordΞ(fn) = n. So J ′ contains a rank 2 C∞[t]-submodule and thus

J ′ has finite index in N ′ as a C∞-vector space. We conclude that all the C∞[t, σ]-submodules of

N ′ have finite index over C∞ which contradicts our observation in the preceding paragraph, thus

ρ̂⊗n must be simple as a t-module.

Lemma 5.2.3. The Anderson Fq[t]-module ρ̂⊗n has endomorphism algebra equal to A.

Proof. Recall that endomorphisms of ρ̂⊗n are Fq-linear endomorphisms α of Cn
∞ such that αρ̂⊗na =

ρ̂⊗na α for all a ∈ Fq[t]. Thus A is certainly contained in End(ρ̂⊗n). On the other hand, the t-module

ρ̂⊗n and the A-module ρ⊗n both have the same exponential function Exp⊗nρ and same period lattice

Λ⊗nρ (given in Theorem 3.2.7) associated to them. We note, however, that whereas Λ⊗nρ is a rank 1

A-module, when viewed as an Fq[t]-module it is rank 2. If we let End0(ρ̂⊗n) = End(ρ̂⊗n) ⊗Fq [t]

Fq(t) as an Fq(t)-vector space, then [12, Prop. 2.4.3] implies that [End0(ρ̂⊗n) : Fq(t)] ≤ 2. Since

A ⊂ End(ρ̂⊗n) is a rank 2 Fq[t]-module, we see that [End0(ρ̂⊗n) : Fq(t)] = 2, and thus End(ρ̂⊗n)

is a rank 2 Fq[t]-module containing A. Further, A ⊗Fq [t] Fq(t) = K, and thus End0(ρ̂⊗n) = K

as an Fq(t)-vector space. Since End(ρ̂⊗n) is finitely generated over A, it is also integrally closed

over A and thus End(ρ̂⊗n) = A.

Proof of Theorem 5.2.1. This proof follows nearly identically to the proof of [48, Prop. 4.1]. First,

assume by way of contradiction that

dimK SpanK{ζρ(b; 1), . . . , ζρ(b; q − 1), 1, πρ, . . . , π
q−2
ρ } < 2(q − 1),

so that there is a K-linear relation among the ζρ(b; i) and πjρ for 1 ≤ i ≤ q − 1 and 0 ≤ j ≤ q − 2.
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Then, let GL be the 1-dimensional trivial t-module and set

G = GL ×

(
q−1∏
i=1

ρ̂⊗i

)
×

(
q−2∏
j=1

ρ̂⊗j

)
.

For 1 ≤ i ≤ q − 1 set zi = (∗, . . . , ∗, Cζρ(b; i))> ∈ Ci
∞ to be the vector from Theorem 5.1.2 such

that Exp⊗iρ (zi) ∈ H i, where H is the Hilbert class field of K. For 1 ≤ j ≤ q − 2, let Πj ∈ Cj
∞

be a fundamental period of Exp⊗jρ such that the bottom coordinate of Πj is an H multiple of πjρ as

described in Theorem 3.2.7. Define the vector

u = 1×

(
q−1∏
i=1

zi

)
×

(
q−2∏
j=1

Πj

)
∈ G(C∞),

and note ExpG(u) ∈ G(H), where ExpG is the exponential function on G. Our assumption that

there is a K-linear relation among the ζρ(b; i) and πjρ implies that u is contained in a d [Fq[t]]-

invariant hyperplane of G(C∞) defined over K. This allows us to apply [48, Thm. 3.3], which

says that u lies in the tangent space to the origin of a proper t-submodule H ⊂ G. Then, Lemmas

5.2.2 and 5.2.3 together with [48, Thm 1.3] imply that there exists a linear relation of the form

aζρ(b; j) + bπjρ = 0 for some a, b ∈ H and 1 ≤ j ≤ q − 2. Since ζρ(b; j) ∈ K∞ and since

H ⊂ K∞, this implies that πjρ ∈ K∞. However, we see from the product expansion for πρ in

[26, Thm. 4.6 and Rmk. 4.7] that πjρ ∈ K∞ if and only if q − 1|j, which cannot happen because

j ≤ q − 2. This provides a contradiction, and proves the theorem.

Corollary 5.2.4. For 1 ≤ i ≤ q − 1, the quantities ζρ(b; i) are transcendental. Further, for

0 ≤ j ≤ q − 1 the ratio ζρ(b; i)/πjρ ∈ K if and only if i = j = q − 1.

Proof. The transcendence of ζρ(b; i), as well as the statement that ζρ(b; i)/πjρ /∈ K for i, j 6= q − 1

follows directly from Theorem 5.2.1. On the other had, if i = j = q − 1, then [22, Thm. 2.10]

guarantees that ζρ(b; i)/πjρ ∈ K.
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6. EXAMPLES AND SUMMARY

6.1 Examples and summary

Example 6.1.1. In the case of tensor powers of the Carlitz module (see [33] for a detailed account

on tensor powers of the Carlitz module), the formulas in Theorems 4.1.1 and 4.2.4 for the coeffi-

cients of Exp⊗nC and Log⊗nC can be worked out completely explicitly using hyper-derivatives. For

instance, we find that gi = (t − θ)i−1 and that the shtuka function is f = (t − θ), so the left hand

side of (4.1) is

γ`,i =
1

(t− θ)n−`(t− θq)n . . . (t− θqi)n
.

We can expand γ`,i in terms of powers of (t − θ) by using hyper-derivatives, as described in [33,

§2.3], namely

γ`,i =
∞∑
j=0

∂jt (γ`,i)

∣∣∣∣
t=θ

· (t− θ)j.

Using this we recover the coefficients of Exp⊗nC as given in formula (4.3.2) and Proposition 4.3.6(b)

from [33]. The formulas for coefficients of the logarithm given in (4.3.4) and Proposition 4.3.6(a)

from [33] can be derived similarly using Theorem 4.2.4.

Example 6.1.2. Let E : y2 = t3 − t − 1 be defined over F3, and note that A = Fq[t, y] has class

number 1. Then from [45] we find that

f =
y − η − η(t− θ)

t− θ − 1
.

The Drinfeld module ρ associated to the coordinate ring of E is detailed in Example 9.1 in [26].

We form the 2-dimensional Anderson A-module ρ⊗2 as outlined in section §2.2, where we recall

from (2.12) that

div(g1) = −2(V ) + (∞) + ([2]V ), div(g2) = −2(V ) + (Ξ) + (V (1) + V ).
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If we denote T−V as translation by −V on E, then we can quickly write down formulas for g1 and

g2 by observing that g1 ◦ T−V and g2 ◦ T−V are both polynomials with relatively simple divisors,

from which we calculate that

g1 =
η2 + ηy + t− θ − 1

ηt2 + ηtθ + ηθ2 + ηt− ηθ + η
,

g2 =
η2t2 + η2tθ + η2θ2 + η2t− η2θ − η2 + t2 + tθ + θ2 + ηy − t+ θ

η2t2 + η2tθ + η2θ2 + η2t− η2θ + η2 + t2 + tθ + θ2 + t− θ + 1
.

We further compute that

h1 = −η
6 − η3y − η2 + t− θ + 1

η3

h2 =
η4t− η4θ − η4 + η2t2 + η2tθ + η2θ2 + η3y + t2 + tθ + θ2 + t− θ

η2 + 1
.

Then using Corollary 3.1.5 we calculate that

ρ⊗nt =

θ −(η2+1)2

η3

0 θ

+

 1 0

−η3(η4−η2−1)
(η2+1)3 1

 · τ.
We then calculate that the bottom coordinate of Π2 from Theorem 3.2.7 is

−(η2 + 1)2

(η5 − η3 − η)
· π2

ρ.

Using these, we calculate the first few terms of the expression from Corollary 4.1.4 as

Exp⊗nρ

z
0

 =

z
0

+

 η4−η2

−η6−1

η7−η5−η3

−η8−η6−η2−1

 zq +

 η12−η6

−η22+η20−η18−η4+η2−1

η15−η11+η9−η7

−η24−η18−η6−1

 zq
2

+O(zq
3

),

and calculate an example of the vector from Corollary 4.2.6, which is the bottom row of P1,

(
h

(1)
2

h1fn

∣∣∣∣
Ξ

,
h

(1)
1

h1fn

∣∣∣∣
Ξ

)
=

(
η7 − η5 − η3

η8 + η6 + η2 + 1
,
η8 + η4 − 1

η8 + η6

)
.
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We calculate that the function G from (5.6) is G = (η + y)/(θ − t) − y and that for b = 1 we

can express (−1)2f 2G̃b = (fG)2 in the form given in (5.16) as

(fG)2 =
−η3

η2 + 1
h1+h2+

η5/3

η2/3 + 1
h

(−1)
1 f 2+h

(−1)
2 f 2+

−η5/9 + η1/3

η2/9 + 1
h

(−2)
1 (ff (−1))2+h

(−2)
1 (ff (−1))2.

This allows us to write the formulas in Theorem 5.1.2 as 1

−η3

η2+1

+

 1

η5

η2+1

+

 1

−η5+η3

η2+1

 =

0

0

 = Exp⊗nρ

 ∗

− η3

η2+1
ζ(2)

 .

Thus the special vector z = (∗,−η3/(η2 + 1)ζ(2))> is in the period lattice for Exp⊗nρ which by

Theorem 3.2.7 implies that the bottom coordinate of z is a K-multiple of π2
ρ, the fundamental

period associated to ρ. Hence ζ(2)/π2
ρ ∈ K as implied by Goss’s [22, Thm. 2.10].

Example 6.1.3. Now let q = 4 and let E/Fq be defined by y2 + y = t3 + c, where c ∈ F4 is a

root of the polynomial c2 + c + 1 = 0. Then we know from [45, §2.3] that A = Fq[θ, η] has class

number 1, that V = (θ, η + 1) and that

f =
y + η + θ4(t+ θ)

t+ θ
.

Setting the dimension n = 2 and the parameter b = 1, from (5.6) we find that

G =
η + y + 1

θ + t
+
y4 + y + 1

t4 + t

and that G̃1 = G2. Then we compute the expansion from (5.16) as

f 2G̃1 = (θ4 + θ)−1h1 + h2 + (θ4 + θ)1/4h
(−1)
1 f 2 + (θ4 + θ)1/2h

(−1)
2 f 2 + (θ4 + θ)3/16h

(−2)
1 (ff (−1))2

+ (θ4 + θ)1/4h
(−2)
2 (ff (−1))2 + (θ4 + θ)−1/64h

(−3)
1 (ff (−1)f (−2))2 + h

(−3)
2 (ff (−1)f (−2))2,

85



whereupon Theorem 5.1.2 gives

 1

(θ4 + θ)−1

+

(θ4 + θ)2

(θ4 + θ)

+

(θ4 + θ)4

(θ4 + θ)3

+

 1

(θ4 + θ)−1

 =

(θ4 + θ)2 + (θ4 + θ)4

(θ4 + θ) + (θ4 + θ)3


= Exp⊗nρ

 ∗

(θ4 + θ)−1ζ(2)

 .

Summary. In this dissertation, we gave an explicit description of tensor powers of rank 1 sign-

normalized Drinfeld modules, gave a formulas for their periods, gave formulas for the coefficients

of the exponential and logarithm functions, related these formulas to zeta values and proved a

theorem about their transcendence.
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