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Abstract. For each positive characteristic multiple zeta value (defined by Thakur [T04]),
the first and third authors in [CM17] constructed a t-module such that a certain coordinate
of a logarithmic vector of a specified algebraic point is a rational multiple of that multiple
zeta value. The main result in this paper gives explicit formulae for all of the coordinates of
this logarithmic vector in terms of Taylor coefficients of t-motivic multiple zeta values and
t-motivic Carlitz multiple star polylogarithms.
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1. Introduction

1.1. Classical theory. The theory of generalized logarithms for commutative algebraic
groups defined over number fields at algebraic points has a long history. Many developments
came about because of the proposal of Hilbert’s famous seventh problem in 1900, which is
related to the linear independence of two logarithms at algebraic numbers over the field Q
of algebraic numbers. Gelfond and Schneider provided an affirmative answer to Hilbert’s
problem in the 1930’s, then Baker generalized this with his celebrated theorem on linear
forms in logarithms from the 1960’s. In the following years, the analogue of Baker’s theorem
for elliptic curves was successfully developed by Coates, Lang, Masser, Bertand. Lang was
the first to use the language of group varieties to interprate a reformulation of the Gelfond-
Schneider theorem and other classical results. For more details, see [BW07, W02]. One of
the most significant results and greatest breakthroughs in classical transcendence theory is
the following analytic subgroup theorem achieved by Wüstholz.

Theorem 1.1.1 (Wüstholz [W89]). Let G be a commutative algebraic group defined over
Q, and let expG : LieG(C) → G(C) be the exponential map when regarding G(C) as a Lie
group. Let u ∈ LieG(C) satisfy expG(u) ∈ G(Q), and let Vu ⊂ LieG(C) be the smallest
linear subspace that contains u and that is defined over Q. Then we have

Vu = LieH(C)

for some algebraic subgroup H of G defined over Q.

The spirit of the theorem above is to assert that the Q-linear relations among the coor-
dinates of the generalized logarithm u arise from the defining equations of LieH. All the
results mentioned above are consequences of Wüstholz’s theory as they can be formulated
as questions concerning generalized logarithms defined in terms of suitable commutative al-
gebraic groups. So, attempting to relate certain special values which one desires to study to
the coordinates of generalized logarithms fitting into Wüstholz’s theory is a fruitful line of
study.

Classical real-valued multiple zeta values are generalizations of the special values of the
Riemann ζ-function at positive integers. They occur as periods of mixed Tate motives
and have many interesting connections between different research areas (see [An04, BGF18,
Zh16]). It is a natural question to ask whether one can relate any classical multiple zeta values
to certain coordinates of generalized logarithms fitting into Wüstholz’s analytic subgroup
theorem. The answer is still unknown. In the function fields case, we have a positive answer
of the analogous question above from [CM17], which shows that any positive characteristic
multiple zeta value can be realized as a coordinate of the logarithm of a certain t-module at an
algebraic point. The purpose of this paper is to give explicit formulae for all the coordinates
of such a logarithmic vector in terms of Taylor coefficients of the t-motivic multiple zeta
value in question and t-motivic Carlitz multiple star polylogarithms.

1.2. The main result. Let A := Fq[θ] be the polynomial ring in the variable θ over a finite
field Fq with quotient field K = Fq(θ). Let K∞ be the completion of K with respect to the
normal absolute value | · |∞ associated to the infinite place ∞, and let C∞ be the ∞-adic
completion of a fixed algebraic closure of K∞. Let K be the algebraic closure of K inside
C∞. Thakur [T04] defined positive characteristic multiple zeta values associated to A as
follows. For any r-tuple of positive integers s = (s1, . . . , sr) ∈ Nr, define

(1.2.1) ζA(s) :=
∑ 1

as11 · · · asrr
∈ K∞,
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where the sum is over all monic polynomials a1, . . . , ar in A with the restriction degθ a1 >
degθ a2 > · · · > degθ ar. The weight and the depth of the presentation ζA(s) are defined by
wt(s) :=

∑r
i=1 si and dep(s) := r respectively. When r = 1, the special values above are

called Carlitz zeta values, due to Carlitz [Ca35], and they play the analogue of special values
of Riemann ζ-function at positive integers.

In the world of function fields in positive characteristic, the Carlitz module C defined in
Sec. 2.2 plays the analogue of the multiplicative group Gm in the classical case, and the
Carlitz logarithm LogC is analogous to the classical logarithm. In [Ca35], Carlitz proved
the interesting and important identity ζA(1) = LogC(1), whose classical counterpart does
not exist. Carlitz’s formula reveals the fact that positive characteristic zeta values have a
close connection with logarithms. Anderson and Thakur generalized this connection to all
Carlitz zeta values in [AT90], and gave a beautiful interpretation in terms of tensor powers
of the Carlitz module. More precisely, for each positive integer s they constructed a vector
Zs ∈ Lie C⊗s(C∞), which is the Lie algebra of the s-th tensor power of the Carlitz module
(see Sec. 2.2 for the definition), so that ΓsζA(s) occurs as the last coordinate of Zs and so
that Zs is mapped to an integral point of C⊗s under the exponential map ExpC⊗s . Here
Γs ∈ A is the Carlitz factorial defined in (5.1.1).

The first and third authors of this paper generalized Anderson-Thakur’s work to arbi-
trary depth MZV’s in [CM17], where the case of Eulerian MZV’s was previously established
in [C16]. In [CM17], they showed that for any s = (s1, . . . , sr) ∈ Nr one can construct a uni-
formizable t-module Gs and a vector Zs ∈ LieGs(C∞) so that ΓsζA(s) occurs as the wt(s)-th
coordinate of Zs and Zs is mapped to an integral point of Gs under the exponential map
ExpGs

, where Γs := Γs1 · · ·Γsr . This result, combined with Yu’s sub-t-module theorem [Yu97]
— which is the function field analogue of Wüstholz’s analytic subgroup theorem — is a key
ingredient in verifying a function field analogue of Furusho’s conjecture, which asserts that
the p-adic MZV’s satisfy the same linear relations that the corresponding real-valued MZV’s
satisfy. Thus, it is a natural and interesting question to ask what the other coordinates of
Zs are. The main result of this paper is to give explicit formulae for them.

Let t be a new variable. One core object in this paper is the t-motivic multiple zeta value
ζmot
A (s) ∈ C∞[[t]] given in Definition 5.1.4. Our motivation for the definition of ζmot

A (s) ∈
C∞[[t]] comes from two perspectives. The first is from the point of view of periods. In [AT09],
for each index s ∈ Nr Anderson and Thakur construct a t-motive Ms together with a system

of Frobenius difference equations Ψ
(−1)
s = ΦsΨs so that ΓsζA(s)/π̃wt(s) occurs as an entry of

the period matrix Ψs|t=θ of Ms, where Φs is a matrix of size r+ 1 with entires in K[t], where
Ψs is an invertiable matrix of size r+ 1 with entries in C∞[[t]], and where π̃ is a fundamental
period of the Carlitz module C. Here the terminology of t-motive is in the sense of [P08]. The
value ΓsζA(s)/π̃wt(s) is the specialization at t = θ of a certain power series Ωwt(s) · ζmot

A (s) ∈
C∞[[t]], which is an entry of Ψs (see [AT09, §2.5] for details). Papanikolas [P08] showed that
ZΨs := SpecK(t)[Ψs, det Ψ−1

s ] is a torsor for the algebraic group ΓMs×Fq(t)K(t), which arises
from the base change of the fundamental group of the Tannakian category generated by Ms,
the so-called t-motivic Galois group of Ms. Since ζmot

A (s) occurs in the affine coordinate ring
of ZΨs , which we regard as a period torsor for ΓMs , it can be viewed as a t-motivic period
(cf. [Br14, Def. 4.1]).

The second perspective is from the point of view of deformations. In [P08], Papanikolas
constructed a deformation series of the Carlitz logarithm, which he connected with periods of
certain t-motives. Let L0 := 1 and Li := (t−θq) · · · (t−θqi) for i = 1, 2, 3, · · · . Papanikolas’s
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deformation series is defined by

Li1,u(t) :=
∞∑
i=0

uq
i

Li
∈ C∞[[t]]

for u ∈ C∞ with |u|∞ < q
q

q−1 , and one has that Li1,u(θ) = Li1,u(t)|t=θ = LogC(u). The first
author and Yu then extended Li1,u(t) to a deformation Lin,u(t) of n-th Carlitz polylogarithm

at u ∈ C∞ with |u|∞ < q
nq
q−1 in [CY07] in order to connect ζA(n) to periods of certain t-

motives. This inspired us to use Anderson-Thakur polynomials (see Sec. 5.1.1) to define the
t-motivic MZV’s ζmot

A (s) in Definition 5.1.4 as a deformation of function field multiple zeta
values ζA(s). Indeed, from the interpolation formula of Anderson-Thakur [AT90, AT09], one
has that ζmot

A (s)|t=θ = ΓsζA(s). In [C14, CM17], the first and third authors give a formula that
expresses ζA(s) as a linear combination of Carlitz multiple star polylogarithms (abbreviated
as CMSPL’s — see (3.2.4) for the definition) generalizing the work of Anderson-Thakur for
Carlitz zeta values in [AT90]. In this paper, we define t-motivic CMSPL’s in (3.2.4) that are
deformation series of CMSPL’s, and show that the identity for ζA(s) mentioned above can
be deformed as an identity for ζmot

A (s) in Lemma 5.2.4. So our definition of ζmot
A (s) seems

quite appropriate from the t-motivic aspect.
In many number theory settings, Taylor coefficients of important functions have interest-

ing arithmetic interpretations. Two well known classical examples are the celebrated class
number formula and the Gross-Zagier formula. In the frame work of t-modules, such a phe-
nomenon first occurs in the paper of Anderson and Thakur [AT90]. There, they show that
for any positive integer s, the kernel of ExpC⊗s is a free A-module of rank one, and the first
s Taylor coefficients of the Anderson-Thakur function ωs (see [AT90, Sec. 2.5]) give the co-
ordinates of the generator of Ker ExpC⊗s (see also [Ma18, Lem. 8.3]). A similar phenomenon
occurs for the more general Drinfeld A-modules in [G17a, Thm. 6.7].

This paper studies Taylor coefficients of the series expansion of ζmot
A (s) at t = θ, which are

given by hyperderivatives of ζmot
A (s) evaluated at t = θ. For any r-tuple of positive integers

s = (s1, . . . , sr), our main result stated in Theorem 6.2.1 shows that the first wt(s) Taylor
coefficients of the series expansion of ζmot

A (s) at t = θ give the first wt(s) coordinates of Zs,
and that the other coordinates of Zs are given explicitly in terms of Taylor coefficients of
the expansion of t-motivic CMSPL’s at t = θ. In particular, when r = 1 the coordinates of
Zs are given by the first s Taylor coefficients of ζmot

A (s) at t = θ. We mention that in [Pp]
Papanikolas establishes a log-algebraicity theorem for C⊗s, which is applied to derive an
explicit formula for Zs also in terms of hyperderivatives, but his formula is different from
ours. As our results reveal the importance of Taylor coefficients of t-motivic MZV’s, it will
be interesting to investigate their connections with other research topics. This would require
additional time and we hope to tackle this project in the near future.

1.3. Organization of this paper. In Section 2 we review some basic theories of Anderson,
particularly how to contstruct the associated t-module from a dual t-motive using his theory
of t-frames. One primary tool that we adapt to prove our main result is Theorem 2.4.4, in
which Anderson provides a dual t-motivic description of the exponential maps. We review
the definition of hyperderivatives in Section 3, and then analyze δ0 ◦ ι(g) (a vector of power
series coming from the t-frames theory) in Theorem 2.4.4 to establish the general expression
for the logarithmic vector in Theorem 3.4.1. The central topic of Section 4 is t-motivic
CMSPL’s. This extends the study of [CM19], wherein the first and third authors, for each
CMSPL evaluated at an algebraic point, construct a t-module together with a special point
so that up to a sign, the CMSPL occurs as the wt(s)-th coordinate of the logarithm of
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that t-module evaluated at this special point. In §4 of this paper, we use Theorem 3.4.1
to give explicit formulae for all coordinates of this logarithm in terms of Taylor coefficients
of t-motivic CMSPL’s in Theorem 4.2.2. In Section 5, we first define t-motivic MZV’s and
then derive a deformation identity for them in Lemma 5.2.3. In section 6, we first review
fiber coproducts of dual t-motives and review the construction of Gs and Zs mentioned in
the introduction. With the results from Theorem 4.2.2 and Lemma 5.2.3, we use techniques
developed in [CM17] to derive an explicit formula for Zs in Theorem 6.2.1. Finally, in
Theorem 6.3.4 we further relate any monomial of MZV’s to a coordinate of the logarithm of
a certain t-module at a special point, and give a description of the other coordinates of this
logarithmic vector explicitly in terms of Taylor coefficients of t-motivic CMSPL’s.

2. Anderson’s theory revisited

2.1. Notation and Frobenius twistings.

Table of Symbols 2.1.1. We use the following symbols throughout this paper.

N = the set of positive integers.
q = a power of a prime number p.
Fq = the finite field of q elements.
A = Fq[θ], the polynomial ring in the variable θ over Fq.
A+ = the set of monic polynomials in A.
K = Fq(θ), the quotient field of A.
ord∞ = the normalized valuation of K at the infinite place for which ord∞(1/θ) = 1.
deg = − ord∞, the degree function on K.
|·|∞ = qdeg(·), an absolute value on K.
K∞ = Fq((1/θ)), the completion of K at the infinite place.

C∞ = K̂∞, the completion of an algebraic closure of K∞.
K = the algebraic closure of K in C∞.

Λ̃ = (λr, . . . , λ1) for any r-tuple Λ = (λ1, . . . , λr) of elements of a nonempty set.
wt(s) =

∑r
i=1 si for an index s = (s1, . . . , sr) ∈ Nr.

dep(s) = r for an index s = (s1, . . . , sr) ∈ Nr.

Let t be a new variable. We denote by C∞[[t]] the ring of formal power series in the variable
t with coefficients in C∞, and denote by C∞((t)) the quotient field of C∞[[t]]. We define Tθ
to be the subring of C∞[[t]] consisting of power series convergent on |t|∞ ≤ |θ|∞ – for more
details see (3.1.1). Finally for any integer n, we define the nth fold Frobenius twist on
C∞((t)):

C∞((t)) → C∞((t))

f :=
∑
ait

i 7→ f (n) :=
∑
aq

n

i t
i.

We then extend these Frobenius twists to matrices over C∞((t)), i.e., for any matrix B =
(bij) ∈ Mat`×m(C∞((t))), we define

B(n) := (b
(n)
ij ).

For any A-subalgebra R of C∞, we define the ring of twisted polynomials

Matd(R)[τ ] :=

{
∞∑
i=0

αiτ
i|αi ∈ Matd(R) ∀i and αi = 0 for i� 0

}
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subject to the relation: for α, β ∈ Matd(R),

ατ i · βτ j := αβ(i)τ i+j.

We putR[τ ] := Mat1(R)[τ ] and indeed we have the natural identity Matd(R[τ ]) = Matd(R)[τ ].
For any φ =

∑∞
i=0 αiτ

i ∈ Matd(R)[τ ], we put

∂φ := α0.

2.2. Background on Anderson t-modules. Fix a positive integer d and an A-subalgebra
R of C∞ with quotient field F . Let ρ be an Fq-linear ring homomorphism

ρ : Fq[t]→ Matd(R)[τ ]

so that ∂ρ(t)− θId is a nilpotent matrix. We have the natural identification

Matd(R)[τ ] ∼= EndFq

(
Gd
a/R

)
,

where the latter is the ring of Fq-linear endomorphisms over R of the algebraic group scheme
Gd
a/R and τ is identified with the Frobenius operator that acts on Gd

a/R by raising each

coordinate to the q-th power. Thus, the map ρ gives rise to an Fq[t]-module structure on
Gd
a/R(R′) for any R-algebra R′. By an d-dimensional t-module defined over R, we mean the

pair G = (Gd
a/R, ρ), which has underlying group scheme Gd

a/R, with an Fq[t]-module structure
via ρ. Note that since ρ is an Fq-linear ring homomorphism, ρ is uniquely determined by
ρ(t). A sub-t-module of G is a connected algebraic subgroup of G that is invariant under
the Fq[t]-action.

A basic example is the n-th tensor power of the Carlitz module denoted by C⊗n :=
(Gn

a/A, [·]n) for n ∈ N introduced by Anderson and Thakur [AT90], where [·]n : Fq[t] →
Matn(A)[τ ] is the Fq-linear ring homomorphism give by

[t]n = θIn +Nn + Enτ

with

Nn =


0 1 0 · · · 0

0 1
. . .

...
. . . . . . 0

. . . 1
0

 ∈ Matn(Fq) and En =


0 · · · · · · 0
...

. . .
...

0
. . .

...
1 0 · · · 0

 ∈ Matn(Fq).

When n = 1, C := C⊗1 is the so-called Carlitz Fq[t]-module.
Fix a t-module G = (Gd

a/R, ρ) as above. Anderson [A86] showed that one has an exponen-
tial map ExpG, that is an entire Fq-linear map

ExpG : LieG(C∞)→ G(C∞)

satisfying the functional equation

ExpG ◦∂ρ(a) = ρ(a) ◦ ExpG ∀a ∈ Fq[t].

As a d-variable vector-valued power series, it is expressed as

ExpG(z) =
∞∑
i=0

eiz
(i),
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where e0 = Id and ei ∈ Matd(F ) for all i and z = (z1, . . . , zd)
tr with z(i) := (zq

i

1 , . . . , z
qi

d )tr.
As vector-valued power series, the formal inverse of ExpG is called the logarithm of G and
is denoted by LogG. That is, we have the identities

LogG ◦ExpG = identity = ExpG ◦LogG

and we find that LogG satisfies the functional equation

LogG ◦ρ(a) = ∂ρ(a) ◦ LogG ∀a ∈ Fq[t].

We note that in general, LogG is not an entire function on G(C∞) but converges on a certain
open subset.

By a morphism φ of two t-modules G1 = (Gd1
a/R, ρ1) and G2 = (Gd2

a/R, ρ2) over R, we mean

that φ : G1 → G2 is a morphism of algebraic group schemes over R and that it commutes with
the Fq[t]-actions. By writing φ =

∑∞
i=0 αiτ

i ∈ Matd2×d1(R)[τ ], we note that the differential
of φ at the origin is identified with

(2.2.1) ∂φ := α0 : LieG1 → LieG2.

The exponential maps of t-modules are functorial in the sense that one has the following
commutative diagram:

G1
φ

// G2

LieG1
∂φ
//

ExpG1

OO

LieG2.

ExpG2

OO

2.3. From Anderson dual t-motives to Anderson t-modules. In what follows, we take
an algebraically closed subfield K of C∞ containing K. For example, K can be K or C∞.
Let K[t, σ] := K[t][σ] be the ring obtained by joining the non-commutative variable σ to the
polynomial ring K[t] subject to the relation

σf = f (−1)σ for f ∈ K[t].

Note that K[t, σ] contains the two subrings K[t] and K[σ], but the latter is non-commutative.

2.3.1. Frobenius modules and dual t-motives. We follow [CPY19] to adapt the terminology
of Frobenius modules.

Definition 2.3.1. A Frobenius module over K is a left K[t, σ]-module that is free of finite
rank over K[t].

The most basic example of a Frobenius module is the trivial module 1, which has under-
lying module K[t], on which σ acts by

σf := f (−1) ∀f ∈ 1.

Another important example is the n-th tensor power of the Carlitz t-motive C⊗n for n ∈ N.
Here, K[t] is the underlying module of C⊗n, on which the action of σ is given by

σf := (t− θ)nf (−1) ∀f ∈ C⊗n.

One core object that we study in this paper is the t-module arising from the following
Frobenius module M . Fix a positive integer r and an r-tuple of positive integers s =
(s1, . . . , sr) ∈ Nr and an r-tuple of polynomials Q = (Q1, . . . , Qr) ∈ K[t]r. Let M be
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a free left K[t]-module of rank r + 1 with a fixed basis {m1, . . . ,mr+1} and put m :=
(m1, . . . ,mr+1)tr ∈ Mat(r+1)×1(M). We define the following matrix
(2.3.2)

Φ :=


(t− θ)s1+···+sr 0 0 · · · 0

Q
(−1)
1 (t− θ)s1+···+sr (t− θ)s2+···+sr 0 · · · 0

0 Q
(−1)
2 (t− θ)s2+···+sr . . .

...
...

. . . (t− θ)sr 0

0 · · · 0 Q
(−1)
r (t− θ)sr 1

 ∈ Mat(r+1)(K[t]),

then define a left K[t, σ]-module structure on M by setting

σm := Φm.

It follows from the definition that M is a Frobenius module. We mention that this M was first
studied by Anderson-Thakur [AT09] in order to give a period interpretation for the multiple
zeta value ζA(s) (defined in (1.2.1)) when restricting Qi to the Anderson-Thakur polynomial
Hsi−1. It was then revisited in [C14, CPY19] for studying Carlitz multiple polylogarithms
when restricting Qi to certain algebraic elements over K.

We let M ′ be the Frobenius submodule of M which is the free K[t]-submodule of rank r
spanned by the basis {m1, . . . ,mr}, where the action of σ on

(2.3.3) m′ := (m1, . . . ,mr)
tr ∈ Matr×1(M)

is represented by the matrix
(2.3.4)

Φ′ :=


(t− θ)s1+···+sr

Q
(−1)
1 (t− θ)s1+···+sr (t− θ)s2+···+sr

. . . . . .

Q
(−1)
r−1 (t− θ)sr−1+sr (t− θ)sr

 ∈ Matr(K[t]).

Note that Φ′ is the square matrix of size r cut from the upper left square of Φ. Follow-
ing [CM19], for each 1 ≤ i ≤ r we put

(2.3.5) di := si + · · ·+ sr.

One observes that M ′ possesses the following properties (cf. [CPY19]):

• M ′ is free of rank r over K[t].
• M ′ is free of rank d := d1 + · · ·+ dr over K[σ].
• (t− θ)nM ′ ⊂ σM ′ for all integers n ≥ d1 (see the proof of Proposition 2.4.2).

Note that a natural K[σ]-basis of M ′ is given by

(2.3.6)
{

(t− θ)d1−1m1, (t− θ)d1−2m1, . . . ,m1, . . . , (t− θ)dr−1mr, (t− θ)dr−2mr, . . . ,mr

}
and we label this basis as {e1, . . . , ed}. Note further that M ′ is a dual t-motive in the sense
of [ABP04, Sec. 4.4.1].

Definition 2.3.7. A dual t-motive is a left K[t, σ]-module M with the following three prop-
erties.

• M is free of finite rank over K[t].
• M is free of finite rank over K[σ].
• (t− θ)nM ⊂ σM for all n� 0.
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Remark 2.3.8. Note that the basis (2.3.6) involves powers of (t−θ), which is a uniformizer at
θ, multiplied by mi. This is very convenient, because it lends itself to calculations involving
Taylor series centered at θ and hyperderivatives as explained in §3.3. In more general settings,
this convenience does not necessarily occur. For instance, for Drinfeld A-modules, where A is
the ring of regular functions of an elliptic curve, one finds a C∞[σ]-basis of more complicated
functions which necessitate new techniques not involving Taylor series (see [G17a, Prop.
3.3]). It would be interesting to see how the present techniques extend to a more general
setting.

2.3.2. The t-module associated to M ′. In this section, we quickly review Anderson’s theory
of t-frames, which allows one to construct the t-module G := (Gd

a/K, ρ) which is associated

to the Frobenius module M ′. Since M ′ is free over K[t] with basis {m1, . . . ,mr}, we can
identify Mat1×r(K[t]) with M ′:

Mat1×r(K[t]) → M ′

(a1, . . . , ar) 7→ a1m1 + · · ·+ armr.

As M ′ is also free over K[σ] with basis {e1, . . . , ed}, we can identify M ′ with Mat1×d(K[σ]):

M ′ → Mat1×d(K[σ])
b1e1 + · · ·+ bded 7→ (b1, . . . , bd).

Compositing the two maps above, we have the following identification

ι : Mat1×r(K[t]) → Mat1×d(K[σ])
(a1, . . . , ar) 7→ (b1, . . . , bd)

by expressing elements of M ′ in terms of the fixed K[t]-basis and K[σ]-basis above.
We remark that if x ∈ M ′ can be written as x = a1m1 + · · · + armr as above and

m′ := (m1, . . . ,mr)
tr ∈ Matr×1(M ′), then we have the equation

σx = σ(a1, . . . , ar)m
′ = (a1, . . . , ar)

(−1)Φ′m′,

and thus under the identification Mat1×r(K[t]) → M ′ the action of σ on Mat1×r(K[t]) is
given by

(2.3.9) σ(a1, . . . , ar) = (a1, . . . , ar)
(−1)Φ′.

We similarly observe that the action of σ on Mat1×d(K[σ]) is the diagonal action.
Next, we define maps δ0, δ1 : Mat1×d(K[σ]) = Mat1×d(K)[σ]→ Kd by

(2.3.10) δ0

(∑
i≥0

ciσ
i

)
:= ctr

0

(2.3.11) δ1

(∑
i≥0

ciσ
i

)
= δ1

(∑
i≥0

σic
(i)
i

)
:=
∑
i≥0

(
c

(i)
i

)tr

.

Note that in [CPY19] we denote by ∆ : M ′ � Kd the Fq-linear composite map of M ′ ∼=
Mat1×d(K[σ]) and δ1. We then have Ker ∆ = (σ−1)M ′, and so the identification as Fq-vector
spaces

M ′/(σ − 1)M ′ ∼= Kd.

Since we have an Fq[t]-module structure on M ′/(σ − 1)M ′, we can equip a left Fq[t]-module
structure on Kd via the identification above. As the K-valued points of Gd

a/K is Kd which is
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Zariski dense inside the algebraic group Gd
a/K, the Fq[t]-module structure on Kd above gives

rise to an Fq-linear ring homomorphism

ρ : Fq[t]→ Matd(K)[τ ].

The t-module associated to M ′ is defined to be G := (Gd
a/K, ρ). For more details on this

construction, see [HJ16, §5.2].

2.4. One crucial result of Anderson. Now we take the field K = C∞, and consider the
Fq-linear map

δ0 ◦ ι : Mat1×r(K[t])→ Kd.

In order to give an explicit description of the above map, we make the following definition
first.

Definition 2.4.1. Given a function f(t) ∈ Tθ which has a Taylor series centered at θ that
is given by

f(t) =
∞∑
n=0

an(t− θ)n,

we define the kth jet of f at the point θ to be the polynomial

Jkθ (f) = ak(t− θ)k + · · ·+ a1(t− θ) + a0 ∈ C∞[t].

Note that by (2.4.3), power series in Tθ always have such a Taylor series as given above,
and so our definition is natural. We now describe the explicit formula for the map δ0 ◦ ι.
Proposition 2.4.2. For a vector a = (a1, . . . , ar) ∈ Mat1×r(K[t]), for each coordinate ai,
we form the di − 1 jet at θ and label these as

Jdi−1
θ (ai) = ci,1(t− θ)di−1 + ci,2(t− θ)di−2 + · · ·+ ci,di .

Then the map δ0 ◦ ι is given by

δ0 ◦ ι(a) =



c1,1



d1
c1,2

...
c1,d1

c2,1

d2
c2,2

...
c2,d2

...
...

cr,1
dr

cr,2
...

cr,dr

.

Proof. By the definition of δ0, it suffices to show for each i with 1 ≤ i ≤ r that, (t− θ)Nmi ∈
σM ′ for all N ≥ di. We prove this assertion by induction on i. For i = 1, the claim holds
since we have

(t− θ)Nm1 = (t− θ)N−d1 · (t− θ)d1m1 = (t− θ)N−d1 · σm1 = σ(t− θq)N−d1m1 ∈ σM ′.
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Let i ≥ 2, and assume that there exists m ∈ M ′ such that (t − θ)di−1mi−1 = σm. Then we
have

(t− θ)Nmi = (t− θ)N−di · (t− θ)dimi = (t− θ)N−di
(
σmi −Q(−1)

i−1 (t− θ)di−1mi−1

)
= (t− θ)N−di

(
σmi −Q(−1)

i−1 σm
)

= σ(t− θq)N−di (mi −Qi−1m) ∈ σM ′.

�

In other words, the map δ0 ◦ ι factors through the following map still denoted by δ0 ◦ ι:

K[t]/
(
(t− θ)d1

)
× · · · ×K[t]/

(
(t− θ)dr

)
→ Kd.

Anderson gives a theorem (see [HJ16] and [NP18]) that states that there exists a unique
extension of the composition δ0 ◦ ι to vectors over the Tate algebra Tθ and he calls this
extension

δ̂0 ◦ ι : Mat1×r(Tθ)→ Kd.

With the above analysis of δ0 ◦ ι we can see concretely that the procedure for calculating the

extended map δ̂0 ◦ ι is the same as for the original. Namely, δ̂0 ◦ ι is given by composing the
following maps

Mat1×r(Tθ) ↪→ Mat1×r(K[[t− θ]]) �
r∏
i=1

K[[t− θ]]/
(
(t− θ)di

) ∼= r∏
i=1

K[t]/
(
(t− θ)di

) δ0◦ι−−→ Kd,

where the first embedding is via the following natural embedding componentwise

(2.4.3)

η : Tθ ↪→ K[[t− θ]]

∞∑
i=0

bit
i 7→ η(

∞∑
i=0

bit
i) :=

∞∑
i=0

(
∞∑
j=i

(
j

i

)
bjθ

j−i

)
(t− θ)i.

Note that η is injective. Indeed, assume that η(
∞∑
i=0

bit
i) = 0, and fix i0 ≥ 0. Since we have

∞∑
j=i0

(
j

i0

)
bjθ

j−i0 = 0 and the absolute value | · |∞ is non-archimedean, there exists i1 > i0

such that

|bi0|∞ ≤
∣∣∣∣(i1i0

)
bi1θ

i1−i0
∣∣∣∣
∞

and so

|bi0θi0|∞ ≤
∣∣∣∣(i1i0

)
bi1θ

i1

∣∣∣∣
∞
≤ |bi1θi1|∞.

Repeating this argument, we can take i0 < i1 < i2 < · · · such that |bi0θi0|∞ ≤ |bi1θi1|∞ ≤
|bi2θi2|∞ ≤ · · · . Since |biθi|∞ → 0, we have bi0 = 0. Therefore, η is injective. Moreover, we
can verify that the image of η is{

∞∑
i=0

bi(t− θ)i ∈ K[[t− θ]]
∣∣∣∣ ∣∣biθi∣∣∞ → 0

}
,

and we can construct η−1 directly.
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Since it does not cause any confusion, we will drop the hat notation and just use δ0 ◦ ι
for the extension. We now state Anderson’s theorem from his unpublished notes, which one
can find the statement and its proof in [HJ16, Cor. 5.20] and [NP18].

Theorem 2.4.4 (Anderson). For all g ∈ Mat1×r(Tθ) and w ∈ Mat1×r(C∞[t]) satisfying the
functional equation

(2.4.5) g(−1)Φ′ − g = w

one has

(2.4.6) ExpG (δ0 ◦ ι(g + w)) = δ1 ◦ ι(w).

3. General formulae

In this section, we fix an algebraically closed subfield K of C∞ containing K. Let r be a
positive integer, and fix an index s = (s1, . . . , sr) ∈ Nr with di defined in (2.3.5). Fix r − 1
polynomials Q1, . . . , Qr−1 ∈ K[t] and let Φ′ ∈ Matr(K[t]) be the matrix (2.3.4) defined using
Q1, . . . , Qr−1, and let G be the t-module over K associated to the dual t-motive M ′ defined
by Φ′ in Sec. 2.3.2.

3.1. Constructions of g and its convergnece. The aim of this subsection is to construct
a solution g ∈ Mat1×r(Tθ) of the difference equation (2.4.5) under certain conditions.

3.1.1. Gauss norms. First, we define a seminorm on Mat`,m(C∞) forB = (bi,j) ∈ Mat`,m(C∞)
by setting

‖B‖ = max
i,j
{|bi,j|∞} .

Note that the seminorm is only submultiplicative, i.e. for matrices B ∈ Matk,`(C∞) and
C ∈ Mat`,m(C∞)

‖BC‖ ≤ ‖B‖ · ‖C‖.
The above inequality also gives

‖B−1‖ ≥ (‖B‖)−1

for any invertible matrix B with entries in C∞. We also have identities and inequalities for
α ∈ C∞ and B,C ∈ Mat`,m(C∞)

‖αB‖ = |α|∞ · ‖B‖, ‖B + C‖ ≤ max {‖B‖, ‖C‖} .
Then, for α ∈ C×∞ we define the Tate algebra

(3.1.1) Tα =

{
∞∑
i=0

bit
i ∈ C∞[[t]]

∣∣∣∣ ∣∣biαi∣∣∞ → 0

}
.

If |α|∞ ≥ 1, then Tα is stable under the action f 7→ f (n) for each n ≥ 0. Define the Gauss
norm ‖·‖α on Tα by putting

‖f‖α := max
i

{
|biαi|∞

}
for f =

∑
i≥0 bit

i ∈ Tα. We then extend the Gauss norm to Mat`,m (Tα) by setting

‖h‖α = max
i,j
{‖hij‖α}

for h = (hij) ∈ Mat`,m (Tα). We mention that ‖h‖α coincides with ‖h‖ when h ∈ Mat`×m(C∞).
Then for h ∈ Matk,`(Tα) and k ∈ Mat`,m(Tα)

‖hk‖α ≤ ‖h‖α · ‖k‖α.
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Since Tα → T1;T 7→ αT is an isomorphism of normed algebras and T1 is complete (cf. [BGR84,
Sec. 1.4, Prop. 3]), Mat`,m(Tα) is complete under the Gauss norm ‖·‖α.

3.1.2. Definition of g and its convergence. We fix a vector w = (w1, . . . , wr) ∈ Mat1×r(K[t])
with

wi = ci,1(t− θ)di−1 + ci,2(t− θ)di−2 + · · ·+ ci,di , ci,j ∈ K, 1 ≤ i ≤ r,

then define

(3.1.2) g = w(1)(Φ
′−1)(1) + w(2)(Φ

′−1)(2)(Φ
′−1)(1) + w(3)(Φ

′−1)(3)(Φ
′−1)(2)(Φ

′−1)(1) + · · · .

A quick check shows that the general term w(n)(Φ
′−1)(n) · · · (Φ′−1)(1) is in Mat1×r(Tθ) and

under certain hypothesis on the polynomials Qi’s and w, it is shown to converge to zero
under the Gauss norm ‖·‖θ in the following proposition.

Proposition 3.1.3. Assume that ‖Qi‖1 ≤ q
siq

q−1 for each 1 ≤ i ≤ r − 1. Let w =

(w1, . . . , wr) ∈ Mat1×r(K[t]) be given above with the condition that |ci,j|∞ < qj+
di

q−1 for
each 1 ≤ i ≤ r and 1 ≤ j ≤ di. Then the formal series g defined in (3.1.2) converges in
Mat1×r(Tθ).

Proof. Let µi := degtQi. It is clear that ‖Q(n)
i ‖θ ≤ q

siq
n+1

q−1
+µi for each n ≥ 0. For each

n ≥ 1, we have
1

t− θqn
∈ Tθ and

∥∥∥∥ 1

t− θqn
∥∥∥∥
θ

= q−q
n
. From the definition of Φ′ immediately

following (2.3.4), we calculate that
(3.1.4)

Φ
′−1 =



1
(t−θ)d1 0 0 . . . 0

−Q(−1)
1

(t−θ)d2
1

(t−θ)d2 0 . . . 0

(Q1Q2)(−1)

(t−θ)d3
−Q(−1)

2

(t−θ)d3
1

(t−θ)d3 . . . 0
...

...
...

. . .
...

(−1)r−1(Q1...Qr−1)(−1)

(t−θ)dr
(−1)r−2(Q2...Qr−1)(−1)

(t−θ)dr
(−1)r−3(Q3...Qr−1)(−1)

(t−θ)dr . . . 1
(t−θ)dr


∈ Matr(K(t)).

So for each 1 ≤ ` ≤ r, the `-th component of w(n)(Φ
′−1)(n)(Φ

′−1)(n−1) · · · (Φ′−1)(1) is

r∑
i=`

w
(n)
i · (−1)i−`

∑
`=k0≤k1≤···≤kn=i

(Qk0 · · ·Qk1−1)(Qk1 · · ·Qk2−1)(1) · · · (Qkn−1 · · ·Qkn−1)(n−1)

(t− θq)dk1 (t− θq2)dk2 · · · (t− θqn)dkn

=
∑
`≤i≤r

1≤j≤di

(−1)i−`cq
n

i,j

∑
`=k0≤k1≤···≤kn=i

(Qk0 · · ·Qk1−1)(Qk1 · · ·Qk2−1)(1) · · · (Qkn−1 · · ·Qkn−1)(n−1)

(t− θq)dk1 (t− θq2)dk2 · · · (t− θqn−1)dkn−1 (t− θqn)j
.

Then we calculate the Gauss norm for the general term:∥∥∥∥(Qk0 · · ·Qk1−1)(Qk1 · · ·Qk2−1)(1) · · · (Qkn−1 · · ·Qkn−1)(n−1)

(t− θq)dk1 (t− θq2)dk2 · · · (t− θqn−1)dkn−1 (t− θqn)j

∥∥∥∥
θ

= qα



14 CHIEH-YU CHANG, NATHAN GREEN, AND YOSHINORI MISHIBA

where α satisfies

α ≤
n∑
a=1

ka−1∑
b=ka−1

(
sbq

a

q − 1
+ µb

)
−

n−1∑
a=1

dkaq
a − jqn

= (µk0 + · · ·+ µkn−1) +
n∑
a=1

dka−1 − dka
q − 1

qa −
n−1∑
a=1

dkaq
a − jqn

= (µ` + · · ·+ µi−1) +
dk0q

q − 1
+

n−1∑
a=1

dka

(
qa+1 − qa

q − 1
− qa

)
− dknq

n

q − 1
− jqn

= (µ` + · · ·+ µi−1) +
d`q

q − 1
−
(
j +

di
q − 1

)
qn.

Therefore we have∥∥∥w(n)(Φ
′−1)(n)(Φ

′−1)(n−1) · · · (Φ′−1)(1)
∥∥∥
θ
≤ max

1≤`≤i≤r
1≤j≤di

q(µ`+···+µi−1)+
d`q

q−1

(
|ci,j|

qj+
di

q−1

)qn
 ,

which goes to 0 as (n→∞). Since Tθ is complete with respect to ‖·‖θ, we have the desired
result.

�

Remark 3.1.5. Note that the condition on |ci,j|∞ coincides with [CM17, Prop. 4.2.2].

Remark 3.1.6. Note that from the definition one sees that g satisfies the difference equation

g(−1)Φ′ − g = w.

3.2. t-motivic Carlitz multiple star polylogarithms. Carlitz multiple polylogarithms
(CMPL’s) were introduced by the first author in [C14] and are generalizations of the Carlitz
polylogarithm of Anderson and Thakur from [AT90]. Carlitz multiple star polylogarithms
(CMSPL’s) were introduced by the first and third authors in [CM17] in order to connect
MZV’s with logarithms of t-modules.

Let L0 = 1 and for i ≥ 1 let Li = (θ − θq) . . . (θ − θqi) ∈ A. We also define deformations

L0 = 1 and Li = (t − θq) . . . (t − θqi) ∈ A[t], so that Li(θ) = Li. For s = (s1, . . . , sr) ∈ Nr,
we define the associated CMPL and CMSPL by

(3.2.1) Lis(z1, . . . , zr) =
∑

i1>···>ir≥0

zq
i1

1 . . . zq
ir

r

Ls1i1 . . . L
sr
ir

∈ K[[z1, . . . , zr]]

and

(3.2.2) Li?s(z1, . . . , zr) =
∑

i1≥···≥ir≥0

zq
i1

1 . . . zq
ir

r

Ls1i1 . . . L
sr
ir

∈ K[[z1, . . . , zr]].

Also the t-motivic CMPL and t-motivic CMSPL are defined by

(3.2.3) Lis(t; z1, . . . , zr) =
∑

i1>···>ir≥0

zq
i1

1 . . . zq
ir

r

Ls1i1 . . .L
sr
ir

∈ K[[t, z1, . . . , zr]]

and

(3.2.4) Li?s(t; z1, . . . , zr) =
∑

i1≥···≥ir≥0

zq
i1

1 . . . zq
ir

r

Ls1i1 . . .L
sr
ir

∈ K[[t, z1, . . . , zr]],
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and observe that Lis |t=θ = Lis and Li?s |t=θ = Li?s .

Given u = (u1, . . . , ur)
tr ∈ Kr, we note that

uq
i1

1 · · ·uq
ir

r

Ls1i1 · · ·L
sr
ir

∈ Tθ, and if for each 2 ≤ i ≤ r,

(3.2.5) |u1|∞ < q
s1q
q−1 and |ui|∞ ≤ q

siq

q−1

then

∥∥∥∥∥uq
i1

1 · · ·uq
ir

r

Ls1i1 · · ·L
sr
ir

∥∥∥∥∥
θ

→ 0, (i1 → ∞). Thus Lis(t;u1, . . . , ur) and Li?s(t;u1, . . . , ur) converge

in Tθ when specializating zi = ui for each i. In this situation, we simplify the notation by
putting

Lis,u(t) := Lis(t;u1, . . . , ur) ∈ K[[t]] and Li?s,u(t) := Li?s(t;u1, . . . , ur) ∈ K[[t]].

When r = 1 and s = 1, the series Li1,u(t) for u ∈ K
×

with |u|∞ < |θ|
q

q−1

θ was first
introduced by Papanikolas [P08] to relate the Carlitz logarithm at u to a period of certain
t-motive. It was then generalized by the first author and Yu [CY07] in the case of r = 1 and
s > 1 to study Carlitz zeta values. The general series Lis,u was further studied by the first
author [C14] to relate the CMPL’s at algebraic points to periods of certain t-motives. These
series play an essential role when applying the ABP-criterion [ABP04] for the CMPL’s at
algebraic points in question. See also [CPY19, M17].

3.3. Hyperderivatives. For any non-negative integer n, we define the nth hyperderivative
(with respect to t) ∂nt : C∞((t))→ C∞((t)) by

∂nt

(
∞∑
i=i0

ait
i

)
:=

∞∑
i=i0

(
i

n

)
ait

i−n,

where
(
i
n

)
refers to the usual binomial coefficient, but modulo p. From the definition one

sees that ∂nt is a C∞-linear operator and that ∂0
t is the identity map. We further note that

the hyperderivatives satisfy the product rule: for n ∈ N and f, g ∈ C∞((t)),

(3.3.1) ∂nt (fg) =
n∑
i=0

∂it(f) · ∂n−it (g).

In this paper, we are interested in Taylor coefficients of the series expansion of f ∈ Tθ
at t = θ, and the following proposition shows that such Taylor coefficients are expressed
as the hyperderivatives of f evaluated at t = θ (cf. [Pp, Lem. 2.4.1] in the case of rational
functions).

Proposition 3.3.2. For any f ∈ Tθ, we write η(f) =
∑∞

i=0 ai(t − θ)i. Then for any non-
negative integer n we have

an = ∂nt (f)|t=θ.

Proof. We define the nth hyperderivative ∂̄nt on C∞[[t− θ]] by

∂̄nt

(
∞∑
i=0

ai(t− θ)i
)

:=
∞∑
i=0

(
i

n

)
ai(t− θ)i−n.
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Then we claim that one has the following commutative diagram

Tθ �
� η

//

∂nt
��

C∞[[t− θ]]

∂̄nt
��

Tθ �
� η

//

t=θ $$

C∞[[t− θ]]

t=θ
��

C∞,

i.e., ∂̄nt (η(f)) = η(∂nt (f)) and f |t=θ = η(f)|t=θ(= constant term) for each f ∈ Tθ.
To prove the claim above, we first fix an f(t) =

∑∞
i=0 bit

i ∈ Tθ. Then we have

∂̄nt (η(f)) = ∂̄nt

(
∞∑
i=0

(
∞∑
j=i

(
j

i

)
bjθ

j−i

)
(t− θ)i

)
=
∞∑
i=n

(
i

n

)( ∞∑
j=i

(
j

i

)
bjθ

j−i

)
(t− θ)i−n

=
∞∑
i=0

(
i+ n

n

)( ∞∑
j=i

(
j + n

i+ n

)
bj+nθ

j−i

)
(t− θ)i

=
∞∑
i=0

(
∞∑
j=i

(
j

i

)(
j + n

n

)
bj+nθ

j−i

)
(t− θ)i = η

(
∞∑
i=0

(
i+ n

n

)
bi+nt

i

)

= η

(
∞∑
i=n

(
i

n

)
bit

i−n

)
= η(∂nt (f)),

where we use (
i+ n

n

)(
j + n

i+ n

)
=

(
j

i

)(
j + n

n

)
in the fourth equality. We also have

η(f)|t=θ =
∞∑
i=0

(
∞∑
j=i

(
j

i

)
bjθ

j−i

)
(t− θ)i

∣∣∣∣∣
t=θ

=
∞∑
j=0

(
j

0

)
bjθ

j = f |t=θ.

Then the desired result follows from the above commutativities:

∂nt (f)|t=θ = η(∂nt (f))|t=θ = ∂̄nt (η(f))|t=θ =
∞∑
i=n

(
i

n

)
ai(t− θ)i−n

∣∣∣∣∣
t=θ

= an.

�

Remark 3.3.3. Since under the hypothesis (3.2.5) the above series Lis,u and Li?s,u are in Tθ,
the hyperderivatives ∂jt Lis,u and ∂jtLi

?
s,u are still in Tθ for every positive integer j.
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Remark 3.3.4. Using the proposition above, we can rewrite δ0 ◦ ι(a) in Proposition 2.4.2 as

(3.3.5) δ0 ◦ ι(a) =



(∂d1−1
t a1)|t=θ



d1

...
(∂1
t a1)|t=θ
a1(θ)

(∂d2−1
t a1)|t=θ

d2

...
(∂1
t a2)|t=θ
a2(θ)

...
...

(∂dr−1
t ar)|t=θ

dr
...

(∂1
t ar)|t=θ
ar(θ)

.

Moreover, Theorem 2.4.4 can be reformulated via hyperderivatives as the following. Let the
notation be as given in Theorem 2.4.4 and put a := g + w. Then we have ExpG (δ0 ◦ ι(a)) =
δ1 ◦ ι(w), where δ0 ◦ ι(a) is given in (3.3.5).

For convenience, we extend these hyperderivatives to operators on vectors with entries in
C∞((t)). Precisely, for a positive integer m and for g1, . . . , gn ∈ C∞((t)) we define

(3.3.6) ∂mt [g1, . . . , gn] =


∂m−1
t (g1) . . . ∂m−1

t (gn)
...

...
∂1
t (g1) . . . ∂1

t (gn)
g1 . . . gn

 ∈ Matm×n(C∞((t))),

and for h ∈ C∞((t)) define

(3.3.7) dmt [h] =


h ∂1

t (h) ∂2
t (h) . . . ∂m−1

t (h)
0 h ∂1

t (h) . . . ∂m−2
t (h)

0 0 h . . . ∂m−3
t (h)

...
...

...
. . .

...
0 0 0 . . . h

 ∈ Matm(C∞((t))).

These matrices are all defined in [Pp, §2.5] and are called ∂-matrices and d-matrices, respec-
tively. We collect several facts about these matrices which are proved there.

Proposition 3.3.8. Let m be a positive integer. For any h, g1, . . . , gn ∈ C∞((t)), the following
hold.

(1) The d-matrices are multiplicative,

dmt [g1]dmt [g2] = dmt [g1g2].

(2) We can combine d-matrices and ∂-matrices as follows,

dmt [h]∂mt [g1, . . . , gn] = ∂mt [hg1, . . . , hgn].

(3) Viewed as maps, dmt [·] : C∞((t)) → Matm(C∞((t))) and ∂mt [·] : Mat1×n(C∞((t))) →
Matm×n(C∞((t))) are C∞-linear injections of vector spaces.



18 CHIEH-YU CHANG, NATHAN GREEN, AND YOSHINORI MISHIBA

3.4. The formulae. We continue the notation given at the beginning of this section.

3.4.1. The set up. Put

Θi,j := (−1)j−i
(Qi · · ·Qj−1)(−1)

(t− θ)dj
(i ≤ j) and xj :=

(
(t− θ)dj−1, (t− θ)dj−2, . . . , 1

)
and define

Θ :=

Θ1,1 · · · Θ1,r

. . .
...

Θr,r

 and X :=

x1

. . .
xr

 .

Note that
Θ = (Φ

′−1)tr ∈ Matr(K(t)), X ∈ Matr×d(A[t]).

We also define an operator

D :=

∂
d1
t

. . .

∂drt

 : Matr×d(K(t))→ Matd(K(t))

by mapping a1
...

ar

 7→
∂

d1
t [a1]

...
∂drt [ar]

 ,

where ai ∈ Mat1×d(K(t)) for each i.

3.4.2. The result. We continue the notation as above. The main result of this subsection is
the following identity.

Theorem 3.4.1. Assume that ‖Qi‖1 ≤ q
siq

q−1 for each 1 ≤ i ≤ r − 1. Let ci,j ∈ K satisfy the

condition that |ci,j|∞ < qj+
di

q−1 for each 1 ≤ i ≤ r and 1 ≤ j ≤ di. Let G be the t-module
defined in §2.3.2. Then the following identity holds:

ExpG

∑
n≥0

D(Θ(1)Θ(2) · · ·Θ(n)X(n))
∣∣
t=θ

 c1,1
...

cr,dr

(n)
 =

 c1,1
...

cr,dr

 .

Proof. Firstly, we remark that δ0 ◦ ι : Mat1×r(Tθ) → Kd is continuous. Indeed, let f =
(f1, . . . , fr) ∈ Mat1×r(Tθ) with fi =

∑∞
j=0 bi,jt

j. Since by Proposition 2.4.2 the (d1 + · · · +
di−1 + j)-th coordinate of δ0 ◦ ι(f) is∑

`≥di−j

(
`

di − j

)
bi,`θ

`−di+j

for each 1 ≤ i ≤ r and 1 ≤ j ≤ di, we have

‖δ0 ◦ ι(f)‖ ≤ max
1≤i≤r
1≤j≤di
`≥di−j

{∣∣bi,`θ`−di+j∣∣∞} ≤ max
1≤i≤r
1≤j≤di
`≥di−j

{∣∣bi,`θ`∣∣∞} = max
1≤i≤r
`≥0

{∣∣bi,`θ`∣∣∞} = ‖f‖θ.

Therefore, δ0 ◦ ι is continuous.
Now we consider

δ0 ◦ ι
(
w(n)(Φ

′−1)(n)(Φ
′−1)(n−1) · · · (Φ′−1)(1)

)
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with

w = (w1, . . . , wr), wj =

dj∑
`=1

cj,`(t− θ)dj−`.

We compute

(Φ
′−1)(n)(Φ

′−1)(n−1) · · · (Φ′−1)(1) = (φ<n>ij )i,j,

where

φ<n>i,j =

 (−1)i−j
∑

j=k0≤k1≤···≤kn=i

(Qk0 · · ·Qk1−1)(Qk1 · · ·Qk2−1)(1) · · · (Qkn−1 · · ·Qkn−1)(n−1)

(t− θq)dk1 (t− θq2)dk2 · · · (t− θqn)dkn
(i ≥ j)

0 (i < j)

.

Putting

(3.4.2) (c<n>1 (t), . . . , c<n>r (t)) := w(n)(Φ
′−1)(n)(Φ

′−1)(n−1) · · · (Φ′−1)(1),

then we have that

c<n>i (t) =
r∑
j=i

dj∑
`=1

cq
n

j,`(t− θ
qn)dj−`φ<n>j,i

=
r∑
j=i

(
(t− θqn)dj−1φ<n>j,i , (t− θqn)dj−2φ<n>j,i , . . . , φ<n>j,i

) cj,1
...

cj,dj

(n)

and hence

(3.4.3)

d<n>i :=


∂di−1
t c<n>i

...
∂1
t c
<n>
i

c<n>i


∣∣∣∣∣∣∣∣
t=θ

=
r∑
j=i

∂dit
[
(t− θqn)dj−1φ<n>j,i , (t− θqn)dj−2φ<n>j,i , . . . , φ<n>j,i

]∣∣
t=θ

 cj,1
...

cj,dj

(n)

=
r∑
j=i

∂dit
[
φ<n>j,i

(
(t− θqn)dj−1, (t− θqn)dj−2, . . . , 1

)]∣∣
t=θ

 cj,1
...

cj,dj

(n)

=
r∑
j=i

Υ<n>
i,j

∣∣
t=θ

 cj,1
...

cj,dj

(n)

=
(
0, . . . , 0,Υ<n>

i,i ,Υ<n>
i,i+1, . . . ,Υ

<n>
i,r

)∣∣
t=θ

 c1,1
...

cr,dr

(n)

,
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where

Υ<n>
i,j := ∂dit

[
φ<n>j,i

(
(t− θqn)dj−1, (t− θqn)dj−2, . . . , 1

)]
= ∂dit

[ ∑
i=k0≤k1≤···≤kn=j

(−1)k1−k0
Qk0 · · ·Qk1−1

(t− θq)dk1
· (−1)k2−k1

(Qk1 · · ·Qk2−1)(1)

(t− θq2)dk2
· · · ·

· · · · (−1)kn−kn−1
(Qkn−1 · · ·Qkn−1)(n−1)

(t− θqn)dkn

(
(t− θqn)dj−1, (t− θqn)dj−2, . . . , 1

)]
.

Note that the second equality of (3.4.3) comes from the definition of ∂-matrices (3.3.6), and
the last two equalities are from definitions.

Based on the definition (3.4.2), by Remark 3.3.4 we have that

δ0 ◦ ι
(
w(n)(Φ

′−1)(n)(Φ
′−1)(n−1) · · · (Φ′−1)(1)

)
=

d<n>1
...

d<n>r

 ,

and hence we derive the following from the calculations above:

δ0 ◦ ι
(
w(n)(Φ

′−1)(n)(Φ
′−1)(n−1) · · · (Φ′−1)(1)

)
=

d<n>1
...

d<n>r

 =

Υ<n>
1,1 · · · Υ<n>

1,r
. . .

...
Υ<n>
r,r


∣∣∣∣∣∣∣
t=θ

 c1,1
...

cr,dr

(n)

.

Recalling the definitions of Θ, {x1, · · · ,xr} , X and D given in Sec. 3.4.1, we have

Υ<n>
i,j = ∂dit

[
(Θ(1) · · ·Θ(n))ij · x(n)

j

]
,

whence we have

δ0 ◦ ι
(
w(n)(Φ

′−1)(n)(Φ
′−1)(n−1) · · · (Φ′−1)(1)

)
= D(Θ(1)Θ(2) · · ·Θ(n)X(n))

∣∣
t=θ

 c1,1
...

cr,dr

(n)

for each n ≥ 1. This equality also holds when n = 0. It follows by Theorem 2.4.4, Proposi-
tion 3.1.3 and Remark 3.1.6 that

(3.4.4) ExpG

∑
n≥0

D(Θ(1)Θ(2) · · ·Θ(n)X(n))
∣∣
t=θ

 c1,1
...

cr,dr

(n)
 =

 c1,1
...

cr,dr

 ,

since from the definition (2.3.11) of δ1 for the given w one has

δ1 ◦ ι(w) =

 c1,1
...

cr,dr

 .

�

Remark 3.4.5. Note that the shtuka function for the Carlitz module is f = t − θ ∈ A[t]
and that, in general, the shtuka function caries a great deal of arithmetic information (see
[T04, §7.7-8.2]). For example, for the nth tensor power of the Carlitz module, one defines
the associated dual t-motive as K[t] with σ-action given by

σx = fnx(−1), x ∈ K[t].
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Further, one can express the coefficients of the exponential and logarithm function in terms
of the reciprocal of the shtuka function. In the Carlitz module, for example, one has

(3.4.6) logC(z) =
∑
i≥0

zq
i

f (1) . . . f (i)

∣∣∣
t=θ
.

Note that the σ-action on our dual t-motive M ′ is defined by the matrix Φ′ (2.3.9), and that
Θ = (Φ

′−1)tr which invites one to make the natural comparison between our formula (3.4.4)
and the formula (3.4.6). This leads us to view the matrix Φ′ as a matrix analogue of the
shtuka function and motivates some of the constructions in this paper. There are several
other arithmetic applications of the shtuka function (see [GP16], [G17b] and [ANT17]), and
it would be interesting to study how they apply in this setting.

4. Hyperderivatives of t-motivic Carlitz multiple star polylogarithms

We continue with the notation as given in the previous section, but we restrict the Qi’s
to be in K in this section, i.e., we let Qi = ui ∈ K for i = 1, . . . , r and set

u = (u1, . . . , ur).

4.1. t-modules associated to CMSPL’s. We note that the t-module G = (Gd
a, ρ) asso-

ciated to the dual t-motive M ′ in Sec. 2.3.2 can be explicitly written down. We will use
this explicit description of G heavily going forward, so we take a moment to recall it from
[CM19]. Recall that d := d1 + · · ·+ dr. Let B be a d× d-matrix of the form B[11] · · · B[1r]

...
...

B[r1] · · · B[rr]

 ,

where B[`m] is a d` × dm-matrix for each ` and m and we call B[`m] the (`,m)-th block
sub-matrix of B.

For 1 ≤ ` ≤ m ≤ r, we define the following matrices:

(4.1.1) N` :=


0 1 0 · · · 0

0 1
. . .

...
. . . . . . 0

. . . 1
0

 ∈ Matd`(Fq),

(4.1.2) N :=


N1

N2

. . .
Nr

 ∈ Matd(Fq),

E[`m] :=


0 · · · · · · 0
...

. . .
...

0
. . .

...
1 0 · · · 0

 ∈ Matd`×dm(K) (if ` = m),
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E[`m] :=


0 · · · · · · 0
...

. . .
...

0
. . .

...

(−1)m−`
∏m−1

e=` ue 0 · · · 0

 ∈ Matd`×dm(K) (if ` < m),

E :=


E[11] E[12] · · · E[1r]

E[22]
. . .

...
. . . E[r − 1, r]

E[rr]

 ∈ Matd(K).

We then define the t-module G = Gs,u := (Gd
a, ρ) by

(4.1.3) ρ(t) = θId +N + Eτ ∈ Matd(K[τ ]),

and note that G depends only on u1, . . . , ur−1. Finally, we define the special point

(4.1.4) v := vs,u :=



0


d1

...
0

(−1)r−1u1 · · ·ur
0

d2

...
0

(−1)r−2u2 · · ·ur
...

...
0

dr
...
0
ur

∈ G(K).

It is not hard to see that either the t-module G is C⊗d1 if r = 1, or that G is an iterated
extension of the tensor powers of the Carlitz module if r > 1. Finally, we note that if
we take u = (u1, . . . , ur) ∈ Ar, then the t-module G is defined over A in the sense that
ρ(t) ∈ Matd(A[τ ]), and v ∈ G(A).

Remark 4.1.5. Let F be the category of Frobenius modules with morphisms given by left
K[t, σ]-module homomorphisms. One then sees that M is an extension of 1 by M ′, i.e.,
M ∈ Ext1

F (1,M ′). We can equip an Fq[t]-module structure on Ext1
F (1,M ′) and have the

following isomorphisms as Fq[t]-modules due to Anderson (see [CPY19]):

Ext1
F (1,M ′) ∼= M ′/(σ − 1)M ′ ∼= G(K).

The special point v is the image of M under the composite of the isomorphisms above. For
details, see [CPY19, CM19].
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Proposition 4.1.6. Let (G, ρ) be the t-module defined as above. Then for every polynomial
b(t) ∈ Fq[t], ∂ρ(b) is a block diagonal matrix with

ddit [b(t)]|t=θ =


b(θ) (∂1

t b) |t=θ · · ·
(
∂di−1
t b

)
|t=θ

. . . . . .
...

. . . (∂1
t b) |t=θ
b(θ)

 ∈ Matdi(K)

located at the ith block along the diagonal for i = 1, . . . , r.

Proof. Note that by definition of ρ we have

∂ρ(t) =

θId1 +N1

. . .
θIdr +Nr

 =

∂C⊗d1(t)
. . .

∂C⊗dr(t)


and also

∂C⊗di(t) = ddit [t]|t=θ
for each 1 ≤ i ≤ r. Since ∂ρ(·) is an Fq-linear ring homomorphism on Fq[t] and by Proposi-

tion 3.3.8 so is ddit [·] for all 1 ≤ i ≤ r, the desired result follows. �

The following lemma is a generalization of Yu’s last coordinate logarithms theory [Yu91,
Thm. 2.3] to our t-module G, and it will be used in the proof of the formulae given in the
next subsection.

Lemma 4.1.7. Fixing s = (s1, . . . , sr) ∈ Nr and u ∈ K
r
, let G be the t-module over K

defined in (4.1.3). For each 1 ≤ i ≤ r, we let di := si + · · · + sr. Suppose that we have two
vectors

Y =

Y1
...
Yr

 ∈ LieG(C∞) and V =

V1
...
Vr

 ∈ LieG(C∞)

with Yi, Vi ∈ Matdi×1(C∞) for each i so that

• ExpG(Y ) ∈ G(K) and ExpG(V ) ∈ G(K);
• the last coordinate of Yi equals the last coordinate of Vi for all 1 ≤ i ≤ r.

Then we have that Y = V .

Proof. We first note that when r = 1, G = C⊗d1 , otherwise from the explicit definition G
is an iterated extension of certain tensor powers of the Carlitz module. We can also see
this directly as follows, by using the dual t-motive M ′ whose σ-action on the basis m′ from
(2.3.3) is given by Φ′ (2.3.4). Note first that the t-module which corresponds to M ′ is G.
Then, we put G1 := C⊗d1 and Gr := G and for each 1 ≤ i ≤ r, we let Φ′i be the square
matrix of size i cut off from the upper left square of Φ′, let M ′

i be the dual t-motive whose
σ-action on a fixed C∞[t]-basis is given by Φ′i and let Gi be the t-module associated to M ′

i

as per Sec. 2.3. For each 2 ≤ i ≤ r we have the exact sequence of left C∞[t, σ]-modules

(4.1.8) 0 // M ′
i−1
� � // M ′

i
// // C⊗di // 0 .

Recall that M ′
i/(σ−1)M ′

i
∼= Gi(C∞) and C⊗di/(σ−1)C⊗di ∼= C⊗di(C∞) as Fq[t]-modules.

Since the Fq[t]-linear map (σ − 1) : C⊗di → C⊗di is injective, the snake lemma combined
with the two previously mentioned facts show the following exact sequence of t-modules
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0 // Gi−1
� � ιi

// Gi
πi
// // C⊗di // 0

induced from (4.1.8), where πi is the projection map onto the last di coordinates which also
equals ∂πi (cf. proof of [CPY19, Prop. 6.1.1]).

We prove the lemma by induction on the depth r. When r = 1, we consider

Y − V =

∗...
0

 ,

which is mapped to an algebraic point of C⊗d1 via ExpC⊗d1 by the hypotheses on Y and V .
Since the last coordinate of Y − V is zero, we have Y = V by [Yu91, Thm. 2.3].

Suppose that the result is valid for all r ≤ n − 1 for a positive integer n ≥ 2. Now we
consider the case when r = n. In this case, we consider the following commutative diagram

0 // Gr−1
� � ιr

// G
πr
// // C⊗dr // 0

0 // LieGr−1
� � ∂ιr //

ExpGr−1

OO

LieG
∂πr
// //

ExpG

OO

Lie C⊗dr //

Exp
C⊗dr

OO

0.

Note that

∂πr (Y − V ) = Yr − Vr =

∗...
0

 ,

which is mapped to an algebraic point of C⊗dr via ExpC⊗dr . It follows again by [Yu91,
Thm. 2.3] that Yr = Vr. Hence the Y − V are of the form

Y − V =


Y1 − V1

...
Yr−1 − Vr−1

0

 ∈ Ker ∂πr = LieGr−1.

Using the commutative diagram above, by the hypotheses on Y and V , the vector Y − V
is mapped to an algebraic point of Gr−1 via ExpGr−1

. Then, since Gr−1 is defined using
the index (s1, . . . , sr−2, sr−1 + sr) of depth r − 1 and since the last coordinates of Yi and Vi
are the same for all 1 ≤ i ≤ r − 1, by induction hypothesis we obtain that Yi = Vi for all
1 ≤ i ≤ r − 1. Combining this with Yr = Vr, the desired equality Y = V follows. �

4.2. The explicit formulae. In [CM17], CMSPL’s are related to certain coordinates of
the logarithm of G evaluated at v under certain assumptions on the absolute values of the
coordinates of u. We first recall the result [CM17, Thm. 4.2.3].

Theorem 4.2.1 (C.-M.). Given any s = (s1, . . . , sr) ∈ Nr, we let u = (u1, . . . , ur) ∈ Cr
∞

with |ui|∞ ≤ q
siq

q−1 for each 1 ≤ i ≤ r−1 and |ur|∞ < q
srq
q−1 . Let G and v be defined in (4.1.3)

and (4.1.4) respectively using s and u. Then LogG converges ∞-adically at v and we have
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the formula

LogG(v) =



∗


d1

...
∗

(−1)r−1 Li?(sr,...,s1)(ur, . . . , u1)
∗

d2

...
∗

(−1)r−2 Li?(sr,...,s2)(ur, . . . , u2)
...

...
∗

dr
...
∗

Li?sr(ur)

∈ LieG(C∞).

In particular, the (s1 + · · ·+ sr)th coordinate of LogG(v) is (−1)dep(s)−1 Li?s̃(ũ).

The primary result in this section is to give explicit formulae for the (previously unknown)
∗-coordinates in the theorem above.

Theorem 4.2.2. Let the notation and assumptions be given as in Theorem 4.2.1. For each
1 ≤ i ≤ r, we let di := si + · · ·+ sr and set d := d1 + · · ·+ dr. Define

Ys,u :=

Y1
...
Yr

 ∈ Matd×1(C∞),

where for each 1 ≤ i ≤ r, Yi is given by

Yi =


(−1)r−i

(
∂di−1
t Li?(sr,...,si),(ur,...,ui)(t)

)
|t=θ

(−1)r−i
(
∂di−2
t Li?(sr,...,si),(ur,...,ui)(t)

)
|t=θ

...
(−1)r−i

(
∂0
tLi

?
(sr,...,si),(ur,...,ui)

(t)
)
|t=θ



=


(−1)r−i

(
∂di−1
t Li?(sr,...,si),(ur,...,ui)(t)

)
|t=θ

(−1)r−i
(
∂di−2
t Li?(sr,...,si),(ur,...,ui)(t)

)
|t=θ

...
(−1)r−i Li?(sr,...,si)(ur, . . . , ui)

 ∈ Matdi×1(C∞).

Then we get the following formula for the logarithm evaluated at v

LogG(v) = Ys,u ∈ LieG(C∞).

Proof. Since LogG(v) and Ys,u are continuous on u (see [CM19, Equation 3.2.4]), and K

is dense in C∞, we may assume that u ∈ K
r
. Our starting point is Theorem 3.4.1. We

calculate that

D(Θ(1)Θ(2) · · ·Θ(n)X(n))v(n) =

βn,1...
βn,r

 ,
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where βn,i ∈ Matdi×1(C∞(t)) for 1 ≤ i ≤ r is given by

βn,i =
r∑
j=i

∂dit

[
(−1)j−i

∑
i=k0≤···≤kn=j

(uk0 · · ·uk1−1) · · · (ukn−1 · · ·ukn−1)q
n−1

(t− θq)dk1 · · · (t− θqn)dkn
· (−1)r−j(uj · · ·ur)q

n

]

= (−1)r−i∂dit

 ∑
i=k0≤···≤kn≤r

(uk0 · · ·uk1−1)(uk1 · · ·uk2−1)q · · · (ukn−1 · · ·ukn−1)q
n−1

(ukn · · ·ur)q
n

Ldknn (t− θ)dkn−dk0
∏

0≤a≤n−1

(t− θqa)dka−dkn



= (−1)r−i∂dit

 ∑
i=k0≤···≤kn≤r

(uk0 · · ·uk1−1)(uk1 · · ·uk2−1)q · · · (ukn−1 · · ·ukn−1)q
n−1

(ukn · · ·ur)q
n

Ldknn (t− θ)dkn−dk0
∏

0≤a≤b≤n−1

(t− θqa)dkb−dkb+1



= (−1)r−i∂dit

 ∑
i=k0≤···≤kn≤r

(uk0 · · ·uk1−1)(uk1 · · ·uk2−1)q · · · (ukn−1 · · ·ukn−1)q
n−1

(ukn · · ·ur)q
n

Ldknn (t− θ)dkn−dk0
∏

0≤b≤n−1

((t− θ)Lb)dkb−dkb+1


= (−1)r−i∂dit

[ ∑
i=k0≤···≤kn≤r

(uk0 · · ·uk1−1)(uk1 · · ·uk2−1)q · · · (ukn−1 · · ·ukn−1)q
n−1

(ukn · · ·ur)q
n

Lsk0+···+sk1−1

0 Lsk1+···+sk2−1

1 · · ·Lskn−1
+···+skn−1

n−1 Lskn+···+sr
n

]
.

Note that for n ≥ 0 and 1 ≤ i ≤ r, we have a bijective map of sets

{(k0, . . . , kn) | i = k0 ≤ · · · ≤ kn ≤ r)} → {(mi, . . . ,mr) | 0 ≤ mi ≤ · · · ≤ mr = n}

given by mj = max{`|k` ≤ j} and is explained by the following table.

j k0 = i · · · k1 − 1 k1 · · · k2 − 1 k2 · · · k3 − 1 k3 · · · kn − 1 kn · · · r
mj 0 · · · 0 1 · · · 1 2 · · · 2 3 · · · n− 1 n · · · n

The converse of the map is given by k` = i+ #{j|mj < `}.
Therefore we can express βn,i as the following:

βn,i = (−1)r−i∂dit

[ ∑
0≤mi≤···≤mr=n

uq
mi

i · · ·uqmr

r

Lsimi · · ·Lsrmr

]
.

Thus, summing βn,i over n ≥ 0 gives

∞∑
n=0

βn,i = (−1)r−i∂dit

[ ∑
0≤mi≤···≤mr

uq
mi

i . . . uq
mr

r

Lsimi . . .Lsrmr

]
= (−1)r−i∂dit

[
Li?(sr,...,si)(t;ur, . . . , ui)

]
.

Note that the first equality comes from the continuity of of the map ∂dit [·] : Tθ → Matdi×1(Tθ),
which is clear from the definition of ∂dit [·]. To finish the proof, we note that evaluating at
t = θ gives

∞∑
n=0

D(Θ(1)Θ(2) · · ·Θ(n)X(n))
∣∣
t=θ

v(n) =
∞∑
n=0

βn,1...
βn,r

∣∣∣∣∣∣
t=θ

=

Y1
...
Yr
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and so by Theorem 3.4.1 we have

ExpG

Y1
...
Yr

 = v.

Then the desired result follows from Lemma 4.1.7 since ExpG(LogG(v)) = v and that the
(d1 + · · ·+ di)th coordinates of LogG(v) and Ys,u coincide with (−1)r−i Li?(sr,...,si)(ur, . . . , ui)
for each i. �

Remark 4.2.3. In the case of r = 1, the formulae above are due to Papanikolas. See [Pp,
Prop. 4.3.6] and also [Pp, (4.3.1)].

Corollary 4.2.4. Let notation and assumptions be given in Theorem 4.2.1 and Theorem 4.2.2.
Then for any polynomial b ∈ Fq[t], we have

∂ρ(b) LogG(v) = ∂ρ(b)Ys,u =

∂C⊗d1(b) (Y1)
...

∂C⊗dr(b) (Yr)

 ∈ Matd(C∞),

where for each 1 ≤ i ≤ r, ∂C⊗di(b) (Yi) is explicitly given by the following formula

∂C⊗di(b) (Yi) =


(−1)r−i

(
∂di−1
t bLi?(sr,...,si),(ur,...,ui)(t)

)
|t=θ

(−1)r−i
(
∂di−2
t bLi?(sr,...,si),(ur,...,ui)(t)

)
|t=θ

...
(−1)r−i

(
∂0
t bLi

?
(sr,...,si),(ur,...,ui)

(t)
)
|t=θ



=


(−1)r−i

(
∂di−1
t bLi?(sr,...,si),(ur,...,ui)(t)

)
|t=θ

(−1)r−i
(
∂di−2
t bLi?(sr,...,si),(ur,...,ui)(t)

)
|t=θ

...
(−1)r−ib(θ) Li?(sr,...,si)(ur, . . . , ui)

 ∈ Matdi×1(C∞).

Proof. The proof follows from Proposition 3.3.8(2) together with Theorem 4.2.2 and Propo-
sition 4.1.6. �

5. t-motivic MZV’s

In [T04], Thakur defined the∞-adic MZV’s that are generalizations of Carlitz zeta values.
For any index s = (s1, . . . , sr) ∈ Nr,

ζA(s) :=
∑ 1

as11 · · · asrr
∈ K∞,

where a1, . . . , ar run over all elements of A+ for which |a1|∞ > · · · > |ar|∞. Similarly as in the
classical theory, the weight and the depth of the presentation ζA(s) are defined as wt(s) and
dep(s) respectively. In [CM17], the quantity ΓsζA(s) is expressed as a linear combination of
CMSPL’s at certain integral points, and the purpose of this section is to deform this identity
to an identity of power series.

5.1. Definition of t-motivic MZV’s.
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5.1.1. Anderson-Thakur polynomials. For any non-negative integer n, we let Hn(t) ∈ A[t] be
the Anderson-Thakur polynomial defined in [AT90, AT09], but we follow the notation given
in [C14, CPY19]. Namely, we first let x, y be two independent variables and put G0(y) := 1
and define the polynomials Gn(y) ∈ Fq[t, y] for positive integers n by

Gn(y) :=
n∏
i=1

(tq
n − yqi).

Put D0 := 1 and Di :=
∏i−1

j=0(θq
i − θqj) ∈ A for i ∈ N. For any non-negative integer n,

recall that the Carlitz factorial is defined by

(5.1.1) Γn+1 :=
∞∏
i=0

Dni
i ∈ A

where the ni ∈ Z≥0 are given by writing the base q-expansion n =
∑∞

i=0 niq
i for 0 ≤ ni ≤

q− 1. We then define the sequence of Anderson-Thakur polynomials [AT90] Hn(t) ∈ A[t] by
the following generating function identity,(

1−
∞∑
i=0

Gi(θ)

Di|θ=t
xq

i

)−1

=
∞∑
n=0

Hn(t)

Γn+1|θ=t
xn.

For any non-negative integer d, we denote by Ad,+ the set of elements of degree d in A+.
Anderson and Thakur showed in [AT90] that for any positive integer s,

(5.1.2) ‖Hs−1(t)‖1 < |θ|
sq
q−1
∞ ,

and that the interpolation formula holds for every d ∈ Z≥0:

(5.1.3)
H

(d)
s−1(θ)

Lsd
= Γs ·

∑
a∈Ad,+

1

as
.

5.1.2. The definition of t-motivic MZV’s. Recall that L0 := 1 and Li := (t− θq) · · · (t− θqi)
for any positive integer i. We now define t-motivic multiple zeta values.

Definition 5.1.4. For any index s = (s1, . . . , sr) ∈ Nr, we define its associated t-motivic
multiple zeta value by the following series

ζmot
A (s) :=

∑
i1>···>ir≥0

H
(i1)
s1−1 · · ·H

(ir)
sr−1

Ls1i1 · · ·L
sr
ir

∈ Tθ.

We fix a fundamental period π̃ of the Carlitz Fq[t]-module C, i.e., Ker ExpC = A · π̃. Put

Ω(t) := (−θ)
−q
q−1

∞∏
i=1

(
1− t

θqi

)
∈ C∞[[t]],

where (−θ)
1

q−1 is a suitable choice of (q − 1)-st root of −θ so that 1
Ω(θ)

= π̃ (see [ABP04,

AT09]). We note that Ω satisifies the functional equation

Ω(1) = Ω/(t− θq),
and hence

Ωs1+···+sr · ζmot
A (s) =

∑
i1>···>ir≥0

(Ωs1Hs1−1)(i1) · · · (ΩsrHsr−1)(ir),

which was studied in [AT09].
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Remark 5.1.5. By the Anderson-Thakur’s interpolation formula (5.1.3) we have that

(5.1.6) ζmot
A (s)|t=θ = ΓsζA(s),

where Γs := Γs1 · · ·Γsr . Note that Ωs1+···+srζmot
A (s) is an entire power series (see [AT09,

CPY19]). Since Ω is entire on C∞ with simple zeros at t = θq, θq
2
, · · · , the series ζmot

A (s) lies
in Tθ and hence ∂jt ζ

mot
A (s) ∈ Tθ for every positive integer j.

5.2. Explicit formulae for t-motivic MZV’s. For any index s = (s1, . . . , sr) ∈ Nr, com-
bining Anderson-Thakur’s work on the interpolation formula with [CM17, Thm. 5.2.5] we
can express ζA(s) as

(5.2.1) ΓsζA(s) =
Ts∑
`=1

b`(θ) · (−1)dep(s`)−1 Li?s`(u`),

for some number Ts ∈ N, explicit coefficients b`(t) ∈ Fq[t], explicit indexes s` ∈ Ndep(s`) with
dep(s`) ≤ dep(s) and wt(s`) = wt(s) and explicit integral points u` ∈ Adep(s`).

Remark 5.2.2. We mention in this remark that each value Li?s`(u`) occurring in (5.2.1) is

non-vanishing (when u` ∈ (A \ {0})dep(s`)). We simply argue as follows. For any index
s = (s1, . . . , sr) ∈ Nr, we put

D′s :=
{

(z1, . . . , zr) ∈ Cr
∞; |zi|∞ < q

siq

q−1 for i = 1, . . . , r
}

and

D′′s :=
{

(z1, . . . , zr) ∈ Cr
∞ : |z1|∞ < q

s1q
q−1 and |zi|∞ ≤ q

siq

q−1 for i = 2, . . . , r
}
.

Then for any u = (u1, . . . , ur) ∈ D′′s , by [C14, Rem. 5.1.4] the absolute value of the general
terms of Li?s(u) is given by∣∣∣∣∣uq

i1

1 . . . uq
ir

r

Ls1i1 . . . L
sr
ir

∣∣∣∣∣
∞

= q
q

q−1
(s1+···+sr) ·

∣∣∣ u1

θs1q/(q−1)

∣∣∣qi1
∞
· · ·
∣∣∣ ur
θsrq/(q−1)

∣∣∣qir
∞
.

Therefore the absolute values above have a unique maximal one when i1 = · · · = ir = 0
for any u ∈ D′′s ∩ (C×∞)r. Note that u` ∈ D′s` ⊂ D′′s` by (5.1.2) and [CM17, Prop. 5.2.2 and
Rmk. 5.2.6], whence Li?s`(u`) 6= 0.

The aim of this section is to deform the identity (5.2.1) to an identity of power series.

Lemma 5.2.3. Fix an index s = (s1, . . . , sr) ∈ Nr. Let (s`,u`, b`(t)) and Ts be given in
(5.2.1). Then we have the following identity

(5.2.4) ζmot
A (s) =

Ts∑
`=1

b`(t) · (−1)dep(s`)−1Li?s`,u`
.

5.2.1. Formula of ζmot
A (s) in terms of Lis,u. We will give the proof of Lemma 5.2.3 shortly,

but first we discuss some new ideas in order to connect ζmot
A (s) to Lis,u. Fix an index

s = (s1, . . . , sr) ∈ Nr. For each 1 ≤ i ≤ r, we expand the Anderson-Thakur polynomial
Hsi−1(t) as

Hsi−1(t) =

ni∑
j=0

uijt
j,
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where uij ∈ A with |uij|∞ < |θ|
siq

q−1
∞ and uini

6= 0. Following the notation of [CM17] we define

Js := {0, 1, . . . , n1} × · · · × {0, 1, . . . , nr} .

For each j = (j1, . . . , jr) ∈ Js, we put

(5.2.5) uj := (u1j1 , . . . , urjr) ∈ Ar and aj(t) := tj1+···+jr ∈ Fq[t].

One then observes that

H
(i1)
s1−1 · · ·H

(ir)
sr−1 =

(
n1∑
j=0

uq
i1

1j t
j

)
· · ·

(
nr∑
j=0

uq
ir

rj t
j

)
=

∑
j=(j1,...,jr)∈Js

aj(t)u
qi1
1j1
· · ·uq

ir

rjr
.

Dividing the above equality by Ls1i1 · · ·L
sr
ir

and then summing over all i1 > · · · ir ≥ 0 we find
the following identity from the definitions of ζmot

A (s) and Lis,u.

Proposition 5.2.6. Let s = (s1, . . . , sr) ∈ Nr and let Js be defined as above. Then we have
the following identity

(5.2.7) ζmot
A (s) =

∑
j∈Js

aj(t)Lis,uj
.

Remark 5.2.8. When we specialize the both sides of (5.2.7) at t = θ, then we obtain the
identity

(5.2.9) ΓsζA(s) =
∑
j∈Js

aj(θ) Lis(uj)

given in [C14, Thm. 5.5.2].

5.2.2. Review of the identity (5.2.1). We first mention that the arguments of proving the
identity (5.2.4) are essentially the same as the arguments of deriving (5.2.1), and so we
quickly review the ideas how we derive (5.2.1). As we have the formula (5.2.9), it suffices to
express the CMPL Lis(uj) of the right hand side of (5.2.9) in terms of linear combination of
Li?s` with coefficients ±1. It is easy to achieve this goal by using inclusion-exclusion principle
on the set

{i1 > · · · > ir ≥ 0} .
Note that the coefficients b`(θ) arise from some aj(θ) up to ±1.

5.2.3. Proof of Lemma 5.2.3. Now we prove the identity (5.2.4). First, we start with the
identity (5.2.7). We then use inclusion-exclusion principle on the set

{i1 > · · · > ir ≥ 0}

to express the Lis,uj
of the right hand side of (5.2.7) as a linear combinations of Li?s`,u`

with
coefficients ±1. Since such a procedure is completely the same as in Sec. 5.2.2 and since the
coefficients of the right hand side of (5.2.7) and (5.2.9) are the same when replacing t by θ,
by going through the details we obtain the desired formula (5.2.4).

Remark 5.2.10. The formula (5.2.4) will be used in the proof of Theorem 6.2.1. The key idea
of the proof is that formula (5.2.4) is the deformation of (5.2.1). In the proof of Theorem 6.2.1
we do not need to know the precise coefficients b`, so we avoid presenting the repetitive details
given in [CM17, p. 23]. One certainly could write down the precise coefficients b` by going
through the procedure mentioned above.
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6. Explicit formulae for Zs

For a given index s = (s1, . . . , sr) ∈ Nr, in [CM17] one explicitly constructs a uniformizable
t-module Gs defined over A, a special point vs ∈ Gs(A) and a vector Zs ∈ LieGs(C∞) so
that

• ExpGs
(Zs) = vs, and

• the d1th coordinate of Zs gives ΓsζA(s),

where we recall that di := si + · · ·+ sr for i = 1, . . . , r. The purpose of this section is to give
explicit formulae for all coordinates of Zs in terms of hyperderivatives of t-motivic MZV’s
and t-motivic CMSPL’s.

6.1. Review of the constructions of Gs,vs, Zs. In this subsection, for a fixed index
s = (s1, . . . , sr) ∈ Nr we recall the constructions of the t-module Gs defined over A, the
special point vs ∈ Gs(A) and the vector Zs ∈ LieGs(C∞) given in [CM17].

6.1.1. Review of fiber coproducts of dual t-motives. Let K ⊂ C∞ be an algebraically closed
subfield containing K. Fix a dual t-motive N, and let {M1, . . . ,MT} be dual t-motives so
that we have an embedding N ↪→Mi as left K[t, σ]-modules and the quotient Mi/N is either
zero or a dual t-motive for each i. Let n be a K[t]-basis of N and denote by ni the image
of n under the embedding N ↪→Mi. Under the assumptions on Mi, we note that for each i
the set ni is either a K[t]-basis of Mi or can be extended to a K[t]-basis of Mi.

We define M to be the fiber coproduct of {Mi}Ti=1 over N denoted by M1 tN · · · tN MT .
As a left K[t]-module, M is defined by the following quotient module

M :=
T⊕
i=1

Mi/
(
SpanK[t]

{
x′i − x′j| ∀ x ∈ n ∀1 ≤ i, j ≤ T

})
,

where x′i denotes the image of x under the embedding N ↪→Mi for i = 1, . . . , T . It is shown in
[CM17, Sec. 2.4.2] that the K[t]-module

(
SpanK[t]

{
x′i − x′j| ∀ x ∈ n ∀1 ≤ i, j ≤ T

})
is stable

under the σ-action, and hence M is a left K[t, σ]-module. In fact, M is shown to be a dual
t-motive.

6.1.2. The set up. Recall the formula ΓsζA(s) =
∑Ts

`=1 b`(θ) · (−1)dep(s`)−1 Li?s`(u`) given in
(5.2.1). To simplify notation we fix T = Ts and let s be the cardinality of those triples
(s`,u`, b`(θ)) with dep(s`) = 1. We then renumber the indexes ` of {1, . . . , T} such that

• 1 ≤ ` ≤ s if dep(s`) = 1, and
• s+ 1 ≤ ` ≤ T for dep(s`) ≥ 2,

where ` corresponds to the triple (s`,u`, b`(θ)).
Now for each 1 ≤ ` ≤ T we define matrices Φ` ∈ Matdep(s`)+1(K[t]) and Φ′` ∈ Matdep(s`)(K[t])

using the dep(s`)-tuple s̃` (recall that ·̃ reverses the order of the tuple) as in (2.3.2) and (2.3.4),
respectively, with Q = ũ`. Further, define the Frobenius module M` and the dual t-motive
M ′

` as in Sec. 2.3 with sigma actions given by Φ` and Φ′`, respectively. For each (s̃`, ũ`), let
(G`, ρ`) be the t-module associated to M ′

`, i.e., ρ` is given in (4.1.3), and let v` be the special
point of G` given in (4.1.4). Note that v` arises from M` by Remark 4.1.5.

Since each ũ` is an integral point, by Sec. 4.1 we see that G` is defined over A and
v` ∈ G`(A). Note further that by [CM17, Thm. 4.2.3] the logarithm LogG`

converges at the
special point v`, and the d1th coordinate of LogG`

(v`) is equal to

(−1)dep(s`)−1 Li?s`(u`),
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where d1 := wt(s) = wt(s`) for all `. Finally, we put Z` := LogG`
(v`) for each `. We note

that the above setting is the same as [CM17, p. 24-25].

6.1.3. The t-module Gs. For each `, we let ρ` be the map defining the t-module structure on
G`. By (4.1.3) we see that if ` ≥ s + 1, ρ`(t) is a right upper triangular block matrix with
[t]d1 located as upper left square. So ρ`(t) has the shape

ρ`(t) =

(
[t]d1 F`

ρ`(t)
′

)
,

where F` and ρ′` are matrices over A[τ ] which one could calculate explicitly, but going forward
we only need to know that [t]d1 is the top left block without knowing the precise sizes of F`
and ρ′`. Note that if ` ≤ s then ρ`(t) = [t]d1 . We define the t-module (Gs, ρ) defined over A
to be the t-module associated to the dual t-motive

Ms = M ′
1 tC⊗d1 · · · tC⊗d1 M

′
T ,

which is the fiber coproduct of the dual t-motives {M ′
`}
T
`=1 over C⊗d1 . We claim that ρ(t) is

a block upper triangular matrix given by

(6.1.1)


[t]d1 Fs+1 · · · FT

ρs+1(t)′

. . .
ρT (t)′

 ,

where again Fi and ρ′i are certain matrices over A[τ ] whose exact description we do not
require going forward. We will prove the above claim after giving a brief definition.

Definition 6.1.2. For any vector z ∈ Matn×1(C∞) with n ≥ d1, we define ẑ as the vector of
the first d1 coordinates of z, and z− as the vector of the remaining n− d1 coordinates, i.e.,

z =

(
ẑ
z−

)
for which ẑ is of length d1 and z− is of length n− d1.

To prove the claim, we note that from the construction of fiber coproducts of dual t-motives
there is a natural morphism of t-modules

π :
T⊕
`=1

G` → Gs

given by

(z1, . . . , zT ) 7→

(
T∑
`=1

ẑtr
` , z

tr
s+1−, . . . , z

tr
T −

)tr

.

Note further that given a point z ∈ Gs, we can pick a suitable point z` ∈ G` for each
1 ≤ ` ≤ T so that ẑ` = 0 for all ` 6= s + 1 and π (z1, . . . , zT ) = z. Since π is a morphism of
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t-modules, we have

ρ(t)(z) = ρ(t) (π (z1, . . . , zT )) = π (ρ1(t)(z1), . . . , ρT (t)(zT ))

= π

(
0, . . . ,0,

(
[t]d1 ẑs+1 + Fs+1zs+1−

ρs+1(t)′zs+1−

)
,

(
Fs+2zs+2−
ρs+2(t)′zs+2−

)
, . . . ,

(
FTzT−
ρT (t)′zT−

))

=


[t]d1 ẑs+1 +

T∑
`=s+1

F`z`−

ρs+1(t)′zs+1−
...

ρT (t)′zT−

 =


[t]d1 Fs+1 · · · FT

ρs+1(t)′

. . .
ρT (t)′




ẑs+1

zs+1−
...

zT−



=


[t]d1 Fs+1 · · · FT

ρs+1(t)′

. . .
ρT (t)′

 z.

Finally, we mention that the special point vs ∈ Gs(A) and the vector Zs ∈ LieGs(C∞) in
[CM17] are defined by

vs := π ((ρ1(b1(t))(v1), . . . , ρT (bT (t))(vT )))

and

Zs := ∂π ((∂ρ1(b1(t))Z1, . . . , ∂ρT (bT (t))ZT )) ,

and one has the fact [CM17, Thm. 1.2.2] that

ExpGs
(Zs) = vs.

6.2. The main result. The primary result of this paper is stated as follows.

Theorem 6.2.1. For any index s = (s1, . . . , sr) ∈ Nr, we let d1 := s1 + · · · + sr and let
Zs ∈ LieGs(C∞) be the vector given as above. For each s+ 1 ≤ ` ≤ T , we set

Y` := Ys̃`,ũ`
,

which is defined in Theorem 4.2.2. Then Zs has the following explicit formula

Zs =



(
∂d1−1
t ζmot

A (s)
)
|t=θ

...
(∂1
t ζ

mot
A (s)) |t=θ

ζmot
A (s)|t=θ

(∂ρs+1(bs+1)(Ys+1))−
...

(∂ρT (bT )(YT ))−


=



(
∂d1−1
t ζmot

A (s)
)
|t=θ

...
(∂1
t ζ

mot
A (s)) |t=θ
ΓsζA(s)

(∂ρs+1(bs+1)(Ys+1))−
...

(∂ρT (bT )(YT ))−


,

where b` ∈ Fq[t] is given in (5.2.4) and ∂ρ`(b`) (Y`) is explicitly given in Corollary 4.2.4 for
each s+ 1 ≤ ` ≤ T , and the notation (·)− is defined in Definition 6.1.2.
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Proof. Note that by Proposition 4.1.6, ∂ρ`(b`) is given explicitly as diagonal block matrices,
and the first block matrix is given by

(6.2.2)


b`(θ) (∂1

t b`) |t=θ · · ·
(
∂d1−1
t b`

)
|t=θ

. . . . . .
...

. . . (∂1
t b`) |t=θ
b`(θ)

 .

Recall by Theorem 4.2.2 that Z` =

(
Ẑ`
Z`−

)
, where

Ẑ` =


(−1)dep(s`)−1

(
∂d1−1
t Li?s`,u`

)
|t=θ

...
(−1)dep(s`)−1

(
∂1
tLi

?
s`,u`

)
|t=θ

(−1)dep(s`)−1
(
Li?s`,u`

)
|t=θ

 =


(−1)dep(s`)−1

(
∂d1−1
t Li?s`,u`

)
|t=θ

...
(−1)dep(s`)−1

(
∂1
tLi

?
s`,u`

)
|t=θ

(−1)dep(s`)−1Li?s`(u`)

 .

Since Zs := ∂π (∂ρ1(b1(t))Z1, . . . , ∂ρT (bT (t))ZT ), by the definition of π we have

(6.2.3) Zs =

(
T∑
`=1

̂∂ρ`(b`)(Z`)
tr,
(
∂ρs+1(bs+1)(Zs+1)tr

)
− , . . . ,

(
∂ρT (bT )(ZT )tr

)
−

)tr

.

Recall that ∂ρ`(b`) is a diagonal block matrix with the first block given as (6.2.2), whence
we have that∑T

`=1
̂∂ρ`(b`)(Z`)

=
∑T

`=1


b`(θ) (∂1

t b`) |t=θ · · ·
(
∂d1−1
t b`

)
|t=θ

. . . . . .
...

. . . (∂1
t b`) |t=θ
b`(θ)




(−1)dep(s`)−1 ·
(
∂d1−1
t Li?s`,u`

(t)
)
|t=θ

(−1)dep(s`)−1 ·
(
∂d1−2
t Li?s`,u`

(t)
)
|t=θ

...
(−1)dep(s`)−1 · Li?s`,u`

(t)|t=θ



=


∑T

`=1 ∂
d1−1
t

(
(−1)dep(s`)−1 · b`(t)Li?s`,u`

(t)
)
|t=θ∑T

`=1 ∂
d1−2
t

(
(−1)dep(s`)−1 · b`(t)Li?s`,u`

(t)
)
|t=θ

...∑T
`=1(−1)dep(s`)−1 · b`(t)Li?s`,u`

(t)|t=θ



=


(
∂d1−1
t ζmot

A (s)
)
|t=θ

...
(∂1
t ζ

mot
A (s)) |t=θ

ζmot
A (s)|t=θ

 =


(
∂d1−1
t ζmot

A (s)
)
|t=θ

...
(∂1
t ζ

mot
A (s)) |t=θ
ΓsζA(s)

 ,

where the second equality comes from Proposition 3.3.8(2) and the third equality arises from
linearity of hyperderivatives and (5.2.4).

Since by definition G` = Gs̃`,ũ`
, v` = vs̃`,ũ`

and Z` = LogG`
(v`), we have Z` = Y` := Ys̃`,ũ`

defined in Theorem 4.2.2 and so the explicit formulae of the remaining coordinates of Zs

follow from (6.2.3) and Corollary 4.2.4. �

Example 6.2.4. Take q = 2 and s = (1, 3). The 4th coordinate of Z(1,3) is given in [CM19,
Example 5.4.2]; however we can give other coordinates explicitily here. In this case, we have
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Γ1 = 1, Γ3 = θ2 + θ, H1−1 = 1, H3−1 = t + θ2, J(1,3) = {(0, 0), (0, 1)}, u(0,0) = (1, θ2),
u(0,1) = (1, 1), a(0,0) = 1, a(0,1) = t. Thus we have

(θ2 + θ)ζA(1, 3) = Li(1,3)(1, θ
2) + θ Li(1,3)(1, 1)

= Li?(1,3)(1, θ
2)− Li?4(θ2) + θ Li?(1,3)(1, 1)− θ Li?4(1)

= (−1)1−1 Li?4(θ2) + θ · (−1)1−1 Li?4(1)

+(−1)2−1 Li?(1,3)(1, θ
2) + θ · (−1)2−1 Li?(1,3)(1, 1),

ζmot
A (1, 3) = (−1)1−1Li?4,θ2(t) + t · (−1)1−1Li?4,1(t)

+(−1)2−1Li?(1,3),(1,θ2)(t) + t · (−1)2−1Li?(1,3),(1,1)(t),

and (b1(t), s1,u1) = (1, 4, θ2), (b2(t), s2,u2) = (t, 4, 1), (b3(t), s3,u3) = (1, (1, 3), (1, θ2)),
(b4(t), s4,u4) = (t, (1, 3), (1, 1)).

For ` = 1, we have G1 = C⊗4, and points

v1 = (0, 0, 0, θ2)tr ∈ C⊗4(A),

Z1 =
((
∂3
tLi

?
4,θ2

)
|t=θ,

(
∂2
tLi

?
4,θ2

)
|t=θ,

(
∂1
tLi

?
4,θ2

)
|t=θ,Li?4(θ2))tr ∈ Lie C⊗4(C∞

)
.

For ` = 2, we have G2 = C⊗4, and points

v2 = (0, 0, 0, 1)tr ∈ C⊗4(A),

Z2 =
((
∂3
tLi

?
4,1

)
|t=θ,

(
∂2
tLi

?
4,1

)
|t=θ,

(
∂1
tLi

?
4,1

)
|t=θ,Li?4(1)

)tr ∈ Lie C⊗4(C∞).

We also have

ρ2(t)(v2) = [t]4v2 = (0, 0, 1, θ)tr ∈ C⊗4(A),

∂ρ2(t)Z2 =
((
∂3
t tLi

?
4,1

)
|t=θ,

(
∂2
t tLi

?
4,1

)
|t=θ,

(
∂1
t tLi

?
4,1

)
|t=θ, θ Li?4(1)

)tr ∈ Lie C⊗4(C∞).

For ` = 3, we have G3 = G5
a with the t-action

ρ3(t) =


θ 1

θ 1
θ 1

τ θ −θ2τ
θ + τ

 ,

and points

v3 = (0, 0, 0,−θ2, 1)tr ∈ G3(A),

Z3 =


−
(
∂3
tLi

?
(1,3),(1,θ2)

)
|t=θ

−
(
∂2
tLi

?
(1,3),(1,θ2)

)
|t=θ

−
(
∂1
tLi

?
(1,3),(1,θ2)

)
|t=θ

−Li?(1,3)(1, θ
2)

Li?1(1)

 ∈ LieG3(C∞).

For ` = 4, we have G4 = G5
a with the t-action

ρ4(t) =


θ 1

θ 1
θ 1

τ θ −τ
θ + τ

 ,
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and

v4 = (0, 0, 0,−1, 1)tr ∈ G4(A),

Z4 =


−
(
∂3
tLi

?
(1,3),(1,1)

)
|t=θ

−
(
∂2
tLi

?
(1,3),(1,1)

)
|t=θ

−
(
∂1
tLi

?
(1,3),(1,1)

)
|t=θ

−Li?(1,3)(1, 1)
Li?1(1)

 ∈ LieG4(C∞).

We also have

ρ4(t)(v4) = (0, 0, 1, θ + 1, θ + 1)tr ∈ G4(A),

∂ρ4(t)Z4 =


−
(
∂3
t tLi

?
(1,3),(1,1)

)
|t=θ

−
(
∂2
t tLi

?
(1,3),(1,1)

)
|t=θ

−
(
∂1
t tLi

?
(1,3),(1,1)

)
|t=θ

−θ Li?(1,3)(1, 1)
θ Li?1(1)

 ∈ LieG4(C∞).

Therefore we have G(1,3) = G6
a with the t-action

ρ(t) =


θ 1

θ 1
θ 1

τ θ −θ2τ −τ
θ + τ

θ + τ

 ,

and

v(1,3) = π(v1, ρ2(t)(v2),v3, ρ4(t)(v4)) = (0, 0, 0, 1, 1, θ + 1)tr ∈ G(1,3)(A),

Z(1,3) =


(∂3
t ζ

mot
A (1, 3)) |t=θ

(∂2
t ζ

mot
A (1, 3)) |t=θ

(∂1
t ζ

mot
A (1, 3)) |t=θ

(θ2 + θ)ζA(1, 3)
Li?1(1)
θ Li?1(1)

 ∈ LieG(1,3)(C∞).

Corollary 6.2.5. Let notation and hypotheses be given in Theorem 6.2.1. Then for any
polynomial c(t) ∈ Fq[t], we have

∂ρ(c(t))Zs =



(
∂d1−1
t c(t)ζmot

A (s)
)
|t=θ

...
(∂1
t c(t)ζ

mot
A (s)) |t=θ

c(t)ζmot
A (s)|t=θ

(∂ρs+1(cbs+1)(Ys+1))−
...

(∂ρT (cbT )(YT ))−


=



(
∂d1−1
t c(t)ζmot

A (s)
)
|t=θ

...
(∂1
t c(t)ζ

mot
A (s)) |t=θ

c(θ)ΓsζA(s)
(∂ρs+1(cbs+1)(Ys+1))−

...
(∂ρT (cbT )(YT ))−


,

where ∂ρ`(cb`)(Y`) is explicitly given in Corollary 4.2.4 for s+ 1 ≤ ` ≤ T .

Proof. The arguments are entirely the same as above and so we omit them. �
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6.3. Monomials of MZV’s. Given any two MZV’s with weight n1 and n2, Thakur showed
in [T10] that the product of these two MZV’s is an Fp-linear combination of certain MZV’s of
weight n1 + n2, where Fp is the prime field of K. It follows that for any indexes k1, . . . ,km,
there exist some indexes s1, . . . , sn of wight w := wt(k1) + · · · + wt(km) and coefficients
a1, . . . , an ∈ Fp so that

(6.3.1) ζA(k1) · · · ζA(km) = a1ζA(s1) + · · ·+ anζA(sn).

For each si above, we let (Gsi , ρsi) be the t-module over A and vsi ∈ Gsi(A) be the
special point defined in Sec. 6.1.3. Let Zsi be given as in Theorem 6.2.1, and note that
ExpGsi

(Zsi) = vsi . Recall that Gsi is the t-module associated to the dual t-motive Msi

containing C⊗w as a sub-dual-t-motive. We put

M := Ms1 tC⊗w · · · tC⊗w Msn ,

which is the fiber coprodcut of {Msi}
n
i=1 over C⊗w, and let (G, ρ) be the t-module over A

associated to the dual t-motive M in Sec. 2.3.2. Using the arguments above, we can write
(G, ρ) explicitly as follows.

We first note that for each i, ρsi(t) is a right upper triangular block matrix with [t]w
located at upper left square. That is, ρsi(t) has the shape of the form(

[t]w Bsi

ρsi(t)
′

)
.

Then ρ(t) is given by 
[t]w Bs1 · · · Bsn

ρs1(t)
′

. . .
ρsn(t)′

 .

We further note that there is a natural morphism of t-modules

π :
n⊕
i=1

Gsi → G

given by

(zs1 , . . . , zsn) 7→

(
n∑
i=1

ẑtr
si
, ztr

s1−, . . . , z
tr
sn−

)tr

,

where ẑ and z− are defined in Definition 6.1.2 by putting d1 := w there.
Using the methods of fiber coproduct [CM17, Lem. 3.3.2] and Theorem 6.2.1, we can relate

the monomial ζA(k1) · · · ζA(km) to the w-th coordinate of a certain logarithmic vector Z and
give explicit formulae for all the other coordinates. Before stating the result, we multiply
both sides of (6.3.1) by Γs1 · · ·Γsn which gives

(6.3.2) Γs1 · · ·ΓsnζA(k1) · · · ζA(km) = c1Γs1ζA(s1) + · · ·+ cnΓsnζA(sn),

where for each i,

(6.3.3) ci := ai
∏

1≤j≤n
j 6=i

Γsj ∈ A

and denote by ci(t) := ci|θ=t ∈ Fq[t]. Finally, we denote

Z := ∂π (∂ρs1(c1(t))Zs1 , . . . , ∂ρsn(cn(t))Zsn) ∈ LieG(C∞),
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v := π (ρs1(c1(t))(vs1), . . . , ρsn(cn(t))(vsn)) ∈ G(A),

so that ExpG(Z) = v. Then, we have the following commutative diagram,

n⊕
i=1

Gsi
π

// G

n⊕
i=1

LieGsi
∂π
//

⊕n
i=1 ExpGsi

OO

LieG.

ExpG

OO

Theorem 6.3.4. Let k1, . . . ,km be m indexes and put w := wt(k1) + · · · + wt(km). Let
{si, ci}ni=1 be given in (6.3.2) and (6.3.3), and Zsi be given in Theorem 6.2.1 for each i. Let
G be the t-module, Z ∈ LieG(C∞) be the logarithmic vector and v ∈ G(A) be the special
point defined above. Then we have

(1) Z is given by 
n∑
i=1

̂∂ρsi(ci(t))Zsi

(∂ρs1(c1(t))Zs1)−
...

(∂ρsn(cn(t))Zsn)−

 ,

where ∂ρsi(ci(t))Zsi is explicitly given in Corollary 6.2.5 for each 1 ≤ i ≤ n and
where we recall the notation from Definition 6.1.2.

(2) The w-th coordinate of Z is given by Γs1 · · ·ΓsnζA(k1) · · · ζA(km).

Proof. The first assertion follows from the definition of ∂π. To prove the second one, we first
note that for each i, we have the following.

• Gsi comes from the dual t-motive Msi , and contains C⊗w as sub-t-module.
• M is the fiber coproduct of {Msi}

n
i=1 over C⊗w and G is its corresponding t-module.

• ExpGsi
(∂ρsi(ci(t))Zsi) = ρsi(ci(t)) (vsi).

• The w-th coordinate of ∂ρsi(ci(t))Zsi = ci(θ)ΓsiζA(si).

So by [CM17, Lem. 3.3.2] the w-th coordinate of Z is given by c1Γs1ζA(s1)+· · ·+cnΓsnζA(sn),
which is equal to Γs1 · · ·ΓsnζA(k1) · · · ζA(km) by (6.3.2).

�

Remark 6.3.5. We mention that the coefficients {ai} in (6.3.1) are shown to exist by Thakur [T10],
and in general we do not know how to write them down explicitly. In the simplest case that
m = 2 and dep(s1) = dep(s2) = 1, Chen has explicit formulae for the coefficients {ai}
in [Ch15]. Precisely, we have that for any positive integers s1 and s2 with n := s1 + s2, then

(6.3.6)

ζA(s1)ζA(s2) = ζA(s1, s2) + ζA(s2, s1) + ζA(s1 + s2)

+
∑
i+j=n
(q−1)|j

[
(−1)s1−1

(
j − 1

s1 − 1

)
+ (−1)s2−1

(
j − 1

s2 − 1

)]
ζA(i, j).
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