ON ADDITIVE PARTITIONS OF SETS OF POSITIVE INTEGERS

Ronald J. EVANS
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

Received 10 January 1980

Consider any set $U=\left\{u_{n}\right\}$ with elements defined by $u_{n+2}=u_{n+1}+u_{n}, n \geqslant 1$, where u_{1} and u_{2} are relatively prime positive integers. We show that if $u_{1}<u_{2}$ or $2 \mid u_{1} u_{2}$, then the set of positive integers can be partitioned uniquely into two disjoint sets such that the sum of any two distinct members of any one set is never in U. If $u_{1}>u_{2}$ and $2 \chi u_{1} u_{2}$, no such partition is possible. Further related results are proved which generalize theorems of Alladi, Erdös, and Hoggatt.

1. Introduction and notation

Let \mathbb{N} be the set of positive integers and let $U, S \subset \mathbb{N}$. We say U splits S if there exist disjoint sets A and B with $S=A \cup B$ such that $c+d \notin U$ whenever c and d are distinct elements both in A or both in B. We call $A \cup B$ a U-partition of S.

Consider from now on a fixed set $U=\left\{u_{n}\right\}$ with elements defined by $u_{n+2}=$ $u_{n+1}+u_{n}, n \geqslant 1$. Fix the notation $a=u_{1}, b=u_{2}, x=\frac{1}{2}(a-b), y=\frac{1}{2}(a+b), z=$ $\frac{1}{2}(a+3 b)$, and assume throughout that $(a, b)=1$. In [1, Section 2], Alladi, Erdös, and Hoggatt proved that U splits \mathbb{N} uniquely when $a=1$, and they gave examples [1, p. 206] to show that U need not split \mathbb{N} when $a \neq 1$. In this paper, we prove more generally (see Corollary 4) that U splits \mathbb{N} uniquely except when $a>b, 2 \nmid a b$, in which case U fails to split \mathbb{N}. We also prove the general result (Theorem 3) that U splits S if and only if not all of x, y, z are in S.

Fix the notation $f_{n}(r)=r-u_{n}\left[r / u_{n}\right]$. Thus $f_{n}(r)$ is the least nonnegative residue of $r\left(\bmod u_{n}\right)$. In Theorem 2, we characterize the elements of the sets in a U-partition of \mathbb{N}, in terms of the values of the functions $f_{n}, n \geqslant 2$. In Theorem 1, we exhibit a class of sets S for which any U-partition of $\{s \in S: s<\max (a, b)\}$ can be uniquely extended to a U-partition of S. We remark that Theorem 1 can be easily extended to yield similar results with U replaced by U^{\prime}, where $U^{\prime}=\left\{u_{n}^{\prime}\right\}$ is defined for any fixed $k>2$ by $u_{n+k}^{\prime}=u_{n+k-1}^{\prime}+\cdots+u_{n}^{\prime}$.

In Section 3, we prove a result (Theorem 7) which generalizes that of [1, Theorem 3.6]. This result shows in particular that if $a<b<m, m \notin U$, then m is the sum of two distinct elements both in L or both in R where $L \cup R$ is a U-partition of \mathbb{N}. Also in Section 3, we answer the following question posed in [1, p. 211]: Does a saturated set split \mathbb{N} uniquely?

2. Unique \boldsymbol{U}-partitions

Theorem 1. Suppose that $u-s \in S$ whenever $s \in S$ and u is the smallest element of U exceeding s. Suppose further that not all of x, y, z are in S. Then given $m \in S$ with $m \geqslant \max (a, b)$, any U-partition of $\{s \in S: s<m\}$ can be uniquely extended to a U-partition of S.

Proof. Let $A \cup B$ be a U-partition of $\{s \in S: s<m\}$. It suffices to show that m can be adjoined to exactly one of A, B to yield a U-partition of $\{s \in S: s \leqslant m\}$.

For some $n \geqslant 2, u_{n} \leqslant m<u_{n+1}$. Let $q=u_{n+1}-m$. Since $m \geqslant \max (a, b), q<m$. By the initial hypothesis of Theorem 1, $q \in S$. Thus $q \in A \cup B$; say $q \in A$. Since $q+m \in U, m$ cannot be adjoined to A. Suppose for the purpose of contradiction that m cannot be adjoined to B. Then $t+m=u_{k}$ for some $t \in B, k \in \mathbb{N}$. Since $q \in A, q \neq t$; thus $k \geqslant n+1$. If $k \geqslant n+3$, we would have the contradiction

$$
2 m>m+t \geqslant u_{n+3}=u_{n+2}+u_{n+1}>2 u_{n+1} .
$$

Thus $k=n+2$ and $t+m=u_{n+2}$. Since $m+q=u_{n+1}$, we have $t-q=u_{n}$.
Assume that $2 t=u_{n+1}$. Then $n=2$, for if $n>2$, we would have $2 t=2\left(u_{n}+q\right)>$ $2 u_{n}>u_{n+1}$. Thus $q=x, t=y$, and $m=z$, which contradicts the hypothesis that not all of x, y, z are in S. Therefore, $2 t \neq u_{n+1}$.

Let $v=u_{n+1}-t$. Note that $v<m$. By the initial hypothesis of Theorem $1, v \in S$. Therefore, $v \in A \cup B$. Since $t \in B, v \neq t$, and $v+t \in U$, we have $v \in A$. Since $m \neq t$, $v \neq q$. Thus v and q are distinct elements of A whose sum is $u_{n-1} \in U$, a contradiction.

Example. Theorem 1 shows that the Fibonacci set $U=\{1,2,3,5, \ldots\}$ uniquely splits both \mathbb{N} and $U \cup 2 U$.

Theorem 2. Suppose that $a<b$. For each $n \geqslant 2$, there is a unique U-partition $L_{n} \cup R_{n}$ of $C_{n}=\left\{m \in \mathbb{N}: m<u_{n}\right\}$, where $L_{n}=\left\{f_{n}\left(u_{n-1} j\right): 1 \leqslant j \leqslant \frac{1}{2} u_{n}\right\}$ and $R_{n}=$ $\left\{f_{n}\left(u_{n-1} j\right): \frac{1}{2} u_{n}<j<u_{n}\right\}$. Also, there is a unique U-partition $L \cup R$ of \mathbb{N}, where $L=\bigcup_{2 \mid n} L_{n}$ and $R=\bigcup_{2 \mid n} R_{n}$.

Proof. We first show that $L_{2} \cup R_{2}$ is a U-partition of $C_{2}=\{1,2, \ldots, b-1\}$. Clearly C_{2} equals the disjoint union $L_{2} \cup R_{2}$. Suppose that $f_{2}(a j)+f_{2}(a k)=u \in U$, where $1 \leqslant j<k \leqslant \frac{1}{2} b$. Since u must be a, b, or $a+b$, we have $a(j+k) \equiv 0$ or $a(\bmod b)$, so $j+k \equiv 0$ or $1(\bmod b)$, which is impossible. Thus no two distinct elements of L_{2} (and similarly of R_{2}) can add up to an element of U, so $L_{2} \cup R_{2}$ is a U-partition of C_{2}.

We can now invoke Theorem 1 to see that there is a U-partition $L_{n}^{\prime} \cup R_{n}^{\prime}$ of C_{n} for each $n \geqslant 2$. We have $f_{n}\left(u_{n-1}\right) \in L_{n}^{\prime}$, say. Since $f_{n}\left(u_{n-1}\right)+f_{n}\left(-u_{n-1}\right)=u_{n} \in U$, we have $f_{n}\left(-u_{n-1}\right) \in R_{n}^{\prime}$ (if $\left.u_{n}>2\right)$. Since $f_{n}\left(2 u_{n-1}\right)+f_{n}\left(-u_{n-1}\right) \in\left\{u_{n-1}, u_{n+1}\right\} \subset U$, we have $f_{n}\left(2 u_{n-1}\right) \in L_{n}^{\prime}$ (if $u_{n}>3$). Continuing in this manner, we see that $L_{n}^{\prime}=L_{n}$. Thus $L_{n} \cup R_{n}$ is the unique U-partition of C_{n}.

By Theorem 1 , there exists a unique U-partition $L^{\prime} \cup R^{\prime}$ of \mathbb{N}, and $L^{\prime} \cup R^{\prime}$ extends each U-partition $L_{n} \cup R_{n}$. Since $u_{n-1} \in L_{n}, u_{n-1} \in R_{n+1}$ for each $n \geqslant 2$, it follows that

$$
\begin{equation*}
L_{2} \subset R_{3} \subset L_{4} \subset R_{5} \subset L_{6} \subset R_{7} \subset \cdots . \tag{1}
\end{equation*}
$$

We have $\left\{u_{k}: 2 \nmid k\right\} \subset L^{\prime},\left\{u_{\mathrm{k}}: 2 \mid k\right\} \subset R^{\prime}$, say. Thus $L^{\prime}=L$ and $L \cup R$ is the unique U-partition of \mathbb{N}.

Theorem 3. U splits S if and only if not all of x, y, z are in S.
Proof. Suppose that $x, y, z \in S$. Since $x+y, x+z, y+z \in U$, clearly U cannot split S.

Conversely, suppose that not all of x, y, z are in S. If $a<b$, then U splits \mathbb{N} by Theorem 2. so U splits S. Hence assume $b>a$. Let $U_{a}=U-\{a\}=$ $\{b, a+b, a+2 b, \ldots\}$. By Theorem 2, one has a U_{a}-partition $G_{3} \cup H_{3}$ of $C_{3} \cap S=$ $\{m \in S: m<a+b\}$ which can be extended to a U_{a}-partition $G \cup H$ of S, where

$$
G \supset G_{3}=L_{3} \cap S, \quad H \supset H_{3}=R_{3} \cap S .
$$

We now show that x, y is the only possible pair of distinct elements of $G \cup H$ which can add up to a. Write

$$
f_{3}(b j)+f_{3}(b k)=a, \quad 1 \leqslant j<k<a+b .
$$

Then $b(j+k) \equiv a(\bmod a+b)$, so $(j+k) \equiv-1(\bmod a+b)$. Thus $j=y-1, k=y$, so $a b$ is odd and $f_{3}(b j)=x, f_{3}(b k)=y$. It follows that if $x \notin S$ or $y \notin S$, then no two distinct elements of S can add up to a. This proves that the U_{a}-partition $G \cup H$ is in fact a U-partition of S, when $x \not \subset S$ or $y \notin S$.

It remains to produce a U-partition of S in the case $x, y \in S, z \notin S$. (We note that this case does not occur when $S=\mathbb{N}$, so Corollary 4 below is now proved.) Suppose that $x, y \in S, z \notin S$. We may suppose without loss of generality that $S=\mathbb{N}-\{z\}$, since if U splits a set, it splits any subset of it. Let $I_{3}=G_{3}-\{y\}$, $J_{3}=H_{3} \cup\{y\}$. We now show that $I_{3} \cup J_{3}$ is a U-partition of $C_{3} \cap S$. To do so, it suffices to show that $y+r \notin U$ for $r \in H_{3}$. Suppose that $y+r \in U$. Since $y+r=$ $\frac{1}{2}(a+b)+r<\frac{3}{2}(a+b)<2 a+3 b=u_{5}$,

$$
y+r \in\{a, a+b, a+2 b\} .
$$

Thus $r \in\{x, y, z\}$, which is impossible, since $\{x, y, z\}$ is disjoint from H_{3}. This proves that $I_{3} \cup J_{3}$ is a U-partition of $C_{3} \cap S$.
We now show that a number $u_{n} \pm z$ in $I_{3} \cup J_{3}$ is in I_{3} if and only if n is odd. This is true for $n \geqslant 3$, since $u_{3}-z=x \in I_{3}$ and $u_{4}-z=y \in J_{3}$. If $u_{2}+z \in I_{3} \cup J_{3}$, then

$$
u_{2}+z=\frac{1}{2}(a+5 b)=f_{3}\left(b\left(\frac{1}{2}(a+b)+2\right)\right) \in J_{3} .
$$

Finally, if $u_{1}-z \in I_{3} \cup J_{3}$, then

$$
u_{1}-z=\frac{1}{2}(a-3 b)=f_{3}\left(b\left(\frac{1}{2}(a+b)-2\right)\right) \in I_{3} .
$$

Fix $m \in S$ with $m \geqslant a+b$. Assume that $A \cup B$ is any U-partition of $\{s \in S$: $s<m\}$ with the property that a number $u_{n} \pm z \in A \cup B$ is in A if and only if n is odd. (In the case $m=a+b$, this holds for $A=I_{3}, B=J_{3}$.) We will show that m can be adjoined to one of A, B to yield a U-partition of $\{s \in S: s \leqslant m\}$ and that if $m=u_{n} \pm z$, then m can be adjoined to A or B according as n is odd or even. This will imply the desired result, that the U-partition $I_{3} \cup J_{3}$ can be extended to a U-partition of S.

For some fixed $n \geqslant 3, u_{n} \leqslant m<u_{n+1}$. We will use frequently the fact that if $m+\gamma \in U$ for some $\gamma \in A \cup B$, then $m+\gamma<2 m<2 u_{n+1}<u_{n+3}$, so γ equals $u_{n+1}-m$ or $u_{n+2}-m$.

Case 1. $m=u_{n+1}-z$.
We consider only the case $2 \nmid n$, as the case $2 \mid n$ is similar. Assume that m cannot be adjoined to B. Then $m+\beta \in U$ for some $\beta \in B$, so β equals z or $u_{n}+z$. Since $z \notin S$ and $u_{n}+z \notin B$ (as n is odd), this is a contradiction.

Case 2. $m=u_{n}+z$.
We again consider only the case $2 \nmid n$. Assume that m cannot be adjoined to A. Then $m+\alpha \in U$ for some $\alpha \in A$, so α equals $u_{n-1}-z$ or $u_{n+1}-z$. This is impossible, because n is odd.

Case 3. $m=u_{k}+z$ with $k<n$.
Since $u_{n} \leqslant m<u_{n+1}$, we cannot have both $k=1$ and $n=3$. Thus $z=m-u_{k} \geqslant$ $u_{n}-u_{k} \geqslant u_{n-2}$. However, $z=\frac{1}{2}(a+3 b)<a+b=u_{3}$. Thus $n \leqslant 4$.

Suppose first that $n=3$. Thus $u_{\mathrm{k}}=b$ and $3 b>a$. Since $k=2$, we must show that m can be adjoined to B. Assume that $m+\beta \in U$ for some $\beta \in B$, so β equals $u_{3}-z$ or $\frac{1}{2}(3 a+b)$. Now, $u_{3}-z \notin B$ because 3 is odd, so $\beta=\frac{1}{2}(3 a+b)$. Since $3 b>a, \frac{1}{2}(3 b-a)=f_{3}\left(b\left(\frac{1}{2}(a+b)+2\right)\right) \in B$. Hence $\frac{1}{2}(3 b-a)$ and β are distinct elements of B whose sum is $u_{4} \in U$, a contradiction.

Suppose now that $n=4$. Then $k \in\{1,3,4\}$. First consider the case $k=4$. If $m+\beta \in U$ for some $\beta \in B$, then β equals $u_{3}-z$ or $u_{5}-z$, which is impossible, because 3 and 5 are odd. Thus m can be adjoined to B. Now consider the case $k \in\{1,3\}$. Assume that $m+\alpha \in U$ for some $\alpha \in A$ with $\alpha \neq m$. Then α equals $u_{5}-u_{k}-z$ or $u_{6}-u_{k}-z$. In the former case, α equals z or $u_{4}-z$, which is impossible because $z, u_{4}-z \notin A$. Thus $\alpha=u_{6}-u_{k}-z$. This implies that $\alpha=u_{4}+z$ or $\alpha=u_{6} / 2=m$, which is impossible because $u_{4}+z \notin A$ and $\alpha \neq m$.

Case 4. $m+z, m-z \notin U$.
To show that m can be adjoined to one of A, B, we can follow verbatim the proof of Theorem 1, except that we have to justify the assertions $q \in S, v \in S$ in a
different way, since here the initial hypothesis of Theorem 1 is not valid. To see that $q=u_{n+1}-m$ is in $S=\mathbb{N}-\{z\}$, note that $u_{n+1}-m \neq z$ (in Case 4). To see that $v=u_{n+1}-t$ is in S, assume that $v=z$. Then $u_{n+1}-z=t \in B$ and $u_{n-1}-z=$ $u_{n-1}-v=q \in A$, which is impossible, since $n-1$ and $n+1$ have the same parity.

Corollary 4. U splits \mathbb{N} if and only if $a<b$ or $2 \mid a b$. Also, U splits \mathbb{N} uniquely if $a<b$ or $2 \mid a b$.

Proof. The first assertion follows from Theorem 3, and uniqueness is a consequence of Theorem 2.

3. Extremal sets partitioning \mathbb{N}

Let $a<b$. As in Theorem 2, let $L_{n} \cup R_{n}$ and $L \cup R$ be the unique U-partitions of C_{n} and \mathbb{N}, respectively. No element of U can be a sum of two distinct elements both in L or both in R. Theorem 7 below shows however, that any $m \in \mathbb{N}-U$ with $m>b$ is a sum of two distinct elements both in L or both in R. This implies, for example, that no set properly containing the set of Fibonacci numbers can split \mathbb{N}. In the case $a=1$, Theorem 7 reduces to [1, Theorem 3.6].

Lemma 5. Let $a<b$. Fix $n \geqslant 3$. Then $2 u_{n-1}$ can be uniquely expressed as a sum of distinct elements c, d such that $c, d \in L$ or $c, d \in R$. Moreover, $c, d \in L, 2 u_{n-1} \in R$ or $c, d \in R, 2 u_{n-1} \in L$, according as n is odd or even.

Proof. Suppose that

$$
\begin{equation*}
2 u_{n-1}=c+d, \text { with } c \neq d, \text { and } c, d \in L \text { or } c, d \in R . \tag{2}
\end{equation*}
$$

Since $2 u_{n-1}<u_{n+1}, c, d \in L_{n+1} \cup R_{n+1}$. Write

$$
\begin{equation*}
c=f_{n+1}\left(u_{n} j\right), \quad d=f_{n+1}\left(u_{n} k\right), \quad 1 \leqslant j<k<u_{n+1} . \tag{3}
\end{equation*}
$$

Then $2 u_{n-1} \equiv u_{n}(j+k)\left(\bmod u_{n+1}\right)$, so $j+k \equiv-2\left(\bmod u_{n+1}\right)$. It follows that $c, d \in L_{n+1}$ and

$$
\left\{\begin{array}{lll}
j=\frac{1}{2} u_{n+1}-2, & k=\frac{1}{2} u_{n+1} & \text { if } 2 \mid u_{n+1}, \tag{4}\\
j=\frac{1}{2} u_{n+1}-\frac{3}{2}, & k=\frac{1}{2} u_{n+1}-\frac{1}{2} & \text { if } 2 \nmid u_{n+1} .
\end{array}\right.
$$

This proves that there is at most one pair c, d satisfying (2). Moreover, if c, d are defined by (3) and (4), then

$$
\begin{array}{lll}
c=-\frac{1}{2} u_{n+1}+2 u_{n-1}, & d=\frac{1}{2} u_{n+1} & \text { if } 2 \mid u_{n+1}, \\
c=\frac{3}{2} u_{n-1}, & d=\frac{1}{2} u_{n-1} & \text { if } 2 \nmid u_{n+1}, 2 \nmid u_{n}, \\
c=u_{n+1}-\frac{3}{2} u_{n}, & d=u_{n+1}-\frac{1}{2} u_{n} & \text { if } 2 \nmid u_{n+1}, 2 \mid u_{n},
\end{array}
$$

so (2) indeed holds. Finally, note that $2 u_{n-1}=f_{n+1}\left(u_{n}\left(u_{n+1}-2\right)\right) \in R_{n+1}$, so since $c, d \in L_{n+1}$, the last assertion of Lemma 5 follows from (1).

Lemma 6. Let $a<b$. Then $2 a$ can be expressed as a sum of distinct elements c, d with $c, d \in L$ or $c, d \in R$, if and only if either

$$
\begin{equation*}
2 \mid a ; \text { or } 2 \nmid a b, 3 a>b ; \text { or } 2 \mid b, 2 a>b \tag{6}
\end{equation*}
$$

Also, $b-a$ can be expressed as a sum of distinct elements e, f with $e, f \in L$ or $e, f \in R$, if and only if

$$
\begin{equation*}
2 \mid b, \quad 2 a<b \tag{7}
\end{equation*}
$$

Proof. The proof of Lemma 5 up through (4) holds for $n=2$. The values of c in (5) when $n=2$ are positive if and only if (6) holds, so the first assertion of Lemma 6 holds. An easy similar argument verifies the second assertion of Lemma 6.

Theorem 7. Let $a<b$. Let $m \in \mathbb{N}, m>a, m \notin U \cup\{2 a, b-a\}$. Then m is the sum of two distinct elements both in L or both in R. This conclusion is also valid when either $m=2 a$ and (6) holds, or $m=b-a$ and (7) holds.

Proof. The last assertion follows from Lemma 6. Say $m \notin U \cup\{2 a, b-a\}$. If $m \in 2 U$, the result follows from Lemma 5 , so assume $m \notin 2 U$. For some $n \geqslant 1$, $u_{n}<m<u_{n+1}$, so $m \in L_{n+1} \cup R_{n+1}$. First suppose $m \in L_{n+1}$. Then $m=f_{n+1}\left(u_{n} j\right)$ with $1<j \leqslant \frac{1}{2} u_{n+1}$. Thus $m-u_{n}=f_{n+1}\left(u_{n}(j-1)\right) \in L_{n+1}$, and since $u_{n}=f_{n+1}\left(u_{n}\right) \in$ $L_{n+1}, m=\left(m-u_{n}\right)+u_{n}$ is the sum of two distinct elements both in L or both in R. Now suppose $m \in R_{n+1}$. Then $m=f_{n+1}\left(u_{n} k\right)$ with $\frac{1}{2} u_{n+1}<k \leqslant u_{n+1}-1$. We cannot have $k=u_{n+1}-1$, for if $n=1$, this would imply $m=b-a$, and if $n>1$, this would imply $m=u_{n-1}$. Thus, $c=f_{n+1}\left(u_{n}(k+1)\right) \in R_{n+1}$. Note that $d=f_{n+1}\left(u_{n}\left(u_{n+1}-1\right)\right) \in$ R_{n+1}, and that $d=b-a$ or $d=u_{n-1}$ according as $n=1$ or $n>1$. Thus $m=c+d$, so m is the sum of two distinct elements both in L or both in R.

We conclude this section by giving a negative answer to the following question posed in [1, p. 211]: Does a saturated set split \mathbb{N} uniquely?
(A set V with $\{1,2\} \subset V \subset \mathbb{N}$ is saturated [1, Def. 3.5] if V splits \mathbb{N} but no set of positive integers properly containing V splits \mathbb{N}.) We will exhibit a saturated set V which splits \mathbb{N} in two ways.

Let $W=\{1,2,3,4\} \cup\left\{2^{n}+4: n \geqslant 2\right\}$. There is a unique W-partition of $2 \mathbb{N}-1$ (the set of odd positive integers), namely $A_{1} \cup A_{2}$, where $A_{1}=4 \mathbb{N}+1, A_{2}=$ $4 \mathbb{N}-1$. There is also a unique W-partition of $4 \mathbb{N}$, namely $B_{1} \cup B_{0}$, where $B_{1}=8 \mathbb{N}-4, B_{0}=8 \mathbb{N}$. Furthermore, there is a unique W-partition $D_{1} \cup D_{2}$ of $4 \mathbb{N}-2$. Say $2 \in D_{2}$. There are exactly two W-partitions of \mathbb{N}, namely $G_{i} \cup H_{i}$ $(i=0,1)$, where $G_{i}=\left(A_{1} \cup D_{1}\right) \cup B_{i}$ and $H_{i}=\left(A_{2} \cup D_{2}\right) \cup B_{1-i}$. Let V be the set obtained by adjoining to W every $m \in \mathbb{N}$ possessing the property that for each set
$J \in\left\{G_{0}, G_{1}, H_{0}, H_{1}\right\}$, no two distinct elements of J add up to m. Then there are two V-partitions of \mathbb{N}, namely $G_{0} \cup H_{0}$ and $G_{1} \cup H_{1}$.
Suppose for the purpose of contradiction that V is not saturated. Then there exists $m \in \mathbb{N}$ and $i \in\{0,1\}$ such that $G_{i} \cup H_{i}$ is a ($V \cup\{m\}$)-partition of \mathbb{N} but $G_{1-i} \cup H_{1-i}$ is not. Thus $m=c+d$ where $c \neq d$ and either $c, d \in G_{1-i}$ or $c, d \in$ H_{1-i}. At least one of c, d is a multiple of 4 , for otherwise we'd have $c, d \in G_{i}$ or $c, d \in H_{i}$. If m is odd, then $m=4+(m-4)=8+(m-8)$ is the sum of two distinct elements both in G_{i} or both in H_{i}, a contradiction. If $2 \| m$, then $m=$ $\left(\frac{1}{2} m-2\right)+\left(\frac{1}{2} m+2\right)$ is the sum of two distinct elements both in G_{i} or both in H_{i}. Thus m, c, and d are multiples of 4 . Therefore $c, d \in B_{1}$ or $c, d \in B_{0}$, so $m=c+d$ is the sum of two distinct elements both in G_{i} or both in H_{i}. This completes the proof that V is a saturated set which splits \mathbb{N} in two ways.

Reference

[1] K. Alladi, P. Erdös and V. Hoggatt. Jr., On additive partitions of integers, Discrete Math. 22 (1978) 201-211.

