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Consider any set U = (u,,} with elements defined by u,, +? = u,, +, + u,,, n z 1, where u, and u2 

are relatively prime positive integers. We show that if u, Cu, or 2 ( u,uz, then the set of 

positive integers can be partitioned uniquely into two disjoint sets such that the sum of any two 

distinct memhers of any one set is never in U. If U,>LQ and 21 u,uz. no such partition is 

possible. Further related results are proved which generalize theorems of Alladi, Erdos, and 

Hoggatt. 

1. Introduction and notation 

Let N be the set of positive integers and let U, S c&l. We say U splits S if there 
exist disjoint sets A and B with S = A U B such that c + d$ U whenever c and d 
are distinct elements both in A or both in B. We call A U B a U-partition of S. 

Consider from now on a fixed set U = {u,,} with elements defined by u,,+~ = 
u,,+, +u,, n 2 1. Fix the notation a = u,, b=u,, x=+(a-b), y=f(a+b), z= 

f(u+36), and assume throughout that (a, b)= 1. In [l, Section 21, Alladi, Erdos, 
and Hoggatt proved that U splits N uniquely when a = 1, and they gave examples 
[l, p. 2061 to show that U need not split N when a# 1. In this paper, we prove 

more generally (see Corollary 4) that U splits N uniquely except when 
n > b, 2 1 ab, in which case U fails to split lY. We also prove the general result 

(Theorem 3) that U splits S if and only if not all of x, y, z are in S. 
Fix the notation f,,(r) = r- u,,[r/u,,]. Thus f,,(r) is the least nonnegative residue 

of r (mod u,,). In Theorem 2, we characterize the elements of the sets in a 
U-partition of N, in terms of the values of the functions f,,, n 2 2. In Theorem 1, 
we exhibit a class of sets S for which any U-partition of {s E S: s < max(a, b)} can 

be uniquely extended to a U-partition of S. We remark that Theorem 1 can be 

easily extended to yield similar results with U replaced by U’, where U’={u,‘,} is 
defined for any fixed k > 2 by u,:+~ = u,:+~-, + . . . + IA:. 

In Section 3, we prove a result (Theorem 7) which generalizes that of [l, 

Theorem 3.61. This result shows in particular that if a <b < m, rn$ U, then m is 
the sum of two distinct elements both in L or both in R where L U R is a 

U-partition of N. Also in Section 3, we answer the following question posed in [l, 
p. 2111: Does a saturated set split N uniquely? 
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2. Unique U-partitions 

Theorem 1. Suppose that u -s E S whenever s E S and u is the smallest element of 
U exceeding s. Suppose further rhar not all of x,y,z are in S. Then given 111 E S with 

nt >max(a, b), arzy U-partition of {s E S: s < rn} can be uniquely extended to a 
U-partition of S. 

Proof. Let A U B be a U-partition of {s E S: s < m). It suffices to show that HI can 
be adjoined to exactly one of A, B to yield a U-partition of (s E S: s < m}. 

For some II > 2, u,, < nl < u,,+,. Let q = u,,., - m. Since HI 2 max(a, b), q < m. 

By the initial hypothesis of Theorem 1, q E S. Thus q E A U B; say q E A. Since 
q + 171 E U, ITI cannot be adjoined to A. Suppose for the purpose of contradiction 
that m cannot be adjoined to B. Then f + rn = uk for some t E B, k EN. Since 
q E A, q# t; thus k 3 II + 1. If k 3 n +3, we would have the contradiction 

Thus k=n+2 and t+n~=u,,+~. Since m+q=u,,+,, we have t-q=u,,. 

Assume that 2t = u,,+~. Then n = 2, for if tz > 2, we would have 2t = 2(u,, + q) > 

24, ’ &+I. Thus q =x, t = y, and 111 = z, which contradicts the hypothesis that not 
all of x, y, t are in S. Therefore, 2tf u,,+,. 

Let u = u,,+, - t. Note that u <HI. By the initial hypothesis of Theorem 1, u ES. 
Therefore, u E A U B. Since t E B, v # t, and v + r E U, we have u E A. Since HI # r, 

v# q. Thus v and q are distinct elements of A whose sum is u,,-, E U, a 
contradiction. Cl 

Example. Theorem 1 shows that the Fibonacci set U = {1,2,3, 5, . . . > uniquely 
splits both N and U U2U. 

Theorem 2. Suppose that a < 6. For each n 32, there is a unique U-partition 
L,UR,, of C,,={nz~fV::m<y,), where L,,=(f,,(u,,-,j): lGj<$u,,} and R,,= 

{f,,(u,-,j) :fu,, < j < u,}. Also, there is a unique U-partition L U R of N, where 

L = U 21~ L,, and R = U 2~,1 R,,. 

Proof. We first show that L,U R2 is a U-partition of C2 = (1,2,. . . , b - 1). 
Clearly C2 equals the disjoint union L,U R2. Suppose that fi(aj)+ f2(ak) = u E U, 
where l<j<ks$b. Since u must be a,b, or a+b, we have a(j+k)=O or 

a(mod b), so j + k ~0 or l(mod b), which is impossible. Thus no two distinct 
elements of L2 (and similarly of R,) can add up to an element of U, so L,U R2 is 

a U-partition of C2. 
We can now invoke Theorem 1 to see that there is a U-partition L:,U R:, of C,, 

for each na2. We have f,,(u,-,)EL;, say. Since f,,(u,,-,)+f,,(-u,,-,)=u,,E U, we 

have f,,(-u,,-I)ERk (if u,,>2). Since f,,(2u,-I)+f,,(-u,,-1)E{u,-lr u,,+Jc U, we 
have f,,(2u,,-,) E L; (if u,, > 3). Continuing in this manner, we see that L:, = L,,. 
Thus L,, U R, is the unique U-partition of C,. 
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By Theorem 1, there exists a unique U-partition L’U R’ of N, and L’U R’ 
extends each U-partition L, U R,. Since u ,,-, E L,,, u,,-r E R,,+, for each n 2 2, it 
follows that 

L,cR,cL,cRg~L6~R7~.,... (1) 

We have {uk: 2,J k)cL’, (u k: 2 ) k} c R’, say. Thus L’ = L and L U R is the 
unique U-partition of N. Cl 

Theorem 3. U splits S if and only if not all of x, y, z are in S. 

Proof. Suppose that x, y, z E S. Since x + y, x + z, y + z E U, clearly U cannot 
split S. 

Conversely, suppose that not all of x, y, z are in S. If a < 6, then U splits N by 

Theorem 2. so U splits S. Hence assume b>a. Let U, = U-(a)= 
{b,a+b,a+26,. . ). By Theorem 2, one has a U, -partition G3 U H3 of C3 fl S = 

{IN E S: IX< a + b} which can be extended to a U,-partition G U H of S, where 

GxG3=L,ns, H~H3=R3f7S. 

We now show that x, y is the only possible pair of distinct elements of G U H 

which can add up to a. Write 

fX(bj)+f,(bk)=a, l<j<k<a+b. 

Then b(j+k)=a(moda+b),so(j+k)=-l(moda+b).Thus j=y-1, k=y,so 

nb is odd and f,(bj) = x, f,(bk) = y. It follows that if x$ S or y$ S, then no two 
distinct elements of S can add up to a. This proves that the U,-partition G U H is 
in fact a U-partition of S, when x&S or y&S. 

It remains to produce a U-partition of S in the case x, y E S, z$ S. (We note 

that this case does not occur when S =N, so Corollary 4 below is now proved.) 
Suppose that x, y E S, z$ S. We may suppose without loss of generality that 
S =N -(z), since if U splits a set, it splits any subset of it. Let I, = G,-(y), 

J, = H, U(y}. We now show that Z3 UJ, is a U-partition of C3 0 S. To do so, it 
suffices to show that y + r$ U for rE H3. Suppose that y+r~ U. Since y+r= 

t(a+b)+r<5(a+b)<2a+3b=us, 

y+rE’(a, a+b, a+2b). 

Thus r E{X, y, z}, which is impossible, since {x, y, z} is disjoint from H3. This 
proves that Z3 UJ, is a U-partition of C3 n S. 

We now show that a number y, f z in I, U .Z3 is in I3 if and only if n is odd. This 

is true for na3, since u,-z=x~I~ and u,-z=y~J,. If u2+z~13U.13, then 

u,+z=~(a+5b)=f,(b(t(a+b)+2))~J~. 

Finally, if ur -z E I, UJ3, then 

u,-z=f(a-3b)=f,(b($(a+b)-~))EI, 
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Fix PFIES with I?ZZ=~ + b. Assume that A UB is any U-partition of (sES: 
s < m} with the property that a number u,, f z E A U B is in A if and only if n is 
odd. (In the case nz = a + 6, this holds for A = Is, B = J,.) We will show that m 
can be adjoined to one of A, B to yield a U-partition of (s E S: s < m} and that if 
m = u, f z, then m can be adjoined to A or B according as n is odd or even. This 
will imply the desired result, that the U-partition I, UJ, can be extended to a 
U-partition of S. 

For some fixed n 2 3, u,, s nr < y,+,. We will use frequently the fact that if 
m+y~U for some ~EAUB, then n~+y<2nz<2u,,+,<u,+,, so y equals 
U II+1 - m or u,,+~ - in. 

Case 1. rn = u,,+, -2. 

We consider only the case 2 1 n, as the case 2 ) n is similar. Assume that ni 
cannot be adjoined to B. Then m + /3 E U for some /3 E B, so /3 equals z or y, + z. 
Since z $ S and u,, + z g B (as n is odd), this is a contradiction. 

Case 2. fn = u,, + z. 

We again consider only the case 2 I( IL Assume that rn cannot be adjoined to A. 
Then nz +CX E U for some OL E A, so (Y equals u,-r -z or un+, - z. This is 
impossible, because n is odd. 

Case 3. m = uk + z with k <n. 

Since u,, G ni < u,, + , , we cannot have both k = 1 and n = 3. Thus z = rn - I.+ 3 

k, - uk 2 LJ,,-~. However, z = $(a + 3b) < a + b = z.+. Thus n G 4. 
Suppose first that IZ = 3. Thus uk = b and 3b > a. Since k = 2, we must show that 

nr can be adjoined to B. Assume that m + @ E U for some 6 E B, so p equals 
ug-z or t(3a + b). Now, Us-z$ B because 3 is odd, so @ =f(3a + b). Since 
3b > a, &3b - a) =f3(b&a + b)+2)) E B. Hence i(3b - a) and 6 are distinct ele- 
ments of B whose sum is USE U, a contradiction. 

Suppose now that n = 4. Then k E {1,3,4}. First consider the case k = 4. If 
m +p E U for some fl E B, then /3 equals u3- z or u5- z, which is impossible, 
because 3 and 5 are odd. Thus m can be adjoined to B. Now consider the case 
k E {1,3}. Assume that m +cu E U for some cx E A with a# m. Then OL equals 
us- uk -z or u6- uk -z. In the former case, (Y equals z or uq- z, which is 
impossible because z, IL,-- z $ A. Thus a! = u6 - uk - z. This implies that cx = uq -t z 
or (Y = r&/2 = in, which is impossible because L&, + z $ A and (Y # nz. 

Case 4. mfz, m-z& U. 

To show that m can be adjoined to one of A, B, we can follow verbatim the 
proof of Theorem 1, except that we have to justify the assertions q ES, u E S in a 
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different way, since here the initial hypothesis of Theorem 1 is not valid. To see 
that q = u,+i - m is in S =kJ -{z}, note that u,+, - m# z (in Case 4). To see that 

u = &,+I --t is in S, assume that u = z. Then u,,+i --z = TV B and u,,-i --z = 
u,-i -u = q E A, which is impossible, since n - 1 and n + 1 have the same 

parity. 0 

Corollary 4. U splits N if and only if a <b or 2 ( ab. Also, U splits kJ uniquely if 
a < b or 2 ( ab. 

Proof. The first assertion follows from Theorem 3, and uniqueness is a conse- 
quence of Theorem 2. Cl 

3. Extremal sets partitioning N 

Let a < 6. As in Theorem 2, let L,, U R,, and L U R be the unique U-partitions 
of C,, and N, respectively. No element of U can be a sum of two distinct elements 

both in L or both in R. Theorem 7 below shows however, that any m EN - Lr with 
m > b is a sum of two distinct elements both in L or both in R. This implies, for 

example, that no set properly containing the set of Fibonacci numbers can split N. 
In the case a = 1, Theorem 7 reduces to [ 1, Theorem 3.61. 

Lemma 5. Let a < 6. Fix n 3 3. Then 2~4,~, can be uniquely expressed as a sum of 
distinct elements c, d such that c, d E L or c, d E R. Moreover, c, d E L, 2y,-, E R or 

c, d E R, 2u,,-, E L, according as n is odd or even. 

Proof. Suppose that 

2u,-,=c+d, with c#d, and c,dEL or c,dER. (2) 

Since 2u,-,<u,,+,, c, dE L,,,, U R,+,. Write 

c =f,t+l(u,iL d =f,,+,(dL lsj<k<u,,+,. (3) 

Then 2u,-, = u,(j+ k) (mod u,+i), so j+ k ~-2 (mod &+i). It follows that 

c, d E L,,, and 

{ 

j=iu,+1-2, k = f~,,+~ if 2 I u,+l, 

j=t4,+1-5, k=$,,+,-4 if 21 u,+,. 
(4) 

This proves that there is at most one pair c, d satisfying (2). Moreover, if c, d are 

defined by (3) and (4), then 

c = -$4,+l+2~-1, d = $,,+I if 2 I u,+b 
3 

c = 2u,-1, d = $u,-, if 2 A htl, 2 X 4, 

c = u,+1-I 3U n, d = u,+, -+u,, if 2X h+1,21 4, 
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so (2) indeed holds. Finally, note that 2yl-, =f”+,(~,,(u,,+~-~))ER,+,, so since 

c, d E L,,+,, the last assertion of Lemma 5 follows from (1). 0 

Lemma 6. Let a <b. Then 2a can be expressed as a sum of distinct elements c, d 
with c, d E L or c, d E R, if and only if either 

2(a; or 2]ab,3a>b; or 2(b,2a>b. (6) 

Also, b-a can be expressed as a sum of distinct elements e, f with e, f E L or 

e, f E R, if and only if 

2)b, 2a<b. (7) 

Proof. The proof of Lemma 5 up through (4) holds for n = 2. The values of c in 
(5) when n = 2 are positive if and only if (6) holds, so the first assertion of Lemma 

6 holds. An easy similar argument verifies the second assertion of Lemma 6. Cl 

Theorem 7. Let a < b. Let m EN, m > a, mtf U U {2a, b -a}. Then m is the sum of 

Two distinct elements both in L or both in R. This conclusion is also valid when 

either m = 2a and (6) holds, or m = b-a and (7) holds. 

Proof. The last assertion follows from Lemma 6. Say m$ UU{2a, b-a}. If 
m E 2U, the result follows from Lemma 5, so assume nztf 2U. For some n 2 1, 

u, Cm < u,,+,, so m EL,,,, U R,,,. First suppose m E L,,+l. Then m = f,,;,(y,j) 
with l<js$u,,.+,. Thus m-u,, =f,,+,(u,,(j-l))EL,,+,, and since u,,=f,,+,(u,,)~ 

L “+,, m = (rn - y,) + u, is the sum of two distinct elements both in L or both in R. 

Now suppose m E R,,,,. Then m =f;,+,(u,,k) with iu,,+, <k < y,+, - 1. We cannot 
have k = u,,+,-- 1, for if n = 1, this would imply m = b-a, and if II > 1, this would 

implym=u,,-,.Thus,c=f,,+,(y,(k~1))~R,,+,.Notethatd=f,,+,(u,,(y,+,-1))~ 
R ,,+I? and that d=b-a or d=u,,-, accordingas n=l or n>l.Thus m=c+d, 

so rn is the sum of two distinct elements both in L or both in R. 0 

We conclude this section by giving a negative answer to the following question 

posed in [l, p. 2111: Does a saturated set split N uniquely? 
(A set V with {1,2}c VcN is saturated [l, Def. 3.51 if V splits N but no set of 

positive integers properly containing V splits fY.) We will exhibit a saturated set V 
which splits N in two ways. 

Let W = (1,2, 3,4} U (2” +4 : n 2 2). There is a unique W-partition of 2N - 1 

(the set of odd positive integers), namely A, U A,, where A, = 4N + 1, A2 = 
4N - 1. There is also a unique W-partition of 4N, namely B, U B,, where 

B, = 8N -4, E&= m. Furthermore, there is a unique W-partition D, U D2 of 

4N -2. Say 2 E D,. There are exactly two W-partitions of N, namely Gi U Hi 
(i=O,l), where G,=(A,UD,)UB, and Z-Z,=(A,UD,)UB,_,. Let V be theset 

obtained by adjoining to W every m EN possessing the property that for each set 
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JE(G,, G,, H,, H,}, no two distinct elements of J add up to WI. Then there are 

two V-partitions of N, namely GoU H,, and G, U HI. 
Suppose for the purpose of contradiction that V is not saturated. Then there 

exists IN EN and i E (0, 1) such that Gi U Hi is a (VU {m})-partition of N but 
G,-i U H,+ is not. Thus nz = c +d where c# d and either c, d E G,-i or c, d E 
H,-i. At least one of c, d is a multiple of 4, for otherwise we’d have c, d E Gi or 
c, d E Hi. If m is odd, then nr = 4+ (m -4) = 8 + (m - 8) is the sum of two distinct 

elements both in Gi or both in Hi, a contradiction. If 2(( m, then m = 
($rn -2)+($rn +2) is the sum of two distinct elements both in Gi or both in Hi. 

Thus WC, and d are multiples of 4. Therefore c, d E Bi or c, d E Bo, so m = c + d is 
the sum of two distinct elements both in Gi or both in Hi. This completes the 
proof that V is a saturated set which splits N in two ways. 
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