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ASYMPTOTIC EXPANSION OF A SERIES OF RAMANUJAN

by BRUCE C. BERNDT* and RONALD J. EVANS

(Received 1st May 1990)

An asymptotic expansion is given for the series

n)"*'

as x-»oo in the sector |Argx|g7t/2-<5. Here <5, Re(a), and Re(s) are positive and r is a positive integer. In the
case a = r = s= 1, this yields the nontrivial result

»=, k2{l+x/k)k

stated by Ramanujan in his notebooks [6].

1980 Mathematics subject classification (1985 Revision). 41A60.

1. Introduction

The primary object of this paper is to prove Theorem 1 below, which gives an
asymptotic expansion as x-+oo in the sector |Argx|^7t/2 — 5 for the series

00

T(x):= I
n\

where here and in the sequel 3>0 is fixed and arbitrarily small, r is a fixed positive
integer, and a and s are fixed complex numbers with positive real parts.

Theorem 1 Let N be an integer with N^.1. Then as x -* oo in the sector

^ W \ (1.2)

•Partially supported by NSF grant DMS-8820680.

189



190 B. C. BERNDT AND R. J. EVANS

where

£ ( ) ( ) ( ) ( j ) , (1.3)
J=° \JJ

and where the functions Cm(x) (defined in (2.9)) have the estimate

Cm(x)=0(x[m'2'-'). (1.4)

Observe that (1.2) is a genuine asymptotic expansion, in view of (1.4). Note also that
x can be replaced by x + b in (1.2), for any constant b. Thus, e.g., if the sign of a is
reversed in the denominator of (1.1), then Cm(x)/(a + x/2)m+1 is replaced by
2m+1Cm(x-2a)/xm+1.

Theorem 1 was inspired by Ramanujan, who stated the case r = s=l in the
unorganized pages of his second notebook [6, p. 272, eq. (5)]. Ramanujan found that for
r = s= 1, C0(x) = x~1 and each Cm(x) with m^. 1 is a polynomial in x such that, for /c^ 1,

C24.1(*) = 0 (1.5)

and

rz

x —
where B0,Bl,B2,... are the Bernoulli numbers defined by the generating function
[1, p. 804]

^ I ^ (L7)

In fact, he computed the first five leading coefficients and the last six trailing coefficients
of the polynomials Cm(x) (m^l , r = s = l); see [6, pp. 272-273], [2]. Ramanujan
[6, p. 271, eq. (2)] also stated (in a different form) the following:

Corollary 2. As x->oo with |Argx|^7t/2—5,

kk~2 1 _ / 2 16 , 56 3 7 1 2

k=i (k + x)k x \x
_6

Proof. This follows from Theorem 1 with a = r = s — 1 and N = 8, upon substitution
of the values
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1 x 1 5x2 x 1
C 2 = - - , CA=-+-, C 6 = - — - - - - ( 1 9 )

given, e.g., by (1.6).
Writing the first few terms of the expansion in Theorem 1 in more explicit form, we

obtain the following generalization of Corollary 2:

Corollary 3. As x -* oo with |Arg x| ^ n/2 — 8,

_ - _ L _ -»
''ax 6

.2 (12a+4) (24a2 + 24a + 8) (720a3 + 1440a2 + 1200a+ 352) _6A
^x2 3x3 3x4 45x5 J

In Corollaries 2 and 3, the asymptotic series are expressed explicitly in descending
powers of x. The general asymptotic series in Theorem 1 could also be expressed in this
way if an asymptotic expansion could be given for each Cm(x) in descending powers
of x. This is indeed possible and we show how this can be accomplished in Section 6. If
s is a positive integer, we prove the stronger result that Cm(x) is a Laurent polynomial
in x.

Ramanujan [6, p. 270, eq. (1)] also found the following interesting exact formula for
the series in Corollary 2:

where Re(x)>0. For a proof, see [2].
In Section 2, we discuss confluent hypergeometric functions and introduce further

notation. The goal of Section 3 is to prove the integral representation (3.8) for T(x). In
Section 4, we prove Lemma 4, which provides bounds for the derivatives with respect to
t of the function f(t,x) defined in (2.8). The proof of Theorem 1 is given in Section 5
and is based on the results of the previous sections. Finally, in Section 6, we show that
Cm(x) possesses an asymptotic expansion in descending powers of x, and that moreover
Cm(x) is a Laurent polynomial in x when s is an integer.

2. Confluent hypergeometric functions

Consider the confluent hypergeometric function

=o
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with the usual notation

(s)m = r(s+m)/r(s), rn^O. (2.2)

This function is related to U(s,s + r; z), the confluent hypergeometric function of the
second kind, by

4 ^ e™ U^s + r, z)

, -z), ? < a r g z < ^ ; (2.3)

see [5, p. 257, eq. (10.09)], [4, p. 270, eq. (9.12.4)]. In many books (e.g., [4, p. 263]),
U is designated by *F. As z -»oo with |arg z\ ̂  3n/2 — <5, we have the asymptotic expansion
[5, p. 256]

_sL_ (2.4)
m\z"

Since r is a positive integer, U{s, s + r; z) can be expressed as a Laguerre polynomial; see
[3, p. 189, eq. (14)], [3, p. 188, eq. (7)]. Thus

} ^ (2.5)
*=o z

For brevity, write, for t^O,

w = w(t) = t /( l-«" ') , (2.6)

so that by (1.7),

w= t —A-t)m, \t\<2n. (2.7)

m = o m-

For t^O, Re(x)>0, define

f(t,x) = ex(1-w+ll2)(-ty-1wsU(r,s + r; wx). (2.8)

Finally, the functions Cm(x) in Theorem 1 are defined by

Cm(x)=/<m»(0,x), Re(x)>0, (2.9)

where the superscript m denotes the with derivative with respect to t.
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We remark that in the case r—l,

f(t,x) = x-sex+x«2r(s,wx) (2.10)

for the incomplete gamma function

r ( s , z )= | e-'f-Ut, Res>0. (2.11)

2

This follows from (2.8) and the formula [3, p. 136, eq. (15)]

r(s,z)=e'Vl/(l,s+l;z). (2.12)

3. Integral representation of the series T(x)
Define, for each integer m^O,

From Euler's integral representation of the gamma function,

1 1
-nt-at

Thus

J s)n\

where absolute convergence justifies the interchange of integration and summation. The
sum on n in (3.3) equals (1 — e~')~m~s, and so

where w is defined in (2.6).
Recall that T(x) is defined in (1.1) for Rex>0 . Assuming for the moment that |x|<|a|,

we find that

f
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= T(n + s) r(m + s + n) I - x V "
% n\(a + nY+' % m\r(n + s) \a + n) ' l ' '

By (3.1) and (3.5),

T(x)= t —^^ \x\<\a\, (3.6)
m = 0

where absolute convergence justifies the interchange of summations. Ramanujan
[6, p. 271, eq. (3)] gave the case r = s= 1 of (3.6).

Put (3.4) in (3.6) to obtain for |x|<|a|,

* (3.7,
m\ T(m + s + r)0 m = 0

where the interchange of integration and summation can be justified by absolute
convergence. By (2.1), (2.2), and (3.7),

rW=FTT^ I e-"f~lwl
lFl(s,s + r; -wx)dt, (3.8)

1 (s + r) 0

for |x|<|a|.
As x->oo with |Argx|^7t/2 — 6, — wx->co with n/2 + 5^arg(— wx)^3n/2 — 5. Thus

by (2.3)-(2.5), the integral in (3.8) is convergent and analytic in each variable a,x in the
right half plane. From (1.1), T(x) is also seen to be analytic in each of a,x in the right
half plane. Thus (3.8) holds for all x with Rex>0.

4. Bounds for derivatives of fit, x)

The proof of Lemma 4 below makes heavy use of Faa di Bruno's formula
[7, p. 36]; [8],

where the sum is over all integers kuk2,...,kn for which

n = k1 + 2k2+--+nkn, fc.-^O, (4.2)
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and where k = kl+ ••• +kn,

hk(z) = -^h(z), and gi=gi(t)=^ig{t). (4.3)

Lemma 4. Fix N ^ 1. As x -»oo with |Argx| ^ n/2 — 5,

|A (4.4)

uniformly for re[0,1] .

Proof. Let 0 g t Si 1 and n ^ 0. We will obtain uniform estimates for nth derivatives of
each factor ( - t ) ' " 1 , w5, g^1-*"1-'/2), and t/(r,s + r; wx) of f(t,x) in (2.8), and then
combine them to deduce (4.4) from Leibniz's rule.

First, for each n^O,

^ ( - t ) ' " 1 =0(1), (4.5)

since r is a positive integer. Next, by (2.7), we have, for each k ̂  0,

- ^ w = 0(l). (4.6)

Consequently, by (4.1) with h(z) = zs and g(t) = w,

^ (4.7)

For |Argz|^7t/2-^, U(r,s + r;z) is analytic (see [5, p. 257, eq. (10.04)]) and so
by [5, pp. 9, 10, Theorem 4.2] we can differentiate in (2.4) to obtain, for fe^O and
large \z\,

£ U(r,s + r; z)~ £ ^ - ^ ^ C l 1 " ^ ' ^ - * ^ . (4.8)
dz m = 0 mlz

Now apply (4.1) with h(z) = U(r, s + r; z) and g{t) = wx to deduce from (4.6) and (4.8) that
as x-»oo with \Argx\^n/2—d,

£ x) = 0(x-'), (4.9)

uniformly for 0 £ t ^ 1.
A final application of (4.1) with h(z) = ezx and g(t)=(l + (/2 — w) yields
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^ ( H . P - . L ^ ^ ^ , . . .,kn)g\1.. .gk
n"xk'+-^", (4.10)

where the sum is over integers kt satisfying (4.2), where the coefficients B(kt kn) are
independent of x, t, and where gt is defined by (4.3). By (2.7),

and so

gi = 0(t) for all odd i g l (4.12)

and

#, = 0(1) for all j^l. (4.13)

Since g{t)^0 for O ^ t ^ l ,

e^(') = 0(i). (4.14)

By (4.2),

fc2 + fc4 + fc6 + ---^i(fci+2fc2+ ••• + n U = n/2. (4.15)

Combining (4.10) and (4.12)-(4.15), we see that

" -i(l+r/2-w) ̂ V| v | t i+*2 + - •• + fcnf

i = 0

The result now follows from (4.5), (4.7), (4.9), (4.16) and Leibniz's rule.

5. Proof of Theorem 1

By (2.3) and (3.8),

T(x) = A(x)-B(x), (5.1)

where
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^ x ) = F r ! I e-ar-1(-WYU(s,s + r; -wx)dt (5.2)
1 v) o

and

J wxU(r,s + r; wx)dt, (5.3)

with 7t/2 < arg (— wx) < 3n/2. We first examine A(x), which yields the dominant part of
the asymptotic expansion of T(x). Using (2.5) in (5.2), we find that

" -Vk(sW-r)k J
V) k = 0 0

1 V) k = 0 j = 0 X \JJ 0

where we have expanded (e~' — l)k by the binomial theorem. It follows easily from (5.4)
that

4*)= I Akx-k~\ (5.5)

in agreement with (1.2) and (1.3).
Now, (1.4) follows by putting t = 0 in (4.4). Thus, by (1.2), (2.8), (5.1) and (5.3), it

remains to show that

J e-«°+*<»f(t,x)dt = NJ: f-M+tyx-1-'-1"2). (5.6)
o m=o (a + x/Z)

By (2.4) and (2.8),

f(t,x)«ex{l-w+"2)t'-1w°(wx)-r, (5.7)

and so

e-na + xl2)f^x^<<e-alexll-w)x-rt,-l (5 g)

uniformly for t ^ l . Since
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l - w < - l / 2 for t^l, (5.9)

it follows from (5.8) that

J e-«°+*iVf(t,x)dt«e-xl2x-r J e-'Reia)tRe^-ldt«e'xl2. (5.10)
I I

In view of (5.6) and (5.10), it remains to show that

o ' m = o (a + x/2)m+1

Integrating by parts N times, we obtain

i iv-i / •W(0x)- f w ( l x)e"(a+Jc/2)

| e~l(a+xl2)f(t,x)dt= Y, —
0 m = 0

| (5.12)
0

By Lemma 4,

a+*/2)x3m/2<<e-*/3 (5.13)

Thus, to prove (5.11), it remains to prove that

1

^ W 2 ' - i ) . (5.14)

Again by Lemma 4,

J e - K . + »/2)y(W(tjX)<Kxff/2-,Je-iR.(« + */2) ^ | x t | ^ d t

0 0 j=0

_YAT/2-r
— A

«x w / 2 " '

j = 0

N

N I

y JA
j = 0 \X

0

X Jjl

(5-15)
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6. Asymptotic expansion of Cm(x)

As promised following Corollary 3, we show here that Cm(x) possesses an asymptotic
expansion in descending powers of x.

As in Section 4, we will estimate Cm(x)=/(m)(0,x) by combining Leibniz's rule with
formulas for the nth derivatives of (-t)''1, w*, e

xll~w+'/2), and U(r,s + r; wx). The nth
derivatives of ( —t)r x a n d w5 at t = 0 are constants. Since the function g(t) in (4.10)
satisfies g(0) = 0, the nth derivative of g*<1+»/2-*> a t r = 0 is, by (4.10), a polynomial in x.
It remains to show that the nth derivative of U(r,s + r; wx) at t = 0 has an asymptotic
expansion in descending powers of x. By (4.1) with h(z) = U(r, s + r; z) and g(t) = wx, we
have

— U(r,s + r;wx) = Z Ekx
k * U(r,

= 0 fc = 0 dzk (6.1)

for some constants Ek. Using the asymptotic formula (4.8) in (6.1), we obtain the desired
result.

If s is a positive integer, the stronger result holds that Cm(x) is a Laurent polynomial.
To see this, note that when s is an integer,

(6.2)

by (2.5) with r and s interchanged. Thus, U(r, s + r; z) and its derivatives with respect to
z are Laurent polynomials in z, and the result follows from (6.1) as before.
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