Polynomial Sums over Automorphs of a Positive Definite Binary Quadratic Form

RONALD EVANS*

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706 and University of Illinois, Urbana, Illinois 61801

Communicated by P. T. Bateman

Received January 24, 1974

Let P(X) be a homogeneous polynomial in X = (x, y), Q(X) a positive definite integral binary quadratic form, and G the group of integral automorphs of Q(X). Let $A(m) = \{N \in \mathbb{Z} \times \mathbb{Z} : Q(N) = m\}$. It is shown that if $\sum_{N \in A(m)} P(N) = 0$ for each m = 1, 2, 3,..., then $\sum_{U \in G} P(UX) \equiv 0$.

Let X denote the vector (x, y), let P(X) denote a homogeneous polynomial $\sum_{j=0}^{n} a_j x^j y^{n-j}$ with complex coefficients, and let Q(X) denote a positive definite integral binary quadratic form $ax^2 + bxy + cy^2$. Define

$$\theta(\tau; P, Q) = \sum_{N \in \mathbb{Z} \times \mathbb{Z}} P(N) e^{2\pi i Q(N) \tau}.$$

For each $m \ge 1$, let $A(m) = \{N \in \mathbb{Z} \times \mathbb{Z} : Q(N) = m\}$. Note that $\sum_{N \in A(m)} P(N) = 0$ for each $m \ge 1$ if and only if $\theta(\tau; P, Q) \equiv 0$. Let G denote the group of integral automorphs (of determinant ± 1) of Q(X). The first result in [1] states that if P(X) is a spherical polynomial with respect to Q(X) and if $\theta(\tau; P, Q) \equiv 0$, then $\sum_{U \in G} P(UX) \equiv 0$. The following theorem shows that this result holds for any homogeneous polynomial P(X), spherical or not.

THEOREM. If $\sum_{N \in A(m)} P(N) = 0$ for each $m \ge 1$, then $\sum_{U \in G} P(UX) \equiv 0$.

Proof. Let $R(X) = \sum_{U \in G} P(UX)$. Note that R(X) = R(UX) for each $U \in G$. By hypothesis, $\sum_{N \in A(m)} P(N) = 0$, so that $\sum_{N \in A(m)} R(N) = 0$ for each $m \ge 1$.

Weber [3] proved that there is an infinite set M consisting of prime

^{*} Current address: Department of Mathematics, University of California at San Diego, La Jolla, California 92093.

Copyright © 1977 by Academic Press, Inc. All rights of reproduction in any form reserved.

RONALD EVANS

multiples of d = g.c.d.(a, b, c) such that Q(X) represents each $m \in M$. Moreover, by [2, Theorem 1-6, p. 20], Q(X) represents each $m \in M$ uniquely up to automorphy. Fixing $h_m \in A(m)$, we thus have $A(m) = \{Uh_m : U \in G\}$ for each $m \in M$. Therefore, for each $m \in M$,

$$0 = \sum_{N \in \mathcal{A}(m)} \mathcal{R}(N) = \sum_{U \in \mathcal{G}} \mathcal{R}(Uh_m) = \sum_{U \in \mathcal{G}} \mathcal{R}(h_m) = |\mathcal{G}| \cdot \mathcal{R}(h_m),$$

i.e., $R(h_m) = 0$ for each $m \in M$.

If h_m is the vector (x_m, y_m) , then x_m and y_m are relatively prime by definition of M. Therefore, the set $B = \{y_m/x_m : m \in M, x_m \neq 0\}$ is infinite. Write $R(X) = \sum_{i=0}^n b_i x^i y^{n-i}$. Each element of B is a zero of the polynomial $\sum_{i=0}^n b_i t^{n-i}$, so that all the b_i must vanish. Hence R(X) = 0.

References

- 1. F. GOODING, JR., Modular forms arising from spherical polynomials and positive definite quadratic forms, J. Number Theory, 9 36-47.
- W. J. LEVEQUE, "Topics in Number Theory," Vol. 2, Addison-Wesley, Reading, Mass., 1956.
- 3. H. WEBER, Beweis des Satzes, Math. Ann. 20 (1882), 301-329.