Polynomial Sums over Automorphs of a Positive Definite Binary Quadratic Form

Ronald Evans*
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706 and University of Illinois, Urbana, Illinois 61801
Communicated by P. T. Bateman

Received January 24, 1974

Let $P(X)$ be a homogeneous polynomial in $X=(x, y), Q(X)$ a positive definite integral binary quadratic form, and G the group of integral automorphs of $Q(X)$. Let $A(m)=\{N \in \mathbb{Z} \times \mathbb{Z}: Q(N)=m\}$. It is shown that if $\Sigma_{N \in A(m)} P(N)=0$ for each $m=1,2,3, \ldots$, then $\Sigma_{U \in G} P(U X) \equiv 0$.

Let X denote the vector (x, y), let $P(X)$ denote a homogeneous polynomial $\sum_{j=0}^{n} a_{j} x^{j} y^{n-j}$ with complex coefficients, and let $Q(X)$ denote a positive definite integral binary quadratic form $a x^{2}+b x y+c y^{2}$. Define

$$
\theta(\tau ; P, Q)=\sum_{N \in \mathbb{Z} \times \mathbb{Z}} P(N) e^{2 \pi t O(N) \tau}
$$

For each $m \geqslant 1$, let $A(m)=\{N \in \mathbb{Z} \times \mathbb{Z}: Q(N)=m\}$. Note that $\sum_{N \in A(m)} P(N)=0$ for each $m \geqslant 1$ if and only if $\theta(\tau ; P, Q) \equiv 0$. Let G denote the group of integral automorphs (of determinant ± 1) of $Q(X)$. The first result in [1] states that if $P(X)$ is a spherical polynomial with respect to $Q(X)$ and if $\theta(\tau ; P, Q) \equiv 0$, then $\sum_{U \in G} P(U X) \equiv 0$. The following theorem shows that this result holds for any homogeneous polynomial $P(X)$, spherical or not.

Theorem. If $\sum_{N \in A(m)} P(N)=0$ for each $m \geqslant 1$, then $\sum_{U \in G} P(U X) \equiv 0$.
Proof. Let $R(X)=\sum_{U \in G} P(U X)$. Note that $R(X)=R(U X)$ for each $U \in G$. By hypothesis, $\sum_{N \in A(m)} P(N)=0$, so that $\sum_{N \in A^{(m)}} R(N)=0$ for each $m \geqslant 1$.

Weber [3] proved that there is an infinite set M consisting of prime

* Current address: Department of Mathematics, University of California at San Diego, La Jolla, California 92093.
multiples of $d=$ g.c.d. (a, b, c) such that $Q(X)$ represents each $m \in M$. Moreover, by [2, Theorem 1-6, p. 20], $Q(X)$ represents each $m \in M$ uniquely up to automorphy. Fixing $h_{m} \in A(m)$, we thus have $A(m)=$ $\left\{U h_{m}: U \in G\right\}$ for each $m \in M$. Therefore, for each $m \in M$,

$$
0=\sum_{N \in A(m)} R(N)=\sum_{U \in G} R\left(U h_{m}\right)=\sum_{U \in G} R\left(h_{m}\right)=|G| \cdot R\left(h_{m}\right),
$$

i.e., $R\left(h_{m}\right)=0$ for each $m \in M$.

If h_{m} is the vector $\left(x_{m}, y_{m}\right)$, then x_{m} and y_{m} are relatively prime by definition of M. Therefore, the set $B=\left\{y_{m} / x_{m}: m \in M, x_{m} \neq 0\right\}$ is infinite. Write $R(X)=\sum_{i=0}^{n} b_{i} x^{i} y^{n-i}$. Each element of B is a zero of the polynomial $\sum_{i=0}^{n} b_{i} t^{n-i}$, so that all the b_{i} must vanish. Hence $R(X) \equiv 0$.

References

1. F. Gooding, Jr., Modular forms arising from spherical polynomials and positive definite quadratic forms, J. Number Theory, 9 36-47.
2. W. J. LeVeque, "Topics in Number Theory," Vol. 2, Addison-Wesley, Reading, Mass., 1956.
3. H. Werer, Beweis des Satzes, Math. Ann. 20 (1882), 301-329.
