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The principal topics in Chapter 7 of  Ramanujan's second notebook concern sums of  
powers, an extended definition of Bernoulli numbers, the Riemann zeta-function ((s) 
and allied functions, Ramanujan's theory of  divergent series, and the gamma function. 
This chapter thus represents a continuation of  the subject matter of Chapters 5 and 6, 
which have been thoroughly examined elsewhere [6], [3]. Chapter 7 offers a 
considerable amount of  numerical calculation. The extent of Ramanujan's calculations 
is amazing, since he evidently performed them without the aid of a mechanical or 
electrical device. 

This paper provides proofs of the 1 l0 theorems, formulas, and examples arranged in 
27 sections of  Chapter 7. The content of  this chapter is, for the most part, correct, 
although there are several minor errors. We shall usually state and prove results for 
complex values of  a variable. This is in contrast to Ramanujan who evidently intended 
his variables to be real. However, to give rigorous proofs, we have frequently needed to 
use analytic continuation, and so we state theorems in more generality than originally 
intended. It should be mentioned that we adhere to Ramanujan's designations of  
corollaries, examples, etc; these designations are frequently not optimal. 

Several of  the results in Chapter 7 are not new. For example, Ramanujan 
rediscovered the functional equation of  ((s), found in Entry 4 in a somewhat disguised 
form. As was the case with Euler, Ramanujan had no real proof. It is fascinating how he 
arrived at this result, with reasoning based on his tenuous theory of  the "constant" of  a 
series. 

Before commencing our examination of  the individual results, we offer a few remarks 
about notation and state the Euler-Maclaurin summation formula. We shall adhere to 
the even suffixed notation for the Bernoulli number B~ and Euler numbers E~, 0 ~< n 
< m, as found in [1, p. 804], for example. These conventions are in contrast to those 
employed by Ramanujan. Thus, we define the Bernoulli numbers B,, 0 ~< n < oo, by 

x/(e ~ -  1) = ~ Bkxk/k! {X{ < 27t. (1) 
k = 0  

We shall very often use the Euler-Maclaurin summation formula. I f f  has 2n+ l 
continuous derivatives on [~t, fl], where ~ and fl are integers, then [13, p. 328], [31, 
Chapter 13] 

e fff(t)dt+~{f(~) f (k)  = +f(fl)} 

+ ~ B2k {f(2k-t) _ f (2k- l )  
k =,  ~ (fl) (~)} + R.,  
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where  
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R.=ffP~.+,(t)f'~"+"(t)dt, n~>0,  

where Pk denotes  the kth per iod ic  Bernoulli  function.  
We denote  complex var iables  by s with a = Re(s), by r with u = Re(r), and  by z. 

ENTRY 1 

Let 

9,(x) = ~ /c', (3) 
k = t  

where r is any complex number .  Then if  r ~: - 1, as x tends to oo, 

X "+1 Xr oo B2k F ( r  + 1)xr -  2k + i 
%(x)  ~ ~ (--  r) + - -  + -  + y~ (4) 

r + l  2 k=l  (2k ) !F( r -2k+2)  

Proof Applying  the Eule r -Maclaur in  summat ion  fo rmula  (2) w i th f ( t )  = t ' , �9 = 1, 
and /~  = x, we find that  

X r + 1 X r 

~o,(x)=C + r +  l +-2-+ 
B2~ F (r + l )x'. - 2~ +1 

where 

F ( r + l )  f ~  
F ( r - 2 n )  P2"+l( t ) t ' -2"- ld t '  

1 ~ B2k l-'(r + 1) l-'(r + I) 
c = - r--+-i- + 1/2 -- 2., k = t (2k)! F ( r  - 2k + 2) + F ( r  - 2n) 

x f ; P 2 . + , ( t ) t ' - 2 " - ' d t  (5) 

and n is a posit ive integer with 2n > u. No te  that  

f : Pz.+ t (t)t'- 2"- ' dt = O ( f ~ : -  2"- ' dt ) = O(x'- 2"), 

as x --, ~ .  Thus,  it remains to show that  

c = ~ ( -  r). (6) 

F r o m  the Euler -Maclaur in  fo rmula  (2), we have, for  a > l,  

1 1 " B 2 k F ( s + 2 k - 1 )  

r(s+2n+l) ; 
- F(s) - -  P2"+l(t) t -s-2"-ldt"  (7) 

By analyt ic  cont inuat ion ,  (7) holds  for a + 2n > 0. Pu t t ing  s = - r in (7) and using (5), 

we ob ta in  (6). 
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The analogue of  (4) for r = - 1 is due to Euler [13, pp. 324, 325] and is stated by 
Ramanujan in Chapter 8, Entry 2 [44, voi. 2, p. 91], [7]. 

If r is a nonnegative integer, the series in (4) is finite and we may replace the 
asymptotic sign by an equality sign. Moreover, (4) reduces to the familiar formula 

~Pr(x) = B,+, ( x +  1) - Br+, (1), (8) 
r + l  

where B,(x) denotes the nth Bernoulli polynomial. 
In Chapter 5, section 25 [44, p. 57], [6], Ramanujan defines a Bernoulli number/3,* of 

arbitrary index by 

(2n)" 
~(r) - - -  B,*. (9) 

2 F ( r +  1) 

In particular, i f r  = 2n is an even integer, B~. = ( - 1)" - ~ B2. and (9) reduces to Euler's 
famous formula for ~'(2n). Using the functional equation for ~(s) (see Entry 4), we find 
that 

( - r) = B*+l cos { n(r + 1)/2} (10) 
r + l  

In Ramanujan's version of (4), ~ ( - r )  is replaced by tile right side of (10). 
After Entry 1, Ramanujan makes some remarks about the "constant" of  a series. This 

concept was introduced by Ramanujan in Chapter 6 and is discussed in detail in [3]. 
The "constant" in Entry 1 is merely the constant term ~ ( - r )  in the asymptotic 
expansion (4). 

Now define, for a > 0, 

q(s)= ~ (--1)k+lk -s (11) 
k=l 

Note that 

q(s) = (1 - 21 -s)~(s), 

which, by analytic continuation, is valid for all complex values of s. 

(12) 

ENTRY 2 

For each complex number r, 

(2,+ 1 _ I)/3"+ I sin (rcr/2) 
r / ( -  r) = 

r + l  

Proof. Set s = - r in (12) and use (10). 
We now wish to extend the definition of ~b,(x) to encompass complex values of  x. 

First, for u < 0, redefine 

tp,(x)= Z {k ' -(k+x) '} .  (13) 
k=l 

Observe that, if u < - 1, 

tp,(x) = ~ ( - r ) - t / , ( - r ,  x +  1), (14) 
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where g , ( - r ,  x +  1) = Zk%~ (k +x)' .  Note that ~b(s, x) is very closely related to the 
Hurwitz zeta-function ((s, x), except that the latter function is usually defined only for 
0 < x ~< 1. The methods for analytically continuing ((s, x) (see, e.g., [2], [48, p. 37], [50, 
p. 268]) normally can be easily adapted to establish the analytic continuation of  ~O (s, x) 
as well. Thus, by analytic continuation, we shall now define 9, (x), for all complex values 
o f x  and r, by (14). Moreover, ifu < 0 and x is a positive integer, we find from (13) that 

~o,(x) = ~ k'. (15) 
k = l  

By analytic continuation, (15) is valid for all complex values of  r. Thus, the new 
definition (14) agrees with our former definition (3) i fx  is a positive integer. I f r  is a 
nonnegative integer and - 1  < x  ~< 0, then by (14) and the well-known fact 
~ , ( -  r, x +  1) = - B , + t  ( x +  l)/(r + 1), we find that 

B,+I ( x +  1 ) - B , .  1 (1) 
~0,(x) = 

r + l  

By analytic continuation, this holds for all x, and so we see that (14) is in agreement with 
(8) if r is a nonnegative integer and x is complex. 

COROLLARY 

If r is complex and r 4: - 1, then 

(2 - '2  -')B*+ i cos { n(r + 1)/2} 
~ o , ( -  1/2)  = 

r + l  

Proof. By (13), if u < O, we easily find that 

q~,(- 1/2) = - 2 - ' q ( -  r), (16) 

where ~/(s) is defined by (11). By analytic continuation, (16) is valid for all complex r, 
r # - 1. Using Entry 2 in (16), we complete the proof. 

I f r  is a positive integer, then, by (8), the Corollary is equivalent to the well-known fact 
B,+, (1/2) = - (1  - 2 - ' ) B , + ,  [1, p. 805]. 

ENTRY 3 

Let q~,(x) be defined by (14) and let a and b be complex numbers with b # 0. Then 

(a+kb)'= b'{q~,(x +a/b)-~o,(a/b)}. 
k = l  

Proof For r < 0, the desired formula follows easily from (13). The result for all r 
follows by analytic continuation. 

ENTRY 4 

For any complex number r. 

sin (nr/2)B~l - r  -" = ~(r) = 2F(r+(2n)" 1) B,*. (17) 

Proof We present Ramanujan's interesting argument, which is not rigorous. 
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Rewriting (8) in Ramanujan's  notation,  we have 

B, + 1 (x + 1) - sin (nr/2)B*+ 1 
= 

r + l  

where r is a natural number.  We now suppose that this formula is valid for all r. The 
"constant" in this representation for ~o_,(x) is 

sin (nr/2) B*_, 
1 - r  

On the other  hand, f,z)m (6) and (9), the "constant"  is also equal to 

(2n)'B,* 
~(r) = 

2 F ( r +  1)" 

These constants must  be equal, and hence (17) follows. 
The equalities in (17) imply that 

~(r) = 2(2n) ' -  1F(1 - r)((1 - r)sin(nr/2). (18) 

Mirabile dictu, Ramanujan has derived the functional equat ion o f  ((r) [48, p. 25] in a 
most unor thodox  manner!  

COROLLARY 1 

We have B*_ 2 = 2~ (3), B*_ 4 = - 4~(5), B*_ 6 = 6~(7), and B*_ 8 = - 8~(9). 

Proof The proposed equalities are special instances of  the first equality in (17). 

COROLLARY 2 

r t l / 2 )  = 

COROLLARY 3 

For  every complex number  z, F(z)F (1 - z )  = n/sin (nz). 
Corollary 2 is the special case z -- 1/2 o f  the well-known Corol lary 3 for which we 

give Ramanujan's  proof.  

Proof Letting r = - z  and r = z + l  in the extremal sides of  (17), we find, 
respectively, that 

sin(nz/2)B*+ t (2n)-ZB*~ 

z + 1 2F(1 - z )  

and 

cos (nz/2)B*z (2n) z + 1B*+ 1 

z 2F(z + 2) 

Multiplying these two equalities together,  using the equality F(z  + 2) = (z + 1)zF(z), 
and simplifying, we obtain the desired result. 
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COROLLARY 4 

We have 

nk~" (2k)l/2+(2k+2)u2 = 1/(2k+l) 3/2" 
= 0  k = O  

Ramanujan gives essentially the following faulty p roo f  of  Corollary 4. F rom (11) 
with s = - 1/2, (12), and (18), it follows that 

rt ~ (-l)k/((2k)l/2+(2k+2) '/2) n ~, (_ + 
k=o V/2 k=0 

= 7t~/2 ~ ( - - l ) k + ' ~ J ~ = ~ V / 2 ( l - - 2 3 ' ~ ) ~ ( - - I / 2 )  
k = O  

I 
= (I - 2=3 /2 )~ (3 /2 )  = 

k o( 2 k +  1)3/2" 

Corollary 4, in fact, is the special case p = 1/2 o f  the identity 

;tp+ 1 ~ (_l)k{(k+l)P_kP}=4sin(~p/2)F(p+l)  ~ 1 
k= I k=o (2k+  1) p+ 1 '  

proved in [47, p. 154], where 0 < p < 1. 
Ramanujan [41], [43, pp. 47-49]  has established some other  results which are akin to 

Corollary 4. Kesava Menon [34] has given simpler proofs  o f  Ramanujan's results and 
has proved additiona! results o f  this type as well. 

C O R O L L A R Y  5 

Let r/(s) be defined by (11). Then 

(2n)2/aq(1/3) = (1 + 21;3)F(2/3)r/(2/3). 

Proof. Using (12), we rewrite the functional equat ion (18) for ~ (r) in terms of  r/(r) to 
get 

(1 - 2')~/(r) = 2(2r0 ' -  1 (1 - 21 - ' ) s in (~r /2)F(1  - r)t/(l - r). 

Putt ing r = 1/3 and simplifying, we achieve the desired result. 

COROLLARY 6 

As x ---} oo, 

1 ~ B2k l ' 3 . . . ( 4 k -  I/x/k~2x/x+~(I/2)+2x/----'~- ~ (2k)! ~2-~--i 3)x-2k+112" 
k = l  k = l  

(19) 

This asymptotic  formula is a special case of  (4) but  is different from that claimed by 
Ramanujan [44, vol. 2, p. 79] who asserts that, as x --* oo, 

~.. 1 / x/~" ~ (2 + 4x) ' /2 + ~ (1/2). (20) 
k = l  
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Formulas (19) and (20) are incompatible since 

1 1 

(2+4x) 1/2 = 2 x / ~ + 2 ~ - ~  16x 3/2 ~" "' "; 

the leading two terms above agree with (19), but the third term does not coincide with 
the corresponding term - x -  3/2/24 in (19). Ramanujan gives no indication as to how 
he arrived at the approximation (2 + 4x) 112. 

COROLLARY 7 

Asx-~  oc, 

i 
k = l  

o~ B 2 ~  1 " 3  . . . ( 4 k  - 5 )  - 2k + 3i2 
+ k )-':2 (2k)! :~k--- r x (21) 

Using the functional equation (18), we observe that Corollary 7 is a special instance 
of Entry l, but (21) is not the result claimed by Ramanujan. Instead, he has proposed 
that 

x/~ ~ ~ [ (x + l /4)(x + l /2)(x + 3/4) ] ''2 - ~(3/2), (22) 
k=,  

as x ~ oc. Since the infinite series in (21) diverges while 

2 1 /4) (x+l /2 ) (x+3/4)]~ ,2  

= ~X312 1 1 '2 + ~ x  ' + x - t / 2 + . . .  

converges in a neighbourhood of x = oo, (21) and (22) are certainly not compatible. 
However, note that the right side of (22) does provide a good approximation for the left 
side. 

A similar type of approximation for tp,/2(x ) has been obtained by Gates [22]. 

COROLLARY 8 

As x ~ oo, 

f 3 2xS/2-l-~x3/2-+-~x1/2 16n2 ~(5/2) k3/2 
_ ".. -5 k=l  

-3 ~ B2k 1-3. (ffrk-7) 
*=2 (2k)! 22k x -  2~* 5/2 (23) 

Corollary 8 follows from Entry I and the functional equation (l 8). In contrast to (23), 
Ramanujan claims that 

• k3/2 2 k= I ~ -~(X(X+ 1/4)(X + 1/2)(X+3/4)(X+ i) 

5 3 
+ ~6--~ (x + I /2) )  '/2 - --16n2 ~'(5/2), (24) 
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as x - ,  oo. By the same reasoning used in conjunction with Corollary 7, (23) and (24) are 
incompatible. However, 

2 
~(x(x + 1/4)(x + 1/2)(x + 3/4)(x + 1) 

5 2 5/2 "-[''~X1 3/2 +-7-~(x+l/2))l/2=~x + x l / 2 +  . . . .  

ENTRY 5 

Let a and b be complex numbers with b ~ 0 and a/b not a negative integer. Then if u < 

k= 1 ( - 1)k + ~ (a + kb)" = (2b)" ~p, ~-b - tp, - - ~  . ( 2 5 )  

Proof. We have 

(-l)'+'(a+kb)'= ~ (a+(2k-l)b)'- ~ (a+2kb)', 
k = l  k=l k = l  

and the desired equality follows immediately from the definition (13). 
There is a misprint in the notebooks [44, vol. 2, p. 79]; Ramanujan has written b' 

instead o f  (2b)" on the right side of  (25). 

ENTRY 6(i) 

Let x be a positive integer and assume that n > 0. Then 

(x 2 + x) n = 2 ~P2n - 2k- 1 (X). 
k=o 2 k + l  

Proof. The proof  is indicated by Ramanujan. Expanding by the binomial theorem, 
we have, for }z[ i> 1 and n > 0, 

( z :  + z)"  - (z  2 - z r  = z 2~ { (1 + I / z )  ~ - (1 - l / z )  ~ } 

} = z2. z - ~ _  ( _ z ) - ~  
( k = O  k=O 

k 2k  + 1 z -  2k-  1. ( 2 6 )  

Now set z = j in (26) and sum both sides on j, 1 ~< j ~ x, to get 

( x  2 + x)" = 2 ~ t  j2,, n 
k=o 2 k + l  j - 2 k - I  

The required formula follows upon inverting the order of summation and employing 
equation (3). 

ENTRY 6(ii) 

Under the same hypotheses as Entry 6(i), we have 

k = o 2k + 1 + 2k ~P2,- 2k (X). 
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Proof. Proceeding in the same fashion as in the previous proof,  we find that, for  I zl 
/> I and n > O, 

(z + 1/21 (z 2 + z)" - (z - 1/2) (z 2 - z)" 

= z  2" ~ 2 + z - 2 k .  (27)  
k = O 2k + 1 2k 

Letting z = j  in (27) and summing both sides on j, 1 ~<j ~< x, we arrive at the formula 
that we sought with no difficulty. 

Note  that i fn  is a positive integer, then Entries 6(i) and 6(ii) are valid for all x because 
they yield polynomial  identities. 

COROLLARY 1 

Let y = x 2 + x  and a = x +  1/2. Then 

tp,(x) = �89 tp2(x) = �89 q~3(x) = �88 

tp4(x) = ~;ay(y-- ~), tps(x) = i~y2(y--�89 

tp6(x ) = ~ ay(y 2 -- y + ~ ), tp7 (x) = ~ y2(y2 _ ~ y + ~ ), 

tps(x) = ~ a y ( y 3 _ 2 y 2  + ~ y _  3), 

tpg(x) = ~ y 2 ( y _ l ) ( y 2 _ ~ y + ~ ) ,  

r = ~ a y ( y - -  1)(y 3 -  ~y2 + ~ y _  ~), 

and 

'.Pl 1(x) = l-k~ Y2 (y '* - 4 Y  3 + !22Y2 -- 10y + 5). 

Proof The proposed odd indexed formulas for q0,(x) follow from Entry 60) by 
successively letting n -- 1, 2 . . . . .  6. The proposed even indexed formulas arise from 
Entry 6(ii) by successively setting n = 1, 2 . . . . .  5. 

Although the formulas in Corollary 1 have long been known and are instances o f  (8), 
Ramanujan's  method  for determining them by means of  Entries 6(i) and 6(ii) is 
particularly brief and elegant. For  other  formulas and methods for finding q0,(x) when r 
and x are positive integers, see a survey paper by Snow [45] which contains several 
references. 

(i) 

and 

(ii) 

COROLLARY 2 

For  each positive integer n, we have 

( k=l 9 tP9\  2 n -  

If p and n are positive integers with n even, then 
P 

(iii) ~. (2k - 1)" = 2" t#. (p - 1/2) .  
k = l  
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Proof .  Applying Entry  3 with r = 9, x = n,a = ( x / ~ -  1 ) /2 ,andb  = l, we find that 

k __~1 ( 2k -- 1-2-}- N//5 )9 = (p9 ( 2/~/ -- 12"~ N//~ ) -- (p9 ( ~ ) ,  

However ,  by Corol lary 1, it is easily seen that (v /5  - 1)/2 is a root of (p9 (x). Hence, part  
(i) follows. 

Part  (ii) follows in the same fashion as part  (i), except now we use the fact that  

U , , o ( ( v / 5  - 1 ) /2 )  = o. 
To prove  (iii), apply Entry  3 with r = n, x = p, a = - 1, and b = 2 to get 

p 
( 2 k -  1)" = 2"{~o, ( p -  1 / 2 ) -  ~ , , ( -  1/2)}. 

k=l 
By the Corol lary to Entry  2, q~,, ( - �89 = 0, and the p r o o f  is complete. 

ENTRY 7 

I f  r is a positive integer, then 

(Pr(X-- 1)"~-(- l)"gOr (--X) = 0. 
Proof By (8), 

Br+ l(X) q- ( -  l)'/Jr+ l{l - X) 
~Or(X-- 1)"}- ( -- l)V~Or(--X) ~--- 

r + l  

By a very familiar proper ty  of  Bernoulli polynomials  [1. p. 804], the right side above  is 
equal to 0. 

COROLLARY 
I f  r is a positive integer exceeding 1, then q~,(x) is divisible by x2(x + 1)2 or x(x + �89 (x 
+ 1) according as r is odd or even. 

Proof This result follows easily f rom Entries 60), (ii) by induction on r. 

ENTRY 8 

I f  r is a positive integer, then 

Proof 

~o,(x) = r +--5 k=O 

--xr+lrq-1 +-2 . . 2  Xr k[r/2](r+l) k ~ ( 1 - 2 k ) x r + l - a k ~ l  2]( 

Using the well-known formula  [1, p. 804] 

(r) Br(x ) = ~= Bkxr-k,r >~ O, 
k 0 k 

in (8), we find that 

~o,(x) = ~o,(x-  l ) + x "  = . . . .  r +  1 k=o k BkXr+ l-t, r + l l  - -  - -  . +  X ' ,  

(28)  
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from which the first equality of  (28) readily follows. The  latter equality of  (28) follows 
from (17). 

ENTRY 9. is simply a restatement of  (13). 

ENTRY 10. 

For  each complex number  r and each positive integer n, 

q)r(x)--n" qo r = (1 - n r ~  l )~ ( - - r )  
k=O 

___ (nr+ 1 _ 1) sin(~r/2)B*+ 1 (29) 
r + l  

Proof For  u < - 1, (13) yields 

= ~ ( - r ) -  (j+x)'-n'+l~(-r)+ ~ (nj-k+x)" 
./=1 k=O .i=1 

= (1 - n  ' + ' ) ~ ( - r ) .  (30) 

By analytic cont inuat ion,  the extremal sides of  (30) are equal for all r. The second 
equality in (29) follows f rom (17). 

COROLLARY 

Under  the hypotheses  of  Entry 10, 

n - 1  

~o,(-k/n) = (n-n- ' ) ( ( -r) .  
k = l  

Proof Put x = 0 in Entry 10 and use the fact that tp,(0) = 0 for each r. 

ENTRY 11 

If r is a posi t ive  integer, then 

~o , ( x -  1 ) + ( -  I y ~ 0 _ , ( - x )  

( - 1 ) "  d ' - 1  
{ 1 + ( - 1)'} ~(r) + (r - 1)! dx  r - I  (/t cot(/tx)), (31) 

where if r = 1, the first expression on the right side of  (31 ) is unders tood  to be equal to 0. 

Proof By (13), 

~o , (x  - 1) + ( - 1)" ~0_,( - x) 

,}  
--- { 1 + ( -  l ) ' } ( ( r ) -  ( k+x )~+(x_k_ l~ . .  

k=O 
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Since i{1 
7r cot(nx) = 

k=0 k + x  

equality (31) now easily follows. 

+ m  
x - k - I  ' 

In the notebooks [44, vol. 2, p. 81 ], Ramanujan gives (3 l) with r replaced by - r and 
states that the result is obtained by differentiating the equality ~o_ t ( x  - 1 ) - ~0_ t ( - x )  

= -~r cot(nx) r times. The correct number of differentiations is however - r - I .  
Ramanujan then indicates that (31) holds for negative as well as positive values o f t  and 
that Entry 7 can thus be deduced. If we interpret 

( - 1 ) '  d ' -1 
( r -  1)! dx ' -  l cot(nx) 

as being identically 0 forr  < 0, then, indeed, we obtain Entry 7 (but this does not prove 
Entry 7). 

Ramanujan next indicates a method for calculating the derivatives ofcot(nx). We are 
not certain what Ramanujan's method is, but it seems to be a more complicated version 
of the simple method which we describe below. This method has been judiciously 
applied and generalized by Carlitz and Scoville [14], [15]. Set y = cot(nx). Then 
tan-  ~(1/y) = Itx. Upon differentiating both sides of  the latter equality with respect to 
x, we find that 

-_L" = _ n(y" + 1). (32) 
dx 

Further derivatives of cot(nx) can be found by successively differentiating (32). In this 
manner, the following table of  derivatives of cot(nx) may rapidly be calculated. All 
formulas are correctly given by Ramanujan, except that he has written 2385 for 2835 in 
the last denominator of  the last entry. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

( -  1) k dky 

nkk! dx k 

Y 
y 2 + l  

y a + y  

y" + + 

y5 + ]y3 + J y 

y6 + 2y4 + 1~$7y2 + 

+ + + 

y9 + 3yT + ~ y 5  + 6~y3 + ~ y  

ytO + ~ y a  + Vy6 + ~ y ~  + ~j~y2 + 
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COROLLARY 

If r is any complex number, then 

(i) ~o,(x)-2'  % ~ + %  = ( 1 - 2 ' + 1 ) ~ ( - r ) ,  

(ii) ~o,(- 1/2) = ( 2 - 2 - ' ) ~ ( -  r), 

(iii) ~o,(-1/3)  + ~0,(-2/3) = ( 3 -  3 - ' )~ ( - r ) ,  

(iv) ~o,(- 1/4) + ~0,(- 3/4) = (2 + 2 - ' - 4 - ' ) ~ ( - r ) ,  

and 

(v) 

Proof. 
to Entry 10 by successively setting n = 2, 3, 4 and 6, respectively. 

79 

~o,(- 1 /6)+ ~o,(-5/6) = (1 + 2 - "  + 3 - ' -  6 - ' ) ~ ( -  r). 

Part (i) is the case n = 2 of  Entry 10. Parts (ii}-(v) follow from the Corollary 

EXAMPLES 

If r is a positive, 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

and 

(vii) 

Proof 

odd integer, then 

~p,(- 1/3) = ( 3 - 3 - ' ) ~ ( - r ) / 2 ,  

% ( -  1/4) = (1 + 2  - ' - 1  - 2 - 2 " - 1 ) ~ ( - r ) ,  

% ( -  1/6) = (1 + 2-" + 3 - ' -  6 - ' K ( -  r)/2, 

~o,(- 1/5) + ~o,(- 2/5) = ( 5 -  5 - ' ) ~ ( -  r)/2, 

~o,( - 1 / 8 )  + ~o,( - 3 / 8 )  = (2  + 2 -  2 , -  1 _ 2 -  3 , -  1)~( _ r), 

~p,(- 1/10)+ cp,(-3/10) = (3 + 2 - ' + 5 - ' -  10- ' )~(- r ) /2 ,  

~o,(- 1 / 1 2 ) + % ( - 5 / 1 2 )  = ( 4 - 2 - ' + 4 - ' + 6 - ' -  12- ' )~(- r ) /2 .  

All of  these formulas are easily established with the use of the Corollary of 
Entry I0 and Entry 7. For illustration, we shall give the proof  of part (vii). By the 
aforementioned results, 

11 5 

( 1 2 - 1 2 - ' ) r  = ~ ~0,(-k/12) = 2 Y~ ~o, ( -k /12/+~o,( -  1/2/. 
k = l  k = l  

Using Examples (i), (ii) and (iii) and Corollary (ii), we find that 

~ o , ( -  1 / 1 2 ) +  ( p , ( - 5 / 1 2 )  = ( 1 2 -  1 2 - ' ) ~ ( - r ) / 2  

- (3  - 3 - ' ) ~ (  - r ) / 2  - (1 + 2 - ' -  l _ 2 -  2 , -  l ) ~ (  _ r) 

- (1 + 2 - '  + 3 - '  - 6 - ' )  ~(  - r ) / 2  - ( 2  - 2 - ' )  ~( - r ) / 2 ,  

which, upon simplification, yields (vii). 
Ramanujan has incorrectly given the right sides of  (vi) and (vii) [44, vol. 2, p. 83]. The 

examples above are more commonly expressed in terms of values of  Bernoulli 
polynomials. For example, see [1, pp. 805, 806]. 
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ENTRY 12 

For every complex number r, 

2r{~Or(-- 1/6)-- ~,(--  5/6)} = (2"+ I) {~O,(-- 1/3) -- ~0,( -- 2/3) }. (33) 

Proof. Putting n = 2 and x = - 1 / 3  and x = - 2 / 3  in Entry 10, we find that, 
respectively, 

~o,(- 1/3) - 2"{,p,( - I/6) + ~0,(- 2/3)} = (1 - 2 "+ ~)( ( -  r) (34) 

and 

~o,( - 2/3) - 2'{ ~Or( -- I/3) + ~0,(- 5/6)} = (I -- 2 "+ ')(( -- r). (35) 

Subtracting (35) from (34) and rearranging terms, we deduce (33). 
The proof  above is given by Ramanujan in the notebooks, but he has inadvertently 

multiplied the right sides of  (34) and (35) by - 1. 

EXAMPLE 1 

EXAMPLE 2 

EXAMPLE 3 

EXAMPLE 4 

1 7 
(2k+  1) 3 = ~(3) .  k=O 

1 2rt 3 13 
= ~ ~(3). 

~=o(3k+1) 3 81,./~ 

1 n3 7 
(4k+ 1) 3 = ~ + ~ ( 3 ) .  k=O 

1 ~3 91 

,_-2-' o (6k + 1) 3 - 36 x/~ + 2 ~  
~(3). 

All of  these examples follow from well-known general formulas. Example I is trivial. 
Examples 2-4 follow from general formulas for ~o_ 2, - ~ ( - 2/3), ~0_ 2, - ~ ( - 3/4), and 
~P- z,-  : ( - 5/6) that can be found in Hansen's tables [28, formulas (6.3.10), (6.3.18), and 
(6.3.23), pp. 118, 119]. 

ENTRY 13 

For each nonnegative integer k, define 

Ck = iim ( ~ lOg-kj Iogk+lm'~ 

Then for all s, 

1 g ( -  1)%k 
~(s) s - ~ +  L_ o k---T-. - i s -  IL 

(36) 

(37) 
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In particular, if Ak = ( -  l)kcJk!, 0 ~< k < ~ ,  then 

Ao = 3' = 0.5772156649, 

A l = 0.0728158455, A2 = -0.00485, and A3 m - -  0"00034, (38) 

where 3' denotes Euler's constant. 
Ramanujan did not explicitly define ck by (36). Instead, he says that Ck is the constant 

of 5".~% ~ (logkj/j) ,  but this is equivalent to (36). The values of Ak, 0 ~< k ~< 3, are correct 
to the given number of decimal places. 

The Laurent series (37) has been independently discovered several times in the 
literature. Apparently, Stieitjes [46] first established (37)in 1885. Furthermore, Stieltjes 
and Hermite [46, letters 73, 74, 75, 77] have thoroughly discussed this result in an 
exchange of letters. Not surprisingly, the constants Ak are now called Stieltjes constants. 
In 1887, Jensen [33] rediscovered (37). Hardy [30], [32, pp. 475-476] and Ramanujan 
[42], [43, p. 134] himself each stated (37) without proof. Briggs and Chowla [12] 
rediscovered (37) again in 1955. Later proofs have been given by Verma [49] and 
Ferguson [19] in 1963 and Lammel [38] in 1966. Kluyver [36] has established an 
infinite series representation for Ck. 

Wilton [51] and Berndt [2] have evaluated the Laurent coefficients of the Hurwitz 
zeta-function. Further generalizations to other Dirichlet series have been found by 
Briggs and Buschman [11] and Knopfmacher [37]. 

Numerical calculations of the constants ck were first carried out by Jensen [33] who 
calculated the first 9 coefficients to 9 decimal places. In 1895, Gram [26] published a 
table of the first 16 coefficients to 16 decimal places. The most extensive calculations 
todate have been by Liang and Todd [39] who calculated the first 20 coefficients to 15 
decimal places. 

Briggs [10] and Mitrovi6 [40] have proved theorems on the signs of the coefficients 
ck. Uniform bounds for Ic, I have been established by Briggs [10]; the best estimates to 
date are due to Berndt [2]. 

EXAMPLE 1 

For I nl sufficiently small, we have 

if(1 + n ) + ~ ( 1 - n )  = 
23' 

1 + 0-00839 n 2 - 0"0001 n 4 + . . .  

Proof  From Entry 13, for Inl sufficiently small, 

((1 + n) + ((1 -- n) = 23' + 2A2 n2 + 2A4n 4 + �9 �9 �9 

2y 

+ + . . .  
Y 3' 

Using the values of A o, A z and A4 given by Liang and Todd [39] and employing a 
calculator, we complete the proof. 

In Example 1 Ramanujan, in fact, has written + 0.0001 n 4 instead of - 0.0001 n 4. 
Several of the following examples also need corrections. 



82 Bruce C Berndt and Ronald J, Evans 

EXAMPLE 2 

((11/10) = 10"58A.4A.842. 

EXAMPLE 3 

~(3/2) = 2.6123752. 

E X A M P L E  4 

((5/2) = 1"341490. 

E X A M P L E  5 

B~/2 = 0-4409932; B~/2 = - 1 " 0 3 2 6 2 7 .  

EXAMPLE 6 

B*/3 = - 0"9420745; B*_ 1/3 = - 1"3841347. 

EXAMPLE 7 

B*_ 1/2 = - 1"847228. 

According to Gram's [27] table of values for ((s) which has been reproduced in 
Dwight's tables [ 18], the last recorded digit for ((11/10) should be 6 rather than 2. These 
same tables indicate that the last recorded digit for ((3/2) is 3 and not 2 and that the last 
two digits of((5/2) are 87 instead of  90. In an earlier table of  Glaisher [23], the values of  
~(11/10) and ~(3/2) are found to six decimal places. 

The five particular values of  B,* given by Ramanujan can be found by employing (17) 
in conjunction with tabulated values of the Riemann zeta-function. Using the value of 
~(3/2), we find that the last digit of B~/2 should be 3 rather than 2. The given values of 
B?/2 and B* 1/2 are correct. To  calculate n~/3 and B* ,/3 we need the values of ~(2/3) 
and ~(4/3) which are not found in the aforementioned tables but which have been 
calculated by Hansen and Patrick [29]. Accordingly, the last digit of  B,/3 should be 3 
rather than 5. Ramanujan's value of  B* 1/3, in contrast to his other calculations, is 
somewhat off from the correct value -1.3860016. 

For a list of  all tables of  the Riemann zeta-function before 1962, consult the Index of  
Fletcher et al [20]. The most extensive computations of  ((s) appear to have been done 
by McLellan in 1968; see Wrench's review [52] for a description of these tables. 

Em'RV 14 

Let n > 0. Then as n --* 0, 

| 1 
k~=zk(k ~--- 1) "" ao-lOgnn 

where 

+al + ~ ak+ln ;k-l, (39) 
k = l  

Oo :im(  l ) k = 2 k log k log log m = 0.7946786, 

al = �89 - 7) = 0.2113922, 

(40) 
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and 

- -  B2k  A 2k- l 
ak+l = , k ~ > l ,  

2k 

where Bj denotes thej th  Bernoulli number and A i is defined in Entry 13, 0 ~<j < oo. In 
particular, a2 = - 0-0060680 and a3 = - 0.000000475. 

The numerical value for ao + log log 2 is found in an article of  Boas I-9, p. 156]. Boas 
records the first six digits ofao + log log 2 in 1-8, p. 244]. The numerical values for al ,  a2, 
and a3 may be determined from (38), or, more accurately, from the table of Liang and 
Todd [39]. While Ramanujan correctly gives al and a2, his value - 0 .00(028 for a3 is 
incorrect. 

Proof. Let t >1 1, x />  0, and suppose that 0 < n < A, where A is fixed and positive 
but otherwise arbitrary. Define 

1 1 l l 
- - , h ( t ) = f ( t )  - -  a n d g ( x ) = - -  . 

f ( t ) - t ( t " - l )  n t l o g t '  e ~ - l  x 

Then h(t) = g(n log t)/t and 

h'(t) = t - 2 (n O, (n tog t) - g(n log t) }. (41 ) 

Fix an integer N/>  1. Applying Taylor's theorem to O and g', we see from (41) that 

(n log t) j 
t2h'(t) j = o J! {no(J+ 1~(0) - g(J)(0)} 

(n log t) N + 1 

-t ( N +  1)! {ng~N+:~(OI)--g~N+"(Oz)}' (42) 

where 0 ~< 01, 02 ~< n Iogt. By the definition (1) for the Bernoulli numbers, 

g~J~(O)/j! = B~+I/( j+ 1)!, j >/0. (43) 

Thus, as x --., O, g~N)(x) --' BN+1/(N + 1). Using the fact that 

l f O(x) = - - + exp ( -  (k + l)x), x > O, 
X k=O 

we find that gIN~(x) ~ 0 as x ~ ~ .  Hence, gIN)(x) is bounded for each fixed N, and so the 
last expression in (42) is 0({n log t } N + 1), where the implied constant is independent of n 
and t. Using (43), we deduce from (42) that 

N ,q(j)[f l~ 
t2h'(t) = j~o  ~ {nj(n log t) i -1  _ (n log t) i } + 0( {n log t} N +,) 

= t2 ~ B~+ln d 
i~o ( ~  ~.T ~ +0({n log t}N+~). (44) 

Next, apply the Euler-Maclaurin formula (2) with 0, h(t), 1, and m playing the roles of  
n,f(t) ,  ~t, and fl, respectively. Since h(1) = - 1/2, we find that 

h(k) = h(t)dt + 1/4 + + PI (t)h'(t)dt. (45) 
k = 2  1 
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From (44) and (45), it follows that 

f ?  h(m) k= 2h(k) = h(t)dt+l/4+~2- 

+ ~, Bj+InJ f"  Pl(t)dfl~ +0(nN+'),  (46) 
j :o ( j+1 ) ! j ,  dr\  t ) 

where the implied constant  is independent o f n  and m. We now evaluate the integrals on 
the right side o f  (46). First, 

I / t " - l ' ~  

[m"-l'X l o g i o g m  logn 1 i o g t ~  ) - (47) 
n n /7 

By the Euler-Maclaurin formula  (2), 

d log i t 

+ 

- -  ~ = k = ~  j + l  2m ' j > 0 ,  

1 ('= dt 1 1 1 1 
- ~ - l o g m - ~  1 +  j = 0 .  

t ~ = , ~ - - j , - T - 2  1 m ~= , -  
(48) 

Using the integral evaluations (47) and (48) in (46) and then letting m ~ oo, we find that 

f(k) ao logn ~ Bj+,nJQ - q- 1/4 + B~ ('V - 1/2)  + t- O(n N + ~), 
k=2 n n j = l  ( j +  1)! 

where c~ is defined in (36). The asymptotic formula (39) now readily follows. 
Corol lary 1 is a restatement o f  (40). 

COROLLARY 2 

For  s > 0, 

where 

~o k ~_ 1 V Ak-lS 
k - 2 k s §  logk = - t o g s + C + ( 1  - 7 ) s -  ~=2 ~ - k ' 

C-- _X2k log k 7' ,  

(49) 

(50) 

13. Furthermore,  C = 0.2174630, and where Ak, 1 ~< k < oo, is defined in Entry 
1 - ), = 0.4227843, - �89 A ~ = - 0"0364079, - �89 A 2 = 0-001615, - �88 A 3 = 0.000086, and 
- ~ A 4  = -0 .00002.  

Proof Replacing s by x + 1 in (37) and integrating over [1, s], we find that, for 
s > 0 ,  
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- k �9 + x l o g  k I- ~ -+ s - 1 k=2 k 2 l ogk  

fs  ~ Ak_ l(Sk _ 1) 
= ( ( x + l ) d x = l o g s + y ( s - 1 ) +  

1 k=2 k 

Hence, (49) and (50) follow immediately.  
The numerical  coefficients o f s  k, 1 ~< k ~< 5, are now found by employing the table o f  

Liang and T o d d  [39]. The value 

- 0.605521788883 
1 

k - 2 k2 log k 

was calculated by J R Hill on his PDP11 /34  computer .  Using this computa t ion  along 
with the table f rom [39] and the bounds  I Akl <<. 4/(kn~), 1 ~< k < ~ ,  found in a paper  o f  
Berndt [2], we derive the proposed  value o f  C. 

Ramanujan ' s  version o f  Corol lary  2 contains some mino r  discrepancies; his 
coefficients o f  s 3 and s 4 are 0.001617 and 0-000085, respectively. 

ENTRY 15 

Let u > - 1 and  0 < x < 1. Then 

%(x  - 1) - % ( -  x) (-, sin (2~kx) 
4 F ( r +  1) = -cos(nr/2)  k=lL' (2nk),+l �9 

Proof Recall Hurwitz ' s  formula  [48, p. 37] 

= cos (2nka) ~ sin (21tka) 
~(s, a) = 2F(1 - s) sin (ns/2) ~, ~ ~- . . . . .  cos ~r~s/z) 2_, ~ ~ - - 7  ?, 

t k = l  tZnKJ k=l (ZnK] J 
(51) 

where a < 1 and 0 < a ~< 1. By (14) and (51), the desired fo rmula  readily follows. 

ENTRY 16 

Let u > - 1  and 0 < x < 1. Then 

tp,(x - 1) + tp,( - x) - 2(( - r) 

4F(r  + 1) 

Proof 

~o 
COS (2~tkx) 

= sin (nr/2) 
k= t  (2nk) "+l " 

The  p r o o f  is completely ana logous  to the previous proof.  

COROLLARY 16(i) 

Let p and q be integers with 0 < p < q. Then  if r is any complex number ,  

=-s in (nr /2 , :~= ' l s in (21r jp /q ) { ( ( r ) - tp_ , (~ - l ) } .  

Proof 
f o r r >  1, 

(52) 

Using Entry  15 and put t ing k = mq +j ,  1 ~< j ~ q, 0 ~< m < oo, we find that, 
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(2nq) '{  ( ~ )  ( ~ ) }  ~ sin(2nkp/q) 
4F(r) tp,_ ~ - 1 - tp,_ 1 - = - sin (nr/2)q" k" k=l 

= - sin (~r/2) sin (2gjp/q) (m +j/q)" j=l m = O  

The result now follows from (14) for r > 1 and by analytic continuation for all r. 

COROLLARY 1600 

Let p and q be integers with 0 < p < q. For  any complex number r, 

(27r (:--l)q-q)r-l(--:)--2(l--q-r)~(l--g) 1 

= - cos (nr/2) ~ cos (2nip~q) ~(r) - ~p_, - 1 . (53) 
j = l  

Proof The p roof  is similar to the previous proof,  but, in addition, uses the 
functional equation (18). 

For  the next few results we shall need Ramanujan's  extended concept o f  the Euler 
numbers  (see [6, section 25]). Define 

2F{r) 
E* = - -  L(r) (54) 

(n/2)" 

where r is any complex number,  and where 

L(s)= ~ ( - - l ) k ( 2 k + l )  -s, a > 0 .  (55) 
k=O 

It is well-known 1-16, Chapter  9] that L(s) can be analytically continued to an entire 
function. Observe that * E2.+ 1 = ( -  1)"E2,, where n is a non-negative integer and E,~ 
denotes the 2jth Euler number,  which is defined by 

~ ( -  1)JE2ix "i 
s e c x  = I x l  < ~ / 2 .  

j = o (2 j ) !  ' 

ENTRY 17 

For  each complex number  r, 

2 cos(nr/2)E*§ 
~p,( - 1/4) - ~p,( - 3/4) = 4,+ 1 

Proof Put x =  l /4  in Entry 15 to get, f o r u >  - 1 ,  

~p,(- 3 / 4 ) -  ~p,(-  1/4) ~ sin(nk/2) 
4 F ( r +  1) = -cos(for~2) k2"= i ( 2 " ~  i 

cos(nr/2) 
- - -  L ( r +  1) 

(2n)" + l 

cos (nr/2)E*+ l 
4"+12F(r + 1) ' 
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by (55) and (54). The  desired result now follows for u > - 1. By analytic continuation, 
the proposed formula is valid for all r. 

COROLLARY 

For  u < O, 

Proof. 

k = 0 ( -- l)k (2k + 1)' = ~ cos(rtr/2)E* 1. 

By Entry  17 and (13), with u < 0, 

2 cos (nr/2)E*§ 1 
4 r § = tp, ( -  1/4) - ~o, ( - 3/4) 

and the result follows. 

ENTRY 18 

For  each complex number  r, 

= ~ {(k - 3/4) '  - (k - 1/4)'} 
k = l  

= 4 - "  ~ ( - - 1 ) k ( 2 k + l )  ', 
k=O 

cos(nr/2) E*_, = 2L(r) = (n /2) 'E*/ r ( r ) .  (56) 

The equalities in (56) yield the functional equation o f  L(r) [-16, p. 69-1, 

L(r) = cos(nr/2)(n/2)'- 1 F(1 - r)L(1 - r). 

Proof We present here Ramanujan's  argument.  
By (54), the "constant, '  for the series L(r) is 

L(r) = (n/2)" F* 
2F(r) - '  " 

But by the last corollary, the "constant"  for  L(r) is also equal to 

�89 cos (r~r/2)E*_,. 

Since these two constants must be equal, (56) follows at once. 
Ramanujan's  derivation of  the next corollary was evidently very similar to his 

argument for  Corol lary 4 in section 4. 

COROLLARY 

We have 

i (2k - li  1/2 + (2k + 1) 1/2 L(3/2). 

Proof. Since the p roo f  is very similar to  that of  Corollary 4 in section 4, we shall 
present only a brief  sketch. I f  we replacef(x)  b y f ( x  + rr/2) in [47, pp. 153-154], we find 
that 

Proc (Math. Sci.)-- 3 
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rip+ 1 + ~p+ l ~ ( _  1)k{(2k + l )p_  (2k - 1) p} 
k = l  

= 2p+ 2 cos(np/2)F(p + 1)L(p + 1), 

where 0 < p < l, after a completely analogous argument. Putting p = 1/2, we complete 
the proof of the Corollary. 

ENTRY 19(i) 

Assume the hypotheses of  Corollary 16(i) with the additional assumption that q is odd. 
Then 

Proof. On the right side of (16.1) replace j by q - j  in that part of  the sum with 
(q+  1)/2 ~j,<< q -  1. 

ENTRY 19(ii) 

Suppose that all hypotheses of  Corollary 16(ii) hold. Assume also that q is odd. Then 

=cos(nr/2)  ~ cos(2njp/q) r - 1  + ~o_, - . 
i = 1  

Proof. Using (53), proceed in the same fashion as in the previous proof. In addition, 
the functional equation (18) must be employed. 

Ramanujan's version of  Entry 19(ii) is incorrect [44, vol. 2, pp. 86, 87]. 

COROLLARY 1 

Let u > 0 and suppose that 0 ~< x < 1. Then 

2 r- t n' + t ~, sin (nkx) cos (nkx + ~r/2) 
F(r + 1~ t p , ( - x )  = k= k,§ t 

Proof. By (14), (18) and (51), we find that for u > 0 and 0 ~< x < 1, 

2,=I rd+ I 2,-I  ~+ I  
- -  q T , ( - - X ) = -  { ~ ( - - r ) - - ~ ( - - r ,  l - x ) }  
F i r +  1) F ( r +  1) 

_lsin 1 
= - (rcr/2)((r + 1) + ~sin (nr/2) 

2 2 

~ cos(2nkx) 1 . . . .  ~ sin(2nkx) 
x ~ - ~  r L ~-r 

k =  1 k =  1 n, 

1 ~o 1 
= ~k=~ t ~ - f {  -- sin (r~r/2) + sin (2nkx + nr/2)} 

~ sin (nkx) cos (nkx + nr/2) 
= k r +  l ' 

k = t  
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upon using the identity - sin A + sin (A + 2B) = 2 sin B cos (A + B). This completes the 
proof. 

COROLLARY 2 

I f O < x < l ,  then 

k=O (k+x) 1/2 (k+l- X) 1/2 = 2 k =  1 

Proof. Set r = - 1/2 in Entry 15 and use (13). 

ENTRY 20 

If r is any complex number, then 

Proof. 

sin (2nkx) 

(6n)" 
2,/3rtr) {~o,_ ~ ( -  1 /3) -  ~o,_ 1 ( -  2/3)} 

= sin (nr/2) {~o_, ( -  1/3)- ~_, ( -  2/3) }. 

Put p = 1 and q = 3 in Entry 19(i), and the regult follows. 
Section 21 appears to have no relation to the other material in Chapter 7. In 

Entry 21, Ramanujan writes 

(Poo ~ = (1 + x ) - "  (p(k)x k, (57) 
k=0 

where 

(p, (x) = tp,_, (x~-  1 + exp ( n P ' - *  tp:_, (x)) 
r! 

with (Pl (x) = (p(x), and where 

P,= ~ (--1)k+lk'x k. 
k=l 

We have been unable to discern the meaning of  this result, since the recursively defined 
functions (p, (x) have not been connected with (57) in any way. We shall regard (57) as 
the definition of (p~. Setting u = nx/(1 +x) and p = u/n, we find that (57) becomes 

In the following corollary, Ramanujan gives a formula for (p~ (u) in terms of  the 
derivatives (go) (u), 0 ~< j < oo. Note that (Poo (u) is the expected value of  (p (u) if u denotes 
a random variable with binomial distribution b (n, k; p). Ramanujan alludes to Entry 10 
of Chapter 3 [4], where he gives a formula for the expected value of  tp (u) in terms of  
(p(;) (u), 0 ~< j < oo, where u denotes a Poisson random variable. However, the latter 
result appears to be considerably deeper than the present corollary. 

COROLLARY 

Let u and n be fixed where 0 ~< u ~< n and n is an integer. Let (p (z) be analytic in a disc 
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centered at u and containing the segment [0, n]. If tp~ (u) is defined by (58), then 

<p~(u,= ~ tPu'(u' ~ (k)(k--u, jpk(1--py'-k .  (59, 
.i=o J! k=O 

Proof. Expanding tp (z) in its Taylor series about u, we find that 

(p~ (u) = j~ 
k=o j=o 

The equality (59) now follows by inverting the order of  summation. 
Observe that the Corollary even holds when n is an arbitrary positive number, 

provided that p < 1/2 and tp is a polynomial. It would be interesting to find more 
general conditions under which (59) holds. 

ENTRY 22 

Let A1 = 0. For each non-negative integer r, r :~ 1, set A, = {1 + ( - 1)'} r I fn  is a 
natural number, then 

k" (k + 1 )"- = A,,_ k �9 k=l k=O 

Proofs of Entry 22 have been given by Glaisher [24], Kesava Menon [35], and 
Djokovi6 [17]. Entry 22 is identical with Entry 35 in Chapter 9 [5]. The following 
example is the special case n = 3 of Entry 22. 

EXAMPLE 

k=l k3(k+  1) 3 = 10-n2" 

Entry 23 offers the very well-known asymptotic expansion of log F l z +  1) [50, 
p. 252]. 

ENTRY 23 

Let larg z[ < n. Then as Izl ~ oo. 

~ 2k (2k -  B2. l o g F ( z + l ) ' , - ( z + l / 2 ) l o g z - z +  log(2n)+k= l 1)z2k- I " 

Ramanujan remarks that �89 which is correct 
[1; p. 3]. 

We quote the following corollary exactly as it appears in the notebooks [44, vol. 2, 
p. 88]. This approximation for the gamma function is remindful of Corollaries 6-8 in 
section 4. 

COROLLARY 

When x is great eXF(x + 1)/x x = (2nx + tz/3) t/2 nearly. 

Proof. From the familiar asymptotic expansion for F (x), as x ~ oo [50, p. 253], 

e~F(x + 1) ( 1 1 ) 
x x  - - .  1 . . . .  (60) 
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But, on the other hand, 

(2nx + n/3) 1/2 = (2nx) 1/2 (1 + 1/(6x)) 1/2 

( ,  , ) 
= (2nx) ~/2 1 4 12x 288x -------~ + . . . .  (61) 

Thus, Ramanujan's approximation is reasonable, but observe that the coefficients of 
x -2 in (60) and (61) are of opposite sign. 

Entry 24 and its corollary are restatements of Corollaries 3 and 2, respectively, of  
section 4. 

ENTRY 25 

For every complex number z and positive integer n, 

k=l 

Entry 25 is a version of Gauss's famous multiplication theorem for the gamma 
function [50, p. 240]. Corollary 1 is the special, case z = 0 of  Entry 25. 

COROLLARY 2 

V (2/3) = [ F (5/6)]'/2 21/a (rt/3)~/4. 

Proof Put n = 2 and z = - 1/3 in Entry 25 to get F (1/3) F(5/6) = x /~  21/3 F (2/3). 
By Corollary 3 of  section 4, F (2/3)F (1/3) = 2rt/x/5. Combining these two equalities, 
we achieve the desired result. 

COROLLARY 3 

For every complex number z, 

( "~ z + l  ( ~ )  
F ( z +  1)=  F \ ~ - - j F  + 1  2"n-1,2 

Corollary 3 is Legendre's duplication formula and is the special case n = 2 of Gauss's 
multiplication formula, Entry 25. 

COROLLARY 4 

Let [arg z[ < n. Then as [z I ~ oo, 

1 ~ B2k(2 l - 2 k -  1) 
log F(z + 1/2) ,-- z Iogz - z + ~ Iog(2n) + k~, - -  

Proof. Replacing z by 2z in Corollary 3, we find that 

F(z + 1/2) = v /nF(2z  + 1) 
22:F(z + 1) " 

Take logarithms on both sides and apply Entry 23. 
Ramanujan inadvertently multiplied the infinite series above by - 1. 
The Maclaurin series in Entry 26 is well-known [1, p. 256]. 
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ENTRY 26 

For Iz] < 1, 

~(k)(-z)~ 
log F(z + 1) = - y z  + 

k=2 k ' 

where y denotes Euler's constant. 

COROLLARY 

For Iz{ < 1, 

log {�89 + 3)} = 0.9227843351z + 0-1974670334z 2 

_ 0.0256856344z 3 + 0-0049558084z 4 

- 000011355510z 5 + 0-0002863437z 6 

- 0.0000766825z 7 + 0.0000213883z s 

- 000000061409z 9 + 0-0000018013z 1~ + . . . .  (62) 

Proof. Using Entry 26, we find that, for [z[ < 1, 

log {�89 + 3)} = log (�89 + 1) + log(z + 1) + logF(z + 1) 

=k  ~=,(-1)k+'k (Z) k2  +,~,~ (--1)k+'Zkk 

((k)(--z)k 
--yz+ 

k=2 k 

The given numerical values for the coefficients o f z  k, 1 ~< k ~< 10, now follow by direct 
calculation. Numerical values of  ((k), 2 ~< k ~< 10, may be found in [1, p. 811] or [18, p. 
224]. 

In Ramanujan's formulation of  (62), he replaces the tenth and all succeeding terms by 
the single expression 000000054047 z~~ + z). 

Our calculations below were determined from the values of  F(2/3), F(5/6), and 
F(9/10) found in [21]. Ramanujan inexplicably gives the value 05341990853 for log 
F(2/3). 

EXAMPLE 1 

E X A M P L E  2 

E X A M P L E  3 

log F(2/3) = 0-3031502752. 

log F(5/6) = 001211436313. 

log F(9/10) = 0~ 

ENTRY 27(i) 

Suppose that n is a natural number and that Izl > n. Then 
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~ (  z2 ) = 2 (~ '~2  sinh(nz)exp( ~ ( -  l~'q~2k (n)'~ (63) 2nz k _[-I 1 + ~  \z"/ k~, k~ ,]" 

Proof. Using Euler's definition of the gamma function [50, p. 237-] 

( k -  1)!k" 
F ( z ) =  lim 

k - ~ z ( z + l ) . . .  (z + k -  1)' 
w e  find that 

I ~2 (n + 1) 

F (n + 1 + iz) F (n + 1 - iz) 

= lim { ( n + l ) e + z 2 } { ( n + 2 ) 2 + z 2 } ' " { ( n + k ) 2 + z 2 }  

k ~ oo (n  + 1) (n + 2)  5 . . .  (n + k)  ~  (z2) 
= lq  

k = 1 (n + - k )  ~ " (64) 

On the other hand, 
2nzF 2 (n + 1) 

F ( n +  1 + iz) F (n + 1 -  iz) 

2nzF 2 (n + 1) 
(65) 

- z2"(1+ 12/z 2) (1 +22/z  2) . . . (1 +n2/z2)F(1 + i z ) F ( 1 - i z ) "  

Using the Maclaurin series for log(1 +y)  with y = k2/z 2, 1 ~ k <~ n, we find that 

k = l ( l + k 2 / z 2 )  - l = e x p  - - k= l  

= e x p (  ~ (-1) 'q~2 ' (n))  (66) 
j = I J z2j ' 

provided that Izl > n. Also, by Corollary 3 of section 4, 
2nz 2n 

= 2 sinh(nz). (67) 
F(1 + iz)F(1 - i z )  iF(iz)F(1 - i z )  

Now substitute (66) and (67) into (65). Comparing the resulting equality with (64), we 
readily deduce (63). 

In Ramanujan's formulations of Entry 27 (i) and Entry 27 (ii) [44, vol. 2, pp. 89, 90], 
instead of 2 sinh (nx), there appears e "x - e- "x0, but e-'X0 is struck out. In a footnote, 
which is also struck out, Ramanujan says that "0 = cos 2nn exactly or very nearly 
according as 2n is an integer or not." A two line solution to Entry 270) is also crossed 
out. 

ENTRY 27(ii) 

Under the same hypotheses as Entry 27(i), we have 

2n(z2 +n2) ~§ 1 -t (n~-k) 2 
k = l  

= 2(n!)2 sinh (nz) exp 2 n -  2z tan - l  -= jz2~ - l  ] '  ( 6 8 )  



94 

where 

Bruce C Berndt and Ronald J Evans 

k=o ( 2 j - l ) ! ( 2 k + l ) !  'J >~I" 

Proof First, 
(z 2 + n2)" + I/2/z = z 2" exp [ (n + 1/2) log (I + n2/z 2) ]. (69) 

Multiplying both sides of  (63) by (z 2 + n~) "+ n/2/z and utilizing (69), we find that, for Iz] 
> n,  

2n(zZ + n2) "+1:2 1 4 

= 2(n,)Zsinh(nz)exp((n+ 1 / 2 ) ~  ( -  1)k+'nZS' 
( -  lr 

+ _ (7o) 

Comparing (68) with (70), we see that it remains to show that 

kvZk + kZ2k 
k = l  - k = l  

( _  I)SB2oS2j 
2n - 2z tan-  1 in~z)+ ~ .  (71) 

�9 =. ~ jz 2~---=~" ~ -, 

By Entry 1 and the remarks prior to (8), since ~ ( -2k )  = 0, k >i 1, 

kz 2k = k(2k + l)z 2k + k ~ t ~=1 k= l 2kz2k 

+ ~ (-Ilk ~ ~ B2J (2k)!n2~-:~+l 
(72) 

Now a short calculation shows that 

(_  1)~n,k+ I ~ (_  l)kn2k 

k ~ l  = k = l  

~ (_l)k+InZk+l 
-- 2~ ~-k T i)z  - ~  I- = 2n - 2~ tan-1 (n/~). 

k = l  

Thus, we only need yet to examine the double sum in (72). Inverting the order of 
summation by absolute convergence, we find that this double series becomes 

k ( 2 k - 2 j +  l)!z 2k j = l  k = )  

After a slight amount ofsimplification, the double series above is easily seen to be equal 
to the series on the right side of (71), This completes the proof of (71) and hence of  (68), 

ENTRY 27(iii). 

Let n be a positive integer and suppose that x > 0. Write r 2 = n ~ + x ~ with r > 0 and 
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put fl = tan-  ~ (x/n). Then as x --* ~ ,  

log 2r~ (x 2 + n2) ~- 1/2 f i  1 -t 
k = 0 (n + kl 2 

~ 21ogF(n)+ 2n+ 2 x f l -  ~ B2kCOS{(2k-1)fl/ 

Proof. Using (64) and Entry 23, we find that, as x ---, oo, 

x 2 

1 ( 2 n { ( n - 1 ) ! I 2 ( x 2 + n 2 ) ' §  
= og~ ~ + ]  +-~x)~-n+-l---ix) ; 

= log (2n) + 2 log F (n) + (2n + 1) log r - log F (n + 1 + i x )  - log F (n + 1 - ix) 

,-- log (2rt) + 2 log F(n) + (2n + 1) log r - (n + ix + 1/2) log (n + ix) 

- (n  - i x  + 1/2) log (n  - i x )  - log (2rr) + 2n 

B 2 k  { (n  + i x )  2k - i + (n  - -  i x )  2~ - l } 

k/''= 1 2k(2k-  l)r 2~2k- 1~ 

The desired result now follows since n + ix = re iB. 
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