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Let Q(\/ — k) be an imaginary quadratic field with discriminant —k and class
number h, with k # 3, 4, or 8. Let p be a prime such that (3¥) = 1. There are integers C,
D, unique up to sign, such that 4p" = C* + kD?, p yC. Stickelberger gave a congru-
ence for C modulo p which extends congruences of Gauss, Jacobi, and Eisenstein.
Stickelberger also gave a simultaneous congruence for C modulo k, but only for prime
k. We prove an extension of his result that holds for all k, giving along the way an
exposition of his work. © 2000 Academic Press

1. INTRODUCTION

Let —k be a negative fundamental discriminant, so that Q(,/ —k) is an
imaginary quadratic field of discriminant —k. Let h be the class number of

Q(/ —k). Write
—k
U={0<u<k: <u>= 1}, (1.1)

where (3%) is the Kronecker symbol.
In 1890, Stickelberger [5] proved the following elegant theorem.

THeOREM 1.1.  Let Q(\/ —k) be an imaginary quadratic field of discriminant
—k and class number h. Assume that k # 3, 4, or 8. Let p be a prime such that
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(79 = 1. Then there are integers C, D, unique up to sign, for which
4p" = C* + kD?, pfC. (1.2)

Moreover, one of the two choices of C (exactly one, if p > 2) satisfies the
congruence

C =] [pwk]!™" (modp), (1.3)

uelU

where [x] denotes the greatest integer <x and U is defined by (1.1).

ExampLE 1.2, Let k = 23,50 that h = 3. Choose p = 59. Then (3%) = (55°) =
1 and 4p® = 821516 = C* + 23D? with C = +396, D = +170. We have
U=1{1,2734,6,3809,12,13, 16, 18}, and (1.3) holds with C = — 396.

In the special case p = 1(mod k), Theorem 1.1 was proved by Cauchy and
Jacobi; see Smith [4, p. 271]. A proof for k = 7 was completed by Eisenstein;
see [1, pp. 418-419; 4, p. 280]. The exceptional cases k = 3, 4, 8 in Theorem
1.1 had been treated earlier by Gauss, Jacobi, and Eisenstein as follows. For
k =4, Gauss (see [1, pp. 268-269; 4, p. 268]) proved that if p = 1 (mod 4),
then p = a® + b* for some a satisfying both

_1([p/2]
a= E([p/4]> (mod p) (1.4)
and
a = 1(mod 4), (1.4a)

where the expression on the right of (1.4) is a binomial coefficient. For k = 3,
Jacobi (see [1, p. 269; 4, p. 269]) proved that if p=1 (mod3), then
4p = a® + 27b* for some a satisfying both

_ <[2P/3]
a =

[p/3] > (mod p) (1.5)

and
a = — 1(mod 3). (1.5a)

For k = 8, Jacobi (see [1, p. 272; 4, p. 269]) proved that if p = 1 (mod 8), then
p = a* + 2b? for some a satisfying both

a=

1 <[p/2]

> [p/8]> (mod p) (1.6)
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and
a=(—1)r- Vs (mod 4). (1.6a)

Finally, for k = 8, Eisenstein (see [1, p. 417; 4, pp. 281-282]) proved that if
p =3 (mod 8), then p = a* + 2b* for some a satisfying both

1 2
a= 2(%2@) (mod p) (1.7)
and
a=(—1)r*>s (mod 4). (1.7a)

Smith [4, p. 271] wrote: “These congruential determinations possess great
interest, not only because direct methods of solution present themselves very
rarely in the theory of numbers, but also on account of the singular connex-
ion which they establish between certain binomial coefficients and certain
quadratic decompositions of primes.” Theorem 1.1, which extends these
congruential determinations (1.4)-(1.7), deserves to be more widely known.

In Section 2, we give a complete exposition of the proof of Theorem 1.1,
hopefully improving the organization and readability. The exposition makes
possible a short proof of our main theorem in Section 3, since Section
3 employs a lot of notation and results developed in Section 2.

Stickelberger [5, pp. 360-361] proved that for prime k > 7,

C=2(—p R (mod k), (1.8)
where C satisfies (1.2)—(1.3) and R is defined by
1
R=- .
k uEZUu

(It will be shown in Lemma 2.1 that R is an integer.) The weakened version
C = + 2p~ % (mod k) of (1.8) follows easily from (1.2) and Lemma 2.1, but the
significance of (1.8) is that it also determines the correct sign of C for which
(1.3) holds. In other words, (1.3) and (1.8) hold simultaneously for the same
choice of C.

ExampLE 1.3. Let k =23 and p = 59. Then
2(—p) "=2(—59"*= -39 (mod23),

so (1.8) holds with C = — 396, in agreement with Example 1.2.
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We can view (1.8) as extending (1.4a)—(1.7a), just as (1.3) extends (1.4)—-(1.7).
The congruence (1.8) depends only on k and on the value of p (mod k) (in
contrast to (1.3), which depends on k and p). Thus, for the purpose of
computing the value of C that simultaneously satisfies (1.2), (1.3), and (1.8),
the congruence (1.8) may be computationally more useful than (1.3) when k is
small relative to p.

The primary purpose of this paper is to provide a generalization of (1.8)
that works for composite as well as prime k. This is done in Section 3
(Theorem 3.1).

Given p and k as in Theorem 1.1, let H be the smallest positive integer for
which

4pM = A2 + kB> (1.9)

for some integers A, B. Thus H < h, but equality need not hold. For example,
when p=41 and k=20, we have h=2  but H=1 since
4p = 164 = (12)* + 20(1)*. In Section 4, we briefly discuss congruences for
A related to those given for C in Theorems 1.1 and 3.1.

2. PROOF OF THEOREM 1.1

Let Q(,/— k) be an imaginary quadratic field of discriminant —k and
class number h, with k # 3, 4, or 8. By [2, p. 40], k is squarefree with k = 3
(mod 4), k/4 is squarefree with k = 1 (mod 4), or k/8 is squarefree with k = 1
(mod2). Let p denote a prime with (3%) = 1 and let r be the smallest positive
integer such that

p" =1 (mod k). 2.1)

Write ¢ for the Euler ¢-function.
The following four lemmas will be used to prove Theorem 1.1.

LeEmMA 2.1.  Define

1 1

R = ZUu and N=- > o (2.2)

=1
=

Then R and N are integers,

R+ N =¢(k)2=|U| (2.3)
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and
N—R=h (2.4)

Remark. R and N are not integers when k = 3, 4, or 8.

Proof. Wefirst prove (2.3). Since U can be identified with the kernel of the
group homomorphism (3% from (Z/kZ)* onto {1, —1}, we have
|U| = ¢(k)/2. Since (3) is an odd function (see [2, p. 41]),

1
N=2 Y k—uw=¢k2—R,

uelU

which completes the proof of (2.3).

Equality (2.4) is Dirichlet’s class number formula for imaginary quadratic
fields. It remains to prove R € Z.

If k is a prime, then k = 3(mod 4), so that

(- e

(k—1)/2

Y ou= P =k(k®—1)24=0 (modk),

Thus

uelU j=

whence R € Z.
Next, suppose that k is composite, and write

k=tw, with ¢ > 2 prime and w > 1.
For eachje {1,2,...,t — 1}, define
U= {ueU:u=jmodr)}.
As |U,| = |Uj] for each j,
(€ = DU = Z|Uj| = |U| = d(k)/2.
Thus, to prove that |U;| = ¢(w)/2 for each j, it suffices to show that
|Uy| = ¢(w)/2. This holds because U, can be identified with the kernel of the

homomorphism (3% from the group {xe(Z/kZ)*: x=1 (modt)} onto
{1, —1}. (The homomorphism is onto because w > 1 and (3}) is a primitive
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character; see [2, p. 40]). Since |U;| = ¢(w)/2,

Z = Z =0 (mod ).

uelU

It remains to show that Y _,u is divisible by 4 (resp. 8) when 4|k
(resp. 8| k). If 4|k, then for each j e {1, 3}, there exist ¢(k/4)/2 elements of
U congruent to j (mod4), so

Y u=(1+ 3)¢(k/4)/2 = 0 (mod 4).

uelU

If 8k, then for each j € {1, 3, 5, 7}, there exist ¢(k/8)/2 elements of U congru-
ent to j (mod 8), so

Yu=(1+43+5+7¢k8)2=0(mods). m

Lemma 2.2. For aeZ,0 < a <k, let dy(a) denote the digits in the base
p expansion

W=D S dgar 29)

where p is a prime with (3*) = 1 and r is defined by (2.1). Define

_ il d(a). (2.6)

Let L(x) denote the reduction of x modulo k, i.e.,
L(x) = x — k[x/k].
Then for each i,
di(a) = [pL(ap'™ ")/k] 2.7

and

Y s(@) =(p— R (2.8)

aeUKpy
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(The sum in (2.8) is over any choice of the ¢(k)/2r coset representatives of {p)
in U))

Proof. The right member of (2.7), which clearly lies in the interval
[0, p — 1], equals

Lap'/k] — pLap'™"/k]. (2.9)

Using (2.9) in place of d;(a) in (2.5), we obtain a telescoping series which
reduces to the left side of (2.5). This proves (2.7).
From (2.7), the left member of (2.8) equals ¥, [ pu/k]. Since

Yu=Y Lipw=Y pu—k Y [puf/k],

uelU uelU ueU uelU

we have

—1
Y [kl =2 Y u=(p— 1R, (2.10)

ueU k uelU

which proves (2.8). =

LemmMA 2.3.  For the fundamental discriminant —k, define {,, = exp(2mi/k).
Then Gal(Q((,)/Q(\/ —k)) = {o,:u € U}, where o, is defined by ¢,((;) = (.

Proof. This follows from the classical evaluation of the quadratic Gauss
sum

k—1 —k )
> <> G=+—k (211)

see [3,p. 217]. m
The next lemma is Stickelberger’s famous congruence for Gauss sums. In
order to state it, we will need the following notation.
Let P be a prime ideal of Z[{,] dividing pZ, and let 2 be a prime ideal of
Z[{,,] dividing P. Thus
P|pZ (2.12)
(i.e., p is divisible by P but not by P?) and we have the factorization

PZ[(,] =271, (2.13)
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Also [1, p. 343],
€ — VP~ = — pu, (2.14)
where u, is a unit in Z[{,] which is =1 (mod{, — 1). By (2.12)-(2.14),
2| — DZ[ - (2.15)

Let yp denote the power residue symbol of order k on the field Z[{;]/P.
Thus for o e Z[{;],

yp(0) =0 ifoeP,
while if a¢ P, then yp(x) is the unique complex kth root of unity for which
yp(0) = o~ VK (mod P). (2.16)
We identify Z[{,]/P with the finite field F, and define the Gauss sums

G(p) = X 1eM;™, (2.17)

vel,

where Tr is the trace from F to [F,, and 0 < a < k. The modulus of this Gauss
sum is p"? [1, p. 10]. Since Tr(v) = Tr(v),

G.(73") = G, (1) (2.18)
Lemma 24.  In Q(y,),

(G — 1

Glb) = = dy(a)

(mod 2! +5@),

foreacha=1,2,....,k — 1.
Proof. See [1,p.344]. m

Proof of Theorem 1.1 Since (3*) = 1, p splits in Q(/ — k). Hence we may
write

(p) = P, (2.19)
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where 9 is an integral ideal of Q(/ —k) with P # P and
P|B. (2.20)

Since P" is principal,

W — (C - Dziv - k> (2.21)

for some C, D € Z with 4p" = C* + kD?. If p|C, then p|D, in which case the
ideal (p) would divide ", contradicting (2.19). Thus (1.2) holds for the choice
of C, D in (2.21). The uniqueness of |C| and | D| follows because any principal

integral ideal of @(\/?k) with norm p" must have the form §/p" 7 for some
Jj»0 <j < h, and such an ideal is divisible by (p) unless j € {0, h}. It remains to
prove (1.3).

If p = 2, then (1.3) holds because both members are odd. Assume now that
p > 2. Define

n= 11 Gxb)e Q) (2.22)

aeUKpy

Note that 5 is well defined, as the choice of coset representatives is immaterial

by (2.18). By Lemma 2.3, Gal(Q({,+)/Q(/ —k)) consists of automorphisms o,
with v € (Z/pkZ)* and (5¥) = 1. For such v,

amm= 11 »n@.

aeUKp)
Viewing v as an element of [}, we can find y € F}; such that
v =W D@ ptpt

Thus, by Lemma 2.1,

oo/ = zp(Pt = gp()* = 1.

This shows that each g, fixes 7, so that

neQK/—k). (2.23)
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By Lemma 2.4 and (2.15),

- Gr(}_d’) — 1
€ — 1@ dy(a) -+ d.(a)!

(mod 2). (2.24)

Multiplying the congruences in (2.24) over all a € U/{p), we obtain, by (2.14)
and Lemma 2.2,

E:= (=1 n/(—py* = [T [pu/k]™"  (modP). (2.25)

uelU

We proceed to show that E is an integer of Q(/ —k) with (E) = B". Since
259 G,(7%), Lemma 2.2 shows that 27~ YX|y_ Thus PX||y by (2.13). It then
follows from (2.19)-(2.20) that

PBEn. (2.26)

Since |G(7%)|> = p" for 0 < a < k, (2.22) and Lemma 2.1 yield

nip = pt®I2 = pR*N,

Thus P 7, ie.,
BYn. (2.27)

Since N=R+h>R by (24), it follows that (p)® = PRPR divides
(n) = PRPY, which completes the proof that E is an integer of Q(,/ —k) with
(E) = P".

We can now write
E = (=)W —p)* = (C + D\/=k)2 (228)
for some C, D € Z satisfying (2.21) and (1.2). Observe that
C = (=" + m)/(—p)~. (2.29)

By (2.25) and (2.28),

(C+D/—k/2=[[[pu/kll™"  (mod%P). (2.30)

uelU
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On the other hand, by (2.21),

(C—DJ/—k2=0  (modP) (2.31)

Adding (2.30) and (2.31), we see that C satisfies the congruence (1.3). ®

3. CONGRUENCES FOR C (mod k)
Let k, h, p, and C be as in Theorem 1.1. In Theorem 3.1, we show that the

congruence (1.8) for prime k can be extended to give congruences for C that
work for all k.

THEOREM 3.1.  Let k, h, and p be as in Theorem 1.1. Define C as in (2.29), so
that C is determined (only up to sign if p = 2) by (1.2)-(1.3). Write

k =tw, (3.1
where t is any fixed odd prime divisor of k. If w = 1, then
C=2(—-p~k (mod 7). (3.2)
Ifw> 1 and

b

—1=p (mod w)

for some positive integer b (taken minimal), then

2p*R+¢(k)/4( _ 1)R+¢(k)/(4b) (mod t), if p= 2
C= {2PR+¢(k)/4( _ 1)R+¢(k)(w+ 1+ ph)/(4bw) (mod [), if p> 2. (33)
If —1 is not a power of p (mod w), then
_ (2pTREe®EC_1)R (mod 1), ifp=2
= 2P*R+¢(k)/4( _ 1)R+¢(k)(1f* 1)/(4kr) (mod l), if p> 2. (34)
Proof. By (2.17),
—at Tr(tv) — .,a (4 —at
G.(Gi3) = Z 1P (M Ep = 1p(t) G, (7P (mod 1), (3.5)

*
velFpr
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so that by (2.22),

=[] ») [ GG&)  (modi). (3.6)

aeU/Kp) aeU/{p)
Viewing t' as an element of F%, we can find y € F} such that

F—1)/(p—1
t :y(P )/(p )’

so that

Z,“
[T 7@ = 7)™ = xp()F = 1.
aeU/{p)

Therefore (3.6) becomes

n= 1] G.G# (mod ). (3.7

aeU/Kp)
Also observe that by (2.29),
C=C=(=0"Y0" +q)(—p~ " (mode). (3.8)

Case 1: w =1 (so that t = k). In this case, each Gauss sum on the right
side of (3.7) equals —1, since yp is trivial. Thus (3.7) yields

= (—1)Pwen = g (mod 1). (3.9

Together, (3.8) and (3.9) give the desired congruence (3.2).

Case 2: w> 1 and —1 = p’ (mod w) for a minimal positive integer b. We
appeal to [1, Theorem 11.6.3], which yields the Gauss sum evaluation

/2 r/(2b) . _
—a 14 ( - 1) 5 lf p= 2
- G,(1%) = {p'/z( s, it p>2. (3.10)
Combining (3.7) and (3.10), we obtain
pany 2 [P (mod, p=2 )
( = PP ()P0 TN (o] ). if p>2. 3.

The desired congruence (3.3) now follows from (3.11) and (3.8).
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Case 3: —1is not a power of p (mod w). In the proof of Lemma 2.1, we
verified the claim that {u € U:u = —1 (mod )} has ¢(w)/2 elements. Analog-
ously, one can prove that {u € U:u = —1 (mod w)} has ¢(t)/2 elements. Since

¢(t)/2=(t—1)/2 > 1, one can choose a fixed x e U for which x = — 1
(mod w). For each a € U, we have ax € U; but a and ax are in different cosets
of {p> in U, for otherwise —1 would equal a power of p (mod w). It follows
that for each a € U/{p), both G,(¥¥) and G,(3%) occur as factors in the right
member of (3.7). Since

(—1) = 1 if p=2
A | L L )

we have [1, p. 10]

—a a roa pra lf p = 2
GF(XPt)Gr(%PI) =D XPt( _1) = {pr( . 1)(1,'7 1)/k’ if P> 2’ (312)

because at is odd when k is even, whereas when k is odd and p > 2,
yp(—1)=1. By (3.12) and (3.7),
b (k)4 —
p (mod 1), if p=2
M= 9 /a1y~ Dok : (3.13)
p (—1) (modt), if p>2.

The desired congruence (3.4) now follows from (3.13) and (3.8). =

ExampLE 3.2. Let k=15, so that ¢(k)=8, h=2, R=1, and r =2.
Choose p=19. If we take w=15, t=3, then b=1 and (3.3) gives
C=—2-19 =1 (mod3). On the other hand, if we take w =3, t = 5, then
(3.4) gives C = — 2-19 =2 (mod5). These congruences C = 1 (mod 3) and
C =2 (mod5) are each in accord with the value C =22 determined by
Theorem 1.1.

4. QUADRATIC FORMS REPRESENTING 4p” FOR H < h

Let k and p be as in Theorem 1.1, and define H to be the minimal positive
integer for which

4p" = A2 + kB> (4.1)
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for some integers A, B. Clearly ptAB. Defining P as in (2.19), we see that

e

If both P and ‘B divided (4 + B,/ —k)/2, then p would divide 4 and B,
a contradiction. Thus, without loss of generality,

B = <% V_k>, (4.2)

and so the integers A, B satisfying (4.1) are unique up to sign.

In (2.29), we expressed C in terms of Gauss sums, which enabled us to
obtain simultaneous congruences for C in Theorems 1.1 and 3.1. We do not
know a formula for A4 in terms of Gauss sums, and so we are unable to give
analogous congruences for 4. However, we can give such congruences for
A" as follows.

Since H is the order of [*8] in the class group of Q(./ —k), we have H |h,
and

A+ B/ —k\"H C+D./—k
e S

by (4.2) and (2.21). This equality can be viewed as an equality of integers
rather than of ideals, by suitably choosing the signs of 4 and B. Reducing (4.3)

mod ./ —k, we see that

AMH = o= E (mod k), (4.4)

Since C = D,/ —k (mod B) by (2.31), and similarly 4 = B,/ —k (mod ),
reduction of (4.3) (mod B) yields

A" =C  (modp). (4.3)

In view of (4.4)-(4.5), the congruences for C in Theorems 1.1 and 3.1 yield
analogous congruences for A"H.

ExampLE 4.1. Let k=23 and p=59. Then h=3, H=1, and

4p™ = 4-59 =236 = A* + 23B?
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with A = +12 and B = + 2. In view of Examples 1.2 and 1.3, (4.4) becomes
A3 =4C =4(-396) (mod 23), (4.6)
and (4.5) becomes
AP=C= -39 (mod 59). 4.7

Both (4.6) and (4.7) hold with 4 = 12.
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