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Abstract 

Formulas for the class number of an imaginary quadratic number field 
are proved. Some of these formulas were previously established by BEI~NI)T 
and by GOLDSTEIN and RAzE with the use of analytic methods. The proofs 
given here use Dirichlet's classical class number formula, but otherwise the 
proofs are completely elementary. A key ingredient in the proofs is the 
reciprocity theorem for Dedekind--Rademacher sums. 

Throughout the sequel, M denotes a matrix 

with integral entries a,b,e, and d such that  a d - - b c =  1; k denotes 
a natural number; and g denotes a character (mod k). Write 

Let F(/c) be the group of matrices M such tha t  M----- =LI(modk). 
Let G(/c) denote the group of matrices generated by S~ and T. 
Write A (k)~-- G (k)(~ F(k) and set A (It)T : { M T : M e A  (k)}. 

Given an imaginary quadratic number field of discriminant 
- -k ,  let h(--/c) denote its class number and let w~ denote the 
number of roots of uni ty  in this field. As usual, let 

((x)) ---- / x - -  [x]0,-- 1/2, ifotherwise.X is not an integer, 
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In 1976, GOLDS~EIN and RAZAR [5, p. 358] derived the following 
formula for h (--~)~: 

m(modak) n(modk) 

when M~A (k)T, c >0,  and 1: is odd, real, and primitive. Their 
proof depends upon two different formulations of the transforma- 
tion formulae for 

oo 

-'X(m) x(n) 
e2:~tmnz/k , (e) 

Ib 
~ n , n ~ l  

where I m ( z ) > 0 .  One of these formulations is a special case of 
a general theorem proved in 1973 by BERNDT [2, Theorems 2, 3]. 
See also [3, Theorem 1]. Moreover, using the transformation for- 
mulae for (2), but in a manner less complicated than that  in [5], 
BEI~NDT [2, Theorem 4] essentially established the following class 
number formula: 

m(modck) n(modk) (3) 

§ 
]i '  

m(modak) n(modk) 

where g is odd, real, and primitive, and where a and c are positive 
integers such that  either k]a or k]c. Thus, (3) was established 
under less restrictions than (1). The formulation of (3) in [2] is 
in terms of Dedekind character sums and the generMized Bernoulli 
number B1(;%). However, by the use of Dirichlet's class number 
formula [6, p. 405] 

k-1  
W k  

K-" 
h(--]c) : - - 9 - - ~ _ _ ,  g(n)n, (4) 

n = l  

it follows at once tha t  Bl(z) : - -2h(- -k) /w~,  and so the formula- 
tion (3) is easily seen to be equivalent to tha t  in [2, Theorem 4]. 

In  this paper, we prove by elementary methods that  the second 
double sum on the right side of (3) vanishes whenever MeA (It)T 
and Z is odd, real, and primitive (see Theorem 7 and Lemma 2). 
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We also give completely e lementary  proofs of  (1) and (3) (see Theo- 
rems 4 and 8 and L e m m a  2). 

I f  h and k are integers with k > 0 and if x and y are real numbers ,  
recall tha t  the  Dedek ind- - I{ademacher  sum s(h,k;x,y) is de- 
fined b y  

k §  
n (raod/c) 

In  particular,  if x and y are bo th  integers, s (h, k;x, y) is the ordinary 
Dedekind sum s(h,k). I t  is easily seen tha t  s(h,k;x,y)= 
-~- s (t h, t k; x, y) for each posit ive integer t. 

Let  ~(x)=B2(x- - [x] ) ,  where B2(x) denotes the  second 
Bernoulli  polynomial.  Let  

1, if z is an integer, 
(z) = 0, otherwise. 

A principal ingredient in our proofs is the  following reciprocity 
theorem for Dedek ind- - l~ademaeher  sums [4], [7]. I f  h and k are 
coprime, posit ive integers, then 

s(h,k;x,y) + s ( k , h ; y , x ) = - - ~  d(x)d  (y) -t- ((x)) ((y)) -4- (5) 
h k 1 

For  real x and integral m, define 

n(modk) 

Lemma 1. Suppose that x is real, )~ is primitive, and (m, k) > 1. 
Then F(m,x;g ) = O. 

Proof. Write  ml = m/(m,k) and kl = k/(m, k). Then 

n (rood k) 

b(mod•)  n(modk)  
n ~-b(modkl) 

19" 
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For each positive integer r, let Hr denote the group of reduced 
residue classes (modr). I t  remains to show that  for each beH~l, 

F~ z ( n ) =  o. (6) 
~(modk) 

n ~b (modkl) 

Now, reduction (modkl) is a homomorphism q from H~ onto H ~ .  
Choose c eHlr such that  ~(c)=b .  Then the sum in (6) may be 
written as 

E z (en) = z (c) E z (n) = o, 
n(modk) nekerq 

n E1 (modkD 

since by  the definition of primitivity in [1, p. 168], z(n)=/:l for 
some nekerq .  Q. e. d. 

Let  a and c be integers with a > 0. Define 

s(c,a;z)---= ~, g ( n ) s ( a n + c ,  ak) .  (7) 
n(modk) 

Lemma 2. Let Z be primitive. Then 

8 ( c , a ; x )  = ~ ( m ) z ( n )  ~ ak  " 

m(modak) n(modk) 

Proof. We have 

E , i  
~n(modak) n(modk) (8)  

By Lemma 1, F(m,c/a ;z) - - -0  when ( m , k ) > l .  Thus, we may 
restrict the sum on m in (8) by  the condition (re, k) ~ 1. Replacing 
n by  n m  -1 (modk) in (8), we obtain the desired result. Q. e. d. 

Theorem 3. Let a and c be positive integers with k la. Let Z be 
odd. Then 

a(c,a;g)-]-s(a,c;~)--= ~ Z(n)s (n ,k ) .  
n(modk) 

Proof. Since s (a, c; Z) is unchanged when both a and e are divided 
by  (a,e), we may assume that  (a,c) -= 1. 
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Setting m~kt~-~,, O~</~<a--1, O~<~<k--1, we find that  

)) 
n(modk) m(modak) 

n(modk) #(moda) ~(modk) 

: ~ Z(~)Z8(c,a;'n/~,v/]~) �9 
n(modk) v(mod/~) 

Applying the reciprocity theorem (5), we get 

n(modk) ~(modk) 

+ ~a-~ac~21- ~ + - -  . 

Since lcla , ~,(~(e+an)/k)=N2(~c/lc). Also, ~2(vn/k) is an even 
function o f  n. Thus, by summing on n, we see that  the contributions 
of the second, fourth, fifth, and sixth expressions in curly brackets 
above yield 0. Thus, (9) becomes 

~(~,a;x)+ ~ z(~) ~ ~(a,c;~/~,~,n/~)= ~ x(~)8(n,~). (~0) 
n(modk) v(modk) n(modk) 

I t  remains to show tha t  the double sum in (10) is s(a,c;fi~). Replac- 
ing n by n -1 (mod/~) and then replacing v by vn, we find that  

~ z(n) ~ s(a,c;~/Ic, vn/lc)~ 
n(modk) v(modk) 

n(moclk) ~(modk) ~ (modc) 

n(modD m(modc/~) 

= ~ ,  ~(n)~(~n+a,c~)=~(a,c;~). Q.e.d. 
n (mo d k) 
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Theorem 4. Let a and c be positive integers with k la. Let X be 
odd, real, and primitive. Then 

4 h ( - - k )  2 
w~ - s (c, a; z) + s (a, c; Z). 

Proof. In  view of Theorem 3, it  suffices to  prove that  

4h(--]c)2 
- Z z (n) s (n, k).  (11) 

n(modk) 

Applying L e m m a  2 with a = 1 and e = 0, we find t h a t  

k - 1  

n(modk) m(modk) m = 1 

and (11) now follows upon the use of (4). Q. e. d. 

B y  symmet ry ,  the  condition k Ia in Theorem 4 m a y  be replaced 
by  k lc. With  the aid of L e m m a  2, the class number  formula of 
Theorem 4 is seen to be equivalent  to  t ha t  in (3). For  still another  
(but less elementary)  proof of Theorem 4, see [4, Corollary 7.5]. 

Theorem 5. We have A (k) ~ (S~, TS~ T, ~ I>. 

Proof. Since 

T S k T =  _ _  , 

clearly (S~, TS~ T, 4- I} _ A  (k). Moreover, since (TS1 T) $1 ( T S 1 T ) =  
= - - T ,  the reverse inclusion follows when lc=  1. Suppose t h a t  
k > 1. Le t  M e A  (k). Since also M e  G(k), M can be wri t ten as 

M -~ J:  (S~ ~ T) (S; 1 T ) . . .  (S~, -1 T) S ; ' ,  

where r>~0 and  ni is an  integer with n j r  for 0 < j < r .  To show 
t h a t  A (k) _ (S~, TS~ T, • I), we must  show t h a t  2 jr. Suppose t h a t  
2<r. Then since M and all powers of Sk and  TSk  T are in /~(#), 
i t  follows tha t  S~~ which is false. Q. e. d. 

Theorem 6. Let a and c be integers such that a >0,  k la, and 
c2_~ 1 (moda/c). Let Z be odd. Then s ( c , a ; z  ) : 0. 

Proof. Since Z ( - -  1) = - -  1, it  suffices to show tha t  s (anJrc,ak)= 
= s ( - - a n ~ - c , a ~ )  for each integer n. Since ]cla , it  is easy to see 
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that  (ak, c - -an)-= 1. Thus, replacing m by  re(c--an) below, we 
find that  

(( s (an-~  c, ak) = m _ 
ak  

m(moda~) 

m(moda/r 

:8(c--an, ak), 

since c 2 - - a 2 n ~  1 (modak). Q. e. d. 

Theorem 7. Let Z be odd. Then s(c,a;z ) -~ 0 for each M ~ A  (k) T 
with a > O. 

Proof. We make the convention that  s(enq-c, e k ) : O  when 
e-~0. Thus, s ( c , e ; g ) = 0  when e : 0 .  In particular, s(c ,a;z)=O 
when M = T. 

We induct on the length of the word M in, A (k) T. Assume that  

( a b ) ~ A ( k ) T w i t h a > ~ O .  s ( e , a ; z ) = O  f o r M =  c d  

Consider the four matrices 

(o .) 
- - T S [ 1 T M =  c=Fak * ' S k M =  c 

By Theorem 5 and induction, it suffices to show that  

s ( c T a k ,  a ; z ) = O  
and that  

s(e, ja q-ckl;  z) = s ( - - e ,  la dcckl; z) = O. (i2) 

By  the definition of s(c,a;z) and the induction hypothesis, it 
follows that  

s(c=]= ak, a; z) =s (c ,a ;  z) ~- O. 

I t  remains to prove (12). 
First, suppose that  a =  0. Since (a, c) -----1, we have c =  • 1. 

Trivially, k j(a~-vk). Thus, we can apply Theorem 6 to conclude 
that  (12) holds. 
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Now suppose that  a > 0. Replacing n by  - - n  in (7), we see that  
s ( c , a ; g ) : s ( - - c , a ; z ) ,  and so 

s (e, a; z) = o ,  (23) 

where e = l c I. Similarly, 8 (o,f; Z) = s (--c , f ;  Z), where f = l a 4- c k I. 
I t  thus suffices to show that  s ( e , f ; z )=  0 when f > 0. Note that  
e > 0 ,  since o=-~ : l (modk)  and k > l .  Hence, we may apply 
Theorem 3 to deduce that  

s (e,f; Z) - -  ~ g (n) s (n, k) : 
n(modk) 

: -  E 
n(modk) m(modek) 

~nd 

(14) 

s (e, a; Z) - -  ~ g (n) s (n, k) = 

~(modk) (15) 

n(modk) m(modek) 

Replacing n by  - - n  in the right side of (15), we observe that  this 
expression remains unchanged when a is replaced by  - - a .  I t  follows 
that  the right side of (15) also remains invariant when a is replaced 
b y f .  Thus, (13), (14), and (15) show that  

s(e , f ;z )  = s ( e , a ; z ) =  O. Q. e. d. 

Theorem 8. Let M e A ( k ) T  with c >0 .  Let Z be odd, real, and 
primitive. Then 

Z h(--l~) 2-w~ Z(n)s(cr~+a, ck). (16) 
4 

n(modk) 

Proof. First, suppose that  a:/= 0. By  Theorem 4, 

4 h ( - - k )  2 
--s(o, [al;z) § s(]al, c;Z). (17) 

Since s (c , [a[;z )=s( - -c , [ar;z ) ,  it follows from Theorem 7 that  
8 (o , [ a [ ; z )=0 .  Hence, since s(a,c;Z)=s(---a,c;Z),  (16) follows 
from (17). 
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Finally, suppose that  a =  0. Since (a,e)= 1 and c >0 ,  it follows 
that  c = 1. By  Lemma 2, 

k--1 

s ( 0 , 1 ; Z ) =  g(mn) = ~- z(n)n . 

m(modk) n(modk) n=l  

Thus, upon the use of (4), (16) follows. Q. e. d. 
With the aid of Lemm~ 2, (16) may be converted into the 

form (i) given by  GOLDST~IN and I~AZA~ [5]. 

Corollary 9. Let Z be rear, odd, and primitive. Then 

h ( - -  k)~ --  w~ ~-~ Z (n) ~ (n, ~). 
4 

n(modb) 

Proof. Choose M = T in Theorem 8. Q. e. d. 
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