DISCRETE FREE PRODUCTS OF TWO COMPLEX CYCLIC MATRIX GROUPS

by RONALD J. EVANS

(Received 12 September, 1977)

1. Introduction. All 2-by-2 matrices in this paper are to be viewed as linear fractional transformations on the extended complex plane \mathbb{C}^* . Let L^+ and L^- be the open half-planes to the right and left, respectively, of the extended imaginary axis L. Let Λ be the set of complex 2-by-2 matrices A with real trace and determinant ± 1 such that $A(L^+) \subset L^-$. Let $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \Omega_4$, where

$$\Omega_1 = \{A \in \Lambda : \det A = 1, |\operatorname{tr} A| \ge 2\},\$$

$$\Omega_2 = \{A \in \Lambda : \det A = 1, |\operatorname{tr} A| = 2\cos(\pi/q) \text{ for some integer } q > 2\},\$$

$$\Omega_3 = \{A \in \Lambda : \operatorname{tr} A = 0\}.$$

and

$$\Omega_4 = \{A \in \Lambda : \det A = -1, A^2 \in \Lambda\}.$$

Observe that the elements of $\Omega_1 \cup \Omega_4$ have infinite order, while those of $\Omega_2 \cup \Omega_3$ have finite order.

We will prove that whenever $A \in \Omega$ and $B \in \Omega$ do not both have a fixed point on L, then the group $\langle A, B' \rangle$ is the discrete free product $\langle A \rangle * \langle B' \rangle$, where B' denotes the transpose of B. The case where both A and B have a fixed point on L is also discussed. We show in addition that if $A \in \Omega$ and $B \in \Omega$ are real, then $\langle A, B' \rangle$ is the discrete free product $\langle A \rangle * \langle B' \rangle$ if and only if for every real u,

$$\{A, B'\} \not \subset \left\{ \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}, \begin{vmatrix} 0 & -u \\ 1/u & 0 \end{vmatrix} \right\}.$$

The significance of these results is discussed in §3. In particular, we show there that the latter result implies that the free products in [2, Theorem 1] are all discrete. We thereby fill a gap in [2, §4], wherein the discreteness was proved only in a special case.

Discrete free products of two cyclic matrix groups have been extensively studied, along different lines. For example, Purzitsky [5] has given necessary and sufficient conditions for any group $\langle A, B \rangle$ generated by *real* linear fractional transformations A and B of determinant 1 to be the discrete free product $\langle A \rangle * \langle B \rangle$. (See also [6].)

2. Definitions and notation. Let P denote the set of matrices $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ of determinant ± 1 such that either $a, b \ge 0 \ge c, d$ or $a, b \le 0 \le c, d$. We reserve the notation $M = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ for a matrix (or transformation) in $\Omega \cap P$. In fact, the symbol M can be used to denote an arbitrary real matrix in Ω , in view of Lemma 5. Given a transformation M, we stipulate

Glasgow Math. J. 20 (1979) 69-80.

without loss of generality that $a, b \ge 0 \ge c, d$. If, moreover, $c(a+d) \ge 0$, M is said to be plussed.

Let ω_M and ω'_M be the fixed points of M, with $|\omega_M| \le |\omega'_M|$ if the fixed points are on the extended real line \mathbb{R}^* , and with $\operatorname{Im} \omega_M > 0$ otherwise. Note that ω_M is finite, because otherwise $\omega_M = \omega'_M = \infty$ and M would have the form $\begin{vmatrix} 1 & * \\ 0 & 1 \end{vmatrix}$, which contradicts the fact that $M \in P$. Note also that $\operatorname{Re} \omega_M \le 0$, since $M(L^+) \subset L^-$. Let L_M denote the extended vertical line through ω_M . Let L_M^+ and L_M^- denote the open half-planes to the right and left of L_M , respectively.

If E is a nonsingular 2-by-2 matrix and \mathscr{A} is a set of 2-by-2 matrices, write $\mathscr{A}^E = \{A^E : A \in \mathscr{A}\}$, where $A^E = EAE^{-1}$. A 2-by-2 matrix S is said to be an L-map if $S(L^+) = L^+$. Note that if S and S_1 are L-maps, then so are S^{-1} and $S \circ S_1$. In addition, S(L) = L, $S(L^-) = L^-$, $\Lambda^S = \Lambda$, and $\Omega^S = \Omega$.

Let $I = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$, $T_u = \begin{vmatrix} 0 & -u \\ 1/u & 0 \end{vmatrix}$, and $W_r = \begin{vmatrix} 1 & r \\ 0 & -1 \end{vmatrix}$. Write $T = T_1$ and $W = W_0$.

Given $U \subset \mathbb{C}^*$, let cl U denote the closure of U in \mathbb{C}^* and let ccl U denote the complement of the closure of U in \mathbb{C}^* .

3. Main results. We now present the main theorems. The proofs are postponed until §6.

THEOREM 1. Let A, $B \in \Omega$ and $C = B^{W}$. Suppose that A and C do not both have a fixed point on L. Then $\langle A, C \rangle$ is the discrete free product $\langle A \rangle * \langle C \rangle$.

THEOREM 2. Let $A, B \in \Omega$ and $C = B^{W}$. If A and B are real, then $\langle A, C \rangle$ is the discrete free product $\langle A \rangle * \langle C \rangle$ if and only if for every real $u, \{A, C\} \notin \{W, T_u\}$.

Consider the Hecke group $\langle S_{\lambda}, T \rangle$ generated by $S_{\lambda} = \begin{vmatrix} 1 & \lambda \\ 0 & 1 \end{vmatrix}$ and $T = \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix}$. It is well-known that when $\lambda = 2\cos(\pi/q)$ for an integer $q \ge 3$, then $\langle S_{\lambda}, T \rangle$ is the discrete free product $\langle TS_{\lambda} \rangle * \langle T \rangle$, and that when λ is a *complex* number of modulus ≥ 2 , then $\langle S_{\lambda}, T \rangle$ is the discrete free product $\langle S_{\lambda} \rangle * \langle T \rangle$. Theorem 1 is sufficiently general to imply these results. For, if $\lambda = 2\cos(\pi/q)$ for an integer $q \ge 3$, apply Theorem 1 with $A = TS_{\lambda}$, B = T. If $\lambda \in \mathbb{C}$, $|\lambda| \ge 2$, apply Theorem 1 with $A = S_{\lambda}^G$, $B = T^G$, where $G = \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix}$.

If, in Theorem 1, C is defined to be B' instead of B^{W} , the resulting statement is equivalent. To see this, we need only show that $\Omega^{W} = \Omega'$. Assume that for some $\tau_{1} \in L^{+}$ and some $A \in \Lambda$, $A^{-1}(\tau_{1}) = \tau_{2} \in cl(L^{+})$. Then $A(\tau_{2}) \in L^{+}$, so for some $\tau_{3} \in L^{+}$ close to τ_{2} , $A(\tau_{3}) \in L^{+}$. This contradicts the fact that $A(L^{+}) \subset L^{-}$. Thus $A^{-1}(L^{+}) \subset L^{-}$ for all $A \in \Lambda$. This proves that $\Lambda = \Lambda^{-1}$. Thus $\Omega = \Omega^{-1}$, so $\Omega' = T\Omega^{-1}T = \Omega^{T}$. Since $TW = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ is an L-map, $\Omega^{TW} = \Omega$. Therefore, $\Omega' = \Omega^{T} = \Omega^{W}$.

Similarly, if C is defined to be B' instead of B^w in Theorem 2, the resulting statement is equivalent. Another equivalent formulation of Theorem 2 is as follows. "Let

A, $B \in \Omega^{\vee}$, where $V = 2^{-1/2} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix}$, and let $C = B^{t}$. If A and B are real, then $\langle A, C \rangle$ is the discrete free product $\langle A \rangle * \langle C \rangle$ if and only if, for every real pair r, s satisfying $s^{2} - r^{2} = 1$, we have $\{A, C\} \not\subset \{ \begin{vmatrix} r & s \\ -s & -r \end{vmatrix}, \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} \}$ ". In the notation of [2], it follows from [2, Lemma 9] and Lemma 5 below that $J \subset \Lambda^{\vee}$; hence $K \subset \Omega^{\vee}$, so Theorem 2 now immediately implies that the free products in [2, Theorem 1] are all discrete.

Theorem 2 is, in fact, an extension of a theorem of Newman [4, Theorem 15, p. 162]. For if in Theorem 2 the determinants of A and B are restricted to be 1, then Theorem 2 becomes a restatement of Newman's theorem (see Lemma 5 below).

The following simple example shows that the requirement in Theorem 2 that A and B are real cannot be dropped. Let $A = \begin{vmatrix} 1 & i \\ 0 & -1 \end{vmatrix}$ and $C = \begin{vmatrix} 1 & 0 \\ i & -1 \end{vmatrix}$. Then $A \in \Omega$, $C \in \Omega^w$, but $\langle A, C \rangle$ is not the free product $\langle A \rangle * \langle C \rangle$, since $(AC)^3 = I$.

4. Real conjugates of complex matrices. Theorem 4 (below) will enable us to focus attention on those matrices in Ω which are real. First a lemma is proved.

LEMMA 3. If $N \in \Omega$ fixes ∞ , then $N = W_{\rho}$ for some ρ . If $N \in \Omega$ fixes 0, then $N = W_{\rho}^{t}$ for some ρ .

Proof. Suppose that $N(\infty) = \infty$, so $N = \begin{vmatrix} \alpha & \beta \\ 0 & \delta \end{vmatrix}$. For each $\tau \in L^+$, $N\tau = (\alpha/\delta)\tau + \beta/\delta \in \mathbb{C}$

 L^- . Let $\psi = \arg(\alpha/\delta)$ with $-\pi < \psi \le \pi$. Suppose that $\psi \in (-\pi, 0]$. If $\tau \in L^+$ has sufficiently large modulus and arg τ is sufficiently close to $\pi/2$, then $N\tau \in L^+$, a contradiction. Suppose then that $\psi \in (0, \pi)$. If $\tau \in L^+$ has sufficiently large modulus and arg τ is sufficiently close to $-\pi/2$, then $N\tau \in L^+$, a contradiction. Thus $\psi = \pi$, i.e., $\alpha/\delta < 0$.

Suppose that $\alpha \notin \mathbb{R}$. Since tr N is real, $\delta = \bar{\alpha}$. Since $\alpha/\bar{\alpha}$ is a negative number of modulus 1, $\alpha = -\bar{\alpha}$. Thus $N = \begin{vmatrix} \alpha & \beta \\ 0 & -\alpha \end{vmatrix}$, i.e., $N = W_{\rho}$ for some ρ .

Suppose that $\alpha \in \mathbb{R}$. Since $\alpha/\delta < 0$, det N < 0. Thus $N \in \Omega_3$ or $N \in \Omega_4$. For all $\tau \in L^+$, $N^2 \tau = (\alpha^2/\delta^2)\tau + \beta(\alpha + \delta)/\delta^2$. If $\tau \in \mathbb{R}$ is sufficiently large, then $N^2 \tau \in L^+$. Thus $N^2 \notin \Lambda$, so $N \notin \Omega_4$. Therefore, $N \in \Omega_3$. It follows that $N = \begin{vmatrix} \alpha & \beta \\ 0 & -\alpha \end{vmatrix}$, i.e., $N = W_\rho$ for some ρ . This proves the first assertion.

Suppose that $N \in \Omega$ fixes 0. Then, since $TW = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ is an L-map, $N^{TW} \in \Omega$ and N^{TW} fixes ∞ . By the first assertion, $N^{TW} = W_{\rho}$ for some ρ , so $N = W_{-\rho}^{t}$.

THEOREM 4. Let $N = \begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} \in \Omega$. Then there is an L-map S such that SNS^{-1} is real.

Proof. Note that the fixed points ω and ω' of N lie in $cl(L^-)$, since $N(L^+) \subset L^-$. Define $\omega_1 = \operatorname{Re} \omega$, $\omega_2 = \operatorname{Im} \omega$, $\omega'_1 = \operatorname{Re} \omega'$, and $\omega'_2 = \operatorname{Im} \omega'$.

Case 1: $\omega, \omega' \in L$. Assume that $\omega = \omega'$. If $\omega \neq \infty$, conjugate N by the L-map $\begin{vmatrix} 0 & 1 \\ 1 & -\omega \end{vmatrix}$. Thus we may assume that both fixed points of N are ∞ . Then $N = \begin{vmatrix} 1 & \beta \\ 0 & 1 \end{vmatrix}$ for some β , which contradicts the fact that $N \in \Lambda$. Hence $\omega \neq \omega'$. If neither ω nor ω' is ∞ , conjugate N by the L-map $\begin{vmatrix} 1 & -\omega' \\ \omega - \omega' & -\omega(\omega - \omega'_{\lambda}) \end{vmatrix}$; if one of ω or ω' is ∞ , say $\omega = \infty$, then conjugate N by the L-map $\begin{vmatrix} 1 & -\omega' \\ 0 & 1 \end{vmatrix}$ (which fixes $\omega = \infty$). Thus we may assume that $\omega' = 0$ and $\omega = \infty$. By Lemma 3, $N = W_{\rho}$ and $N = W_{\nu'}^{t}$ for some pair ρ, ν . Hence $N = \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$.

Case 2: $\omega' \in L, \omega \in L^-$. If $\omega' \neq \infty$, conjugate N by the L-map $\begin{vmatrix} 0 & 1 \\ 1 & -\omega' \end{vmatrix}$. Then we may assume that $\omega' = \infty$. We may moreover assume that $\omega = -1$, for otherwise conjugate N by the L-map $\begin{vmatrix} i & \omega_2 \\ 0 & -i\omega_1 \end{vmatrix}$ (which fixes $\omega' = \infty$). Thus $N = \begin{vmatrix} \alpha & \alpha - \delta \\ 0 & \delta \end{vmatrix}$. By Lemma 3, $N = \begin{vmatrix} 1 & \rho \\ 0 & -1 \end{vmatrix}$ for some ρ . Therefore, $N = \begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix}$.

Case 3: $\omega, \omega' \in L^-$ and $\omega = \omega'$. We may assume that $\omega = -1$, for otherwise conjugate N by the L-map $\begin{vmatrix} i & \omega_2 \\ 0 & -i\omega_1 \end{vmatrix}$. Thus $N = \begin{vmatrix} 1 - \gamma & -\gamma \\ \gamma & 1 + \gamma \end{vmatrix}$. If $\gamma \in \mathbb{R}$, then N is real, so suppose that $\gamma \notin \mathbb{R}$. Let $\eta = \arg \gamma$. Let $S = \begin{vmatrix} 1 & k \\ k & 1 \end{vmatrix}$, where $k = i \tan(\eta/2)$. Then S is an L-map and $SNS^{-1} = \begin{vmatrix} 1 - \gamma_1 & -\gamma_1 \\ \gamma_1 & 1 + \gamma_1 \end{vmatrix}$, where $\gamma_1 = |\gamma| \in \mathbb{R}$.

Case 4: $\omega, \omega' \in L^-, \omega \neq \omega'$. We may assume that $\omega' = -1$, otherwise conjugate N by the L-map $\begin{vmatrix} i & \omega'_2 \\ 0 & -i\omega'_1 \end{vmatrix}$. Assume that $\omega_2 \neq 0$. Let $S' = \begin{vmatrix} xi & 1 \\ 1 & xi \end{vmatrix}$, where x is a solution of the equation $\omega_2 x^2 + x(|\omega|^2 - 1) - \omega_2 = 0$.

Since the discriminant of this quadratic equation is

$$(\omega_1^2 - 1)^2 + \omega_2^4 + 2\omega_1^2\omega_2^2 + 2\omega_2^2,$$

it follows that $x \in \mathbb{R}$. Therefore S' is an L-map. Since S'(-1) = -1 and $S'(\omega) \in \mathbb{R}$ by definition of x, we see that $S'N(S')^{-1}$ fixes the two distinct real points -1 and $S'(\omega)$. It may thus be assumed without loss of generality that $\omega_2 = 0$, i.e., that N fixes -1 and ω , where $\omega < 0$, $\omega \neq -1$. Write $N = \begin{vmatrix} \sigma/2 - y & \beta \\ \gamma & \sigma/2 + y \end{vmatrix}$, where $\sigma = \text{tr } N$. The equalities N(-1) = -1 and $N(\omega) = \omega$ imply that $\beta = \gamma \omega$ and $y = (1 - \omega)\gamma/2$. Since $\det N = \sigma^2/4 - \gamma^2(1 + \omega)^2/4$.

we have

$$\gamma^2 = 4(\sigma^2/4 - \det N)/(1+\omega)^2$$

Since σ and det N are real by the hypothesis $N \in \Omega$, γ is real or purely imaginary. If $\gamma \in \mathbb{R}$, then N is real, so suppose that γ is purely imaginary. Let $S = \begin{vmatrix} i/\sqrt{-\omega} & 1\\ 1 & i\sqrt{-\omega} \end{vmatrix}$. Then S is an L-map and $SNS^{-1} = \begin{vmatrix} \sigma/2 - z & z(1-\omega)/2\omega\\ z(1-\omega)/2 & \sigma/2 + z \end{vmatrix}$, where $z = i\gamma\sqrt{-\omega}$. Since this matrix is real, the proof is complete.

5. Lemmas on real matrices in Ω .

LEMMA 5. Let $N = \begin{vmatrix} w & x \\ y & z \end{vmatrix}$ have real entries. Then $N \in \Lambda$ if and only if $N \in P$.

Proof. Suppose that $N \in \Lambda$. It was shown in §3 that $\Lambda = \Lambda^{-1}$. Hence $N^{-1}(\infty) \in cl(L^{-})$, so that either y, $z \ge 0$ or y, $z \le 0$. Further, for all t > 0,

$$\frac{wt+x}{yt+z} < 0.$$

It follows that $N \in P$.

Conversely, suppose that $N \in P$. Then $N^{-1}(\infty) \notin L^+$, so for all $\tau \in L^+$,

 $\operatorname{sgn} \operatorname{Re}(N(\tau)) = \operatorname{sgn}\{wy|\tau|^2 + xz + (xy + wz)\operatorname{Re} \tau\} < 0.$

It follows that $N \in \Lambda$. This completes the proof.

The next lemma characterizes those matrices $M \in \Omega$ which map L_M onto a straight line. (Recall that M always denotes a matrix $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \in \Omega$ with $a, b \ge 0$, and $c, d \le 0$.)

LEMMA 6. The following are equivalent:

- (i) $\infty \in M(L_M);$
- (ii) $M = W_b$, or both tr M = 0 and det M = 1;
- (iii) $M(L_M) = L_M$.

Proof. We show that (i) \Rightarrow (ii) \Rightarrow (iii) (note that (iii) \Rightarrow (i) is obvious).

Case 1: det M = 1. Suppose that $\infty \in M(L_M)$. If $M(\infty) = \infty$, then $M = \begin{vmatrix} a & b \\ 0 & d \end{vmatrix}$, where a > 0 and d < 0. This contradicts the fact that det M = 1. Hence $M(\infty) \neq \infty$, i.e., c < 0. Then $-d/c \in L_M$, so $-d/c = \operatorname{Re} \omega_M$. By definition of ω_M ,

$$-d/c = \operatorname{Re} \omega_{M} = \operatorname{Re}\{(2c)^{-1}(a - d - \sqrt{(a+d)^{2} - 4})\}.$$
 (1)

It is readily seen that (1) holds if and only if a + d = 0. This proves (ii).

To prove that (ii) \Rightarrow (iii), suppose that tr M = 0. Then $c \neq 0$ and by the second equality

in (1),

$$M(\infty) = a/c = \operatorname{Re} \omega_M = \operatorname{Re} \omega'_M.$$

Thus M maps each of ω_M , ω'_M and ∞ into L_M , so $M(L_M) = L_M$.

Case 2: det M = -1. In this case, $\omega_M, \omega'_M \in \mathbb{R}^*$. Suppose that (i) holds. Assume that c < 0. Then $-d/c \in L_M$, so $-d/c = \operatorname{Re} \omega_M = \omega_M$. Then

$$-d/c = \omega_M = (a - d - \sqrt{(a + d)^2 + 4})/2c,$$

which is impossible. Hence c = 0, i.e., $M(\infty) = \infty$. By Lemma 3, $M = W_b$. This proves (ii).

To prove that (ii) \Rightarrow (iii), note that if $M = W_b$, then M fixes the line $\{z : \text{Re } z = -b/2\} = L_M$. This completes the proof.

Define II to be the set of (real) $M \in \Omega$ which satisfy (ii) of Lemma 6. Define D_M as follows. If $M \in \Pi$, let $D_M = L_M^-$. If $M \in \Omega_4$, let D_M be the interior of the circle $M^2(L_M)$. For all other $M \in \Omega$, let D_M be the interior of the circle $M(L_M)$. If $M \in \Omega_4$, define D'_M to be the interior of the circle $M(L_M)$. (See Figures 1 through 5.) Note that since M is real and conformal, the circles $M(L_M)$ and $M^2(L_M)$ are orthogonal to the real axis.

Figure 1. $M \in \Pi$

Figure 2. $M \in \Omega_1$, M plussed

Lemmas 7 through 11 (below) show that if M is plussed (recall that this means $c(a+d) \ge 0$), then $M(L_M^+) = D_M$ when $M \notin \Omega_4$, and $M(L_M^+) = D'_M$ and $M^2(L_M^+) = D_M$ when $M \in \Omega_4$. Lemmas 8 through 11 also verify that D_M and D'_M are positioned as suggested by Figures 2 through 5. We note that if $\omega_M \in L$, then $M \in \Omega_3$. For if $\omega_M = ir$, then $M = \begin{vmatrix} 0 & -r \\ 1/r & 0 \end{vmatrix}$ when r > 0, and M is as given in Lemma 3 when r = 0.

LEMMA 7. If $M \in \Pi$, then $M(L_M^+) = D_M$.

Proof. First suppose that $M = W_b$. Then M maps the points -b/2, -b/2 + i, ∞ to -b/2, -b/2 - i, ∞ , respectively. Thus M fixes L_M but reverses its orientation. Therefore $M(L_M^+) = L_M^- = D_M$.

74

Figure 5. $M \in \Omega_4$, M plussed

Now suppose that $M = \begin{vmatrix} a & b \\ c & -a \end{vmatrix}$ with det M = 1. If c = 0, then det M < 0; hence $c \neq 0$. Therefore, M maps the points (a-i)/c, a/c, (a+i)/c to (a-i)/c, ∞ , (a+i)/c, respectively. Consequently, M fixes L_M but reverses its orientation, so $M(L_M^+) = L_M^- = D_M$. This completes the proof.

LEMMA 8. If $M \in \Omega_1$ is plussed, then $D_M \subset L^- \cap L_M^+$ and $M(L_M^+) = D_M$.

Proof. It suffices to show that $\omega_M < M(\infty) \le 0$. For then, clearly $D_M \subset L^- \cap L_M^+$. Also, since the upper half-plane is invariant under M, the sequence $M(\omega_M)$, $M(\omega_M + i)$, $M(\infty)$ will determine a clockwise orientation on $M(L_M)$, so $M(L_M^+) = D_M$.

If c = 0, then by Lemma 3, $M = W_{\rho}$ for some ρ . Then det M = -1, which contradicts the fact that $M \in \Omega_1$. Hence c < 0. As M is plussed, $\sigma = a + d < 0$. Hence $\sqrt{\sigma^2 - 4} < -\sigma$. Dividing by -2c and then adding (a - d)/2c, we have

$$\omega_M = (a-d-\sqrt{\sigma^2-4})/2c < a/c = M(\infty).$$

Finally, $a/c \le 0$ because $M \in P$. This completes the proof.

LEMMA 9. If $M \in \Omega_2$ is plussed, then $D_M \subset L^-$ and $M(L_M^+) = D_M$.

Proof. It suffices to show that Re $\omega_M < M(\infty) \le 0$. As shown in the proof of Lemma 8, c < 0, $a/c \le 0$, and a + d < 0. Thus,

Re
$$\omega_M = (a-d)/2c < a/c = M(\infty) \le 0$$
.

LEMMA 10. If $M \in \Omega_3 \setminus \Pi$, then $D_M \subset L_M^-$ and $M(L_M^+) = D_M$.

Proof. It suffices to show that $M(\infty) < \omega_M$. For then, clearly $D_M \subset L_M^-$. Also, since M maps the upper half-plane to the lower half-plane, the sequence $M(\omega_M)$, $M(\omega_M + i)$, $M(\infty)$ will determine a clockwise orientation on $M(L_M)$, so $M(L_M^+) = D_M$.

If c = 0, then $M = W_{\rho}$ for some ρ , which contradicts the fact that $M \notin \Pi$. Hence c < 0 and

$$M(\infty) = a/c < (a-1)/c = \omega_M.$$

This completes the proof.

LEMMA 11. If $M \in \Omega_4$ is plussed, then $D'_M \subset L^-_M$ $D_M \subset L^- \cap L^+_M$, $M(L^+_M) = D'_M$, and $M(D'_M) = D_M$.

Proof. As in the proof of Lemma 10, it suffices to show that

$$M(\infty) < \omega_M < M^2(\infty) \le 0.$$

Write $M^2 = \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix}$. Since *M* is plussed, $c_2 = c(a+d) \ge 0$. Also, $a_2 + d_2 = (a+d)^2 + 2 \ge 2$. This proves that M^2 is plussed and that $M^2 \in \Omega_1$. Thus, the inequality $\omega_M < M^2(\infty) \le 0$ follows exactly as in the proof of Lemma 8.

If c = 0, then by Lemma 3, $M = W_o$, which contradicts the fact that $M \in \Omega_4$. Hence

c < 0. Clearly,

$$-(d+a) < \sqrt{(a+d)^2+4}.$$

Dividing by -2c and then adding (a-d)/2c, we have

$$M(\infty) = a/c < (a - d - \sqrt{(a + d)^2 + 4})/2c = \omega_M.$$

This completes the proof.

LEMMA 12. Define $\mathcal{O}_M = L_M^- \cup D_M$. If M is plussed, then $M^n(\operatorname{ccl} \mathcal{O}_M) \subset \mathcal{O}_M$ for all n such that $M^n \neq I$.

Proof. Case 1: $M \in \Omega_1$. We have $M(L_M^+) = D_M \subset L_M^+$ by Lemma 8, and hence

$$M^{n}(L_{M}^{+}) \subset D_{M} \subset \mathcal{O}_{M} \qquad (n > 0).$$

$$\tag{2}$$

Also, $M^{-1}(\operatorname{ccl} D_M) = L_M^{-1} \subset \operatorname{ccl} D_M$, and hence

$$M^{-n}(\operatorname{ccl} D_M) \subset L_M^- \subset \mathcal{O}_M \qquad (n > 0). \tag{3}$$

Since ccl $\mathcal{O}_M = L_M^+ \cap$ ccl D_M , the desired result follows from (2) and (3).

Case 2: $M \in \Omega_2$. Let q be the order of M. Fix $\tau \in \operatorname{ccl} \mathcal{O}_M$. Let $K_{\tau} = \{z \in \mathbb{C}^* : |t_1(z)| = |t_1(\tau)|\}$ where $t_1 = \begin{vmatrix} 1 & -\omega_M \\ 1 & -\omega'_M \end{vmatrix}$. If $\tau \in \mathbb{R}$, then $K_{\tau} = \mathbb{R}^*$. If $\tau \notin \mathbb{R}$, then K_{τ} is a circle through τ such that $M(K_{\tau}) = K_{\tau}$. (This can be shown using the formula $t(W(\tau)) = \rho^{-2}t(\tau)$ which occurs in [1, p. 112].) If $\operatorname{Im} \tau > 0$, then $K_{\tau} \subset \{z : \operatorname{Im} z > 0\}$ and ω_M is inside K_{τ} ; if $\operatorname{Im} \tau < 0$, then $K_{\tau} \subset \{z : \operatorname{Im} z < 0\}$ and ω_M is an arc or a ray. (See Figure 6.) By Lemma 9, $M(L_M^+) = D_M$ and hence also $M^{-1}(\operatorname{ccl} D_M) = L_M^-$. Consequently, $M(\tau) \in \mathcal{O}_M$ and $M^{-1}(\tau) \in \mathcal{O}_M$. We claim that the points $\tau, M(\tau), \ldots, M^{q-1}(\tau)$ occur in that cyclic order on K_{τ} . To see this, choose a complex linear fractional transformation Y such that $Y(\infty)$ and Y(0) are the fixed points of M. Then $X = Y^{-1}MY = \left| \begin{array}{c} u & 0 \\ 0 & 1/u \end{array} \right|$ for some complex $u \neq 0$. We have $\alpha = X^q(\alpha) = u^{2q}\alpha$ for all α , so $u^{2q} = 1$. Since

|U 1/*u*|

Figure 6

 $M \in \Omega_2$, $u^2 = \exp(\pm 2\pi i/q)$. Let $\alpha = Y^{-1}(\tau)$. The points $\alpha, X(\alpha), X^2(\alpha), \ldots, X^{q-1}(\alpha)$ occur in that cyclic order on $Y^{-1}K_{\tau}$. This proves the claim. It follows that the points $M(\tau), \ldots, M^{q-1}(\tau)$ all lie on $K_{\tau} \cap \mathcal{O}_M$. Thus $M^n(\tau) \in \mathcal{O}_M$ for all *n* such that $M^n \neq I$. *Case* 3: $M \in \Omega_3$. By Lemmas 7 and 10,

$$M(\operatorname{ccl} \mathcal{O}_{\mathcal{M}}) = M(L_{\mathcal{M}}^+) = D_{\mathcal{M}} \subset L_{\mathcal{M}}^- = \mathcal{O}_{\mathcal{M}}.$$

Since M is an involution, this is the desired result.

Case 4: $M \in \Omega_4$. By Lemma 11, $M^2(L_M^+) = D_M \subset L_M^+$, and hence

$$M^{2n}(L_M^+) \subset D_M \subset \mathcal{O}_M \qquad (n > 0). \tag{4}$$

Also, $M^{-2}(\operatorname{ccl} D_M) = L_M^{-1} \subset \operatorname{ccl} D_M$, and hence

$$M^{-2n}(\operatorname{ccl} D_M) \subset L_M^- \subset \mathcal{O}_M \qquad (n > 0).$$
(5)

For all n > 0, we have, by (5) and Lemma 11,

$$M^{-2n+1}(L_M^+) = M^{-2n}(D_M') \subset M^{-2n}(\operatorname{ccl} D_M) \subset \mathcal{O}_M.$$
(6)

For all n > 0, we have, by (4) and Lemma 11,

$$M^{2n-1}(L_M^+) \subset M^{-1}(D_M) = D'_M \subset L_M^- \subset \mathcal{O}_M.$$
⁽⁷⁾

The desired result now follows from (4), (5), (6) and (7). This completes the proof.

6. Proofs of Theorems 1 and 2.

Proof of Theorem 1. By Theorem 4, there exist L-maps Q_1 and Q_2 such that $X = Q_1^{-1}AQ_1$ and $Y = Q_2^{-1}BQ_2$ are real. Since $A \in \Omega$ and Q_1 is an L-map, $X \in \Omega$. Similarly, $Y \in \Omega$. We may assume without loss of generality that X is plussed, otherwise replace A by A^{-1} . Similarly, assume that Y is plussed. Let $Z = Y^W$ (recall that $W = \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$). Note that $Z = Q_3^{-1}CQ_3$, where $Q_3 = Q_2^W$. Define \mathcal{O}_X and \mathcal{O}_Y as in Lemma 12. Note that $\mathcal{O}_X \subset L^-$ and $\mathcal{O}_3 = Q_3(W(\mathcal{O}_Y)) \subset L^+$. Define $F = \operatorname{ccl}(\mathcal{O}_1 \cup \mathcal{O}_3)$. Since, by hypothesis, at least one of A and C fixes no point of L, we have $F \neq \emptyset$. To see this, suppose, for example, that A fixes no point of L. Then X fixes no point of L, so $L^- \cap \operatorname{ccl}(\mathcal{O}_X) \neq \emptyset$ (see Figures 1 through 5). Thus $L^- \cap \operatorname{ccl}(\mathcal{O}_1) \neq \emptyset$, so $F \neq \emptyset$.

To show that $\langle A, C \rangle$ is the discrete free product $\langle A \rangle * \langle C \rangle$, we will show that for every nontrivial reduced word U in $\langle A, C \rangle$, $U(F) \cap F = \emptyset$. To show this, it suffices to prove that for all integers n such that $A^n \neq I$,

$$A^{n}(F \cup \mathcal{O}_{3}) \subset \mathcal{O}_{1}, \tag{8}$$

and that for all integers n such that $C^n \neq I$,

$$C^n(F \cup \mathcal{O}_1) \subset \mathcal{O}_3. \tag{9}$$

We give an example to illustrate why it suffices to prove (8) and (9). Let $\tau \in F$ and let U

be the reduced word $A^5 C^{-3} A^4$. By (8), $\tau_1 = A^4 \tau \in \mathcal{O}_1$. By (9), $\tau_2 = C^{-3} \tau_1 \in \mathcal{O}_3$. By (8), $U(\tau) = A^5 \tau_2 \in \mathcal{O}_1$, so $U(\tau) \notin F$.

Putting M = X in Lemma 12, we have $X^n(\operatorname{ccl} \mathcal{O}_X) \subset \mathcal{O}_X$ for all n such that $X^n \neq I$. Since

$$Q_1(\operatorname{ccl} \mathcal{O}_X) = \operatorname{ccl}(Q_1(\mathcal{O}_X)) = \operatorname{ccl}(\mathcal{O}_1),$$

it follows that $A^n(\operatorname{ccl} \mathcal{O}_1) \subset \mathcal{O}_1$, for all *n* such that $A^n \neq I$. This yields (8). Putting M = Y in Lemma 12, we have $WZ^nW(\operatorname{ccl} \mathcal{O}_Y) \subset \mathcal{O}_Y$ for all *n* such that $Z^n \neq I$. Hence $C^n(\operatorname{ccl} \mathcal{O}_3) \subset \mathcal{O}_3$ for all n such that $C^n \neq I$. This yields (9) and completes the proof.

Before proving Theorem 2, we prove the following lemma.

LEMMA 13. Let A and C be linear fractional transformations of order 2 such that $A \neq C$ and AC is not elliptic. Then (A, C) is the discrete free product (A)*(C).

Proof. The reduced words in $\langle A, C \rangle$ are the words alternating in the symbols A and C, e.g., ACACACA. Since $A \neq C$, $AC \neq I$. Since AC is not elliptic, AC has infinite order. Hence $\langle A, C \rangle = \langle A \rangle * \langle C \rangle$. Moreover, by [3, Theorem 1E, p. 87], $\langle AC \rangle$ is discrete. Since $[\langle A, C \rangle: \langle AC \rangle] = 2$, it follows that $\langle A, C \rangle$ is discrete. This completes the proof.

Proof of Theorem 2. If $\{A, C\} \subset \{W, T_u\}$ for some u, clearly $\langle A, C \rangle$ is not the free product of $\langle A \rangle$ and $\langle C \rangle$. Conversely, assume that for every $u, \{A, C\} \not\subset \{W, T_u\}$. It may be assumed that both A and C have a fixed point on L, otherwise $\langle A, C \rangle$ is the discrete free product $\langle A \rangle * \langle C \rangle$ by Theorem 1. As W(L) = L, B also has a fixed point on L. Let $M \in \{A, B\}$ (where we write $M = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ with $a, b \ge 0$ and $c, d \le 0$). If M fixes 0 or ∞ , then $M = W_b$ (with $b \ge 0$) or $M = W_c^{i}$ (with $c \le 0$) by Lemma 3. If M fixes a point ui $(0 < u < \infty)$, then an easy calculation shows that $M = \begin{vmatrix} a & -cu^2 \\ c & a \end{vmatrix}$. But since the diagonal elements of M cannot both be positive or negative, a = 0. Hence $M = T_{u}$. Since for every u, $\{A, C\} \not\subset \{W, T_u\}, \langle A, C \rangle$ is one of the following groups or their transposes:

$$G_1 = \langle W_r, W_s \rangle \qquad (r \le 0, s > 0), \tag{10}$$

$$G_1 = \langle W_r, W_s \rangle \qquad (r \le 0, s > 0), \tag{10}$$

$$G_2 = \langle W_r, W_s \rangle \qquad (r > 0, s > 0), \tag{11}$$

$$G_3 = \langle W_s, T_u \rangle \qquad (s \ne 0), \tag{12}$$

$$G_3 = \langle W_n, T_n \rangle \qquad (s \neq 0), \tag{12}$$

or

$$G_4 = \langle T_u, T_v \rangle \qquad (u > v > 0). \tag{13}$$

Let U_i and V_i be the first and second given generator of G_i , respectively (i = 1, 2, 3, 4). It remains to show that each G_i is the discrete free product $\langle U_i \rangle * \langle V_i \rangle$. It is easily checked that U_i and V_i are involutions and that U_iV_i is not elliptic (i = 1, 2, 3, 4). (Note, for example, that U_3V_3 is loxodromic.) Hence the result follows from Lemma 13 and the proof is complete.

79

7. Transformations with fixed points on L. We discuss the structure of $\langle A, C \rangle$ where $A \in \Omega$, $C \in \Omega^w$, and both A and C have a fixed point on L. The case where these fixed points are equal is treated in Theorem 14; the remaining case is treated in Theorem 15.

THEOREM 14. Let $A \in \Omega$ and $C \in \Omega^{W}$. Suppose that A and C both fix $\omega \in L$. Then $\langle A, C \rangle$ is the discrete free product $\langle A \rangle * \langle C \rangle$ unless A = C.

Proof. If $\omega \neq \infty$, conjugate A and C by the L-map $\begin{vmatrix} 0 & 1 \\ 1 & -\omega \end{vmatrix}$. Thus we may assume without loss of generality that $\omega = \infty$. By Lemma 3, $A = W_{\rho}$ and $C = W_{\nu}^{W} = W_{-\nu}$ for some pair ρ , ν . Suppose that $A \neq C$. Then $AC = \begin{vmatrix} 1 & u \\ 0 & 1 \end{vmatrix}$ for some $u \neq 0$. The result thus follows from Lemma 13.

THEOREM 15. Let $A \in \Omega$ and $C \in \Omega^w$. Suppose that A fixes $\omega_A \in L$ and C fixes $\omega_C \in L$, where $\omega_A \neq \omega_C$. Then there exists an L-map S such that $A^S = W_\rho$ and $C^S = W_{\nu}^t$ for some pair ρ , ν . Also $\langle A, C \rangle$ is the discrete free product $\langle A \rangle * \langle C \rangle$ if and only if $A \neq C$ and AC is not elliptic.

Proof. We begin by proving the first assertion. If $\omega_A \neq \infty$, conjugate A and C by the L-map $\begin{vmatrix} 0 & 1 \\ 1 & -\omega_A \end{vmatrix}$. Thus it may be assumed without loss of generality that $\omega_A = \infty$. Let S be the L-map $\begin{vmatrix} 1 & -\omega_C \\ 0 & 1 \end{vmatrix}$ (note that $\omega_C \neq \omega_A = \infty$). Then $A^S(\infty) = \infty$ and $C^S(0) = 0$. Since $(C^S)^W \in \Omega$ and $(C^S)^W(0) = 0$, it follows from Lemma 3 that $A^S = W_\rho$ for some ρ and $C^{WS} = W_{-\nu}^t$ for some ν . Hence $C^S = W_{\nu}^t$.

To prove the second assertion, assume that AC is elliptic. If AC has finite order, then $\langle A, C \rangle$ is not the free product $\langle A \rangle * \langle C \rangle$. If AC has infinite order, then $\langle AC \rangle$, and hence $\langle A, C \rangle$, is not discrete. Conversely, assume that $A \neq C$ and that AC is not elliptic. By the first assertion of this theorem, A and C are involutions. Thus $\langle A, C \rangle$ is the discrete free product $\langle A \rangle * \langle C \rangle$ by Lemma 13.

REFERENCES

1. R. J. Evans, A fundamental region for Hecke's modular group, J. Number Theory 5 (1973), 108-115.

2. R. J. Evans, Free products of two real cyclic matrix groups, Glasgow Math. J. 15 (1974), 121-128.

3. J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys of the Amer. Math. Soc. 8 (Providence, R.I., 1964).

4. M. Newman, Integral matrices (Academic Press, 1972).

5. N. Purzitsky, Two-generator discrete free products, Math. Z. 126 (1972), 209-223.

6. N. Purzitsky, All two-generator Fuchsian groups, Math. Z. 147 (1976), 87-92.

MATHEMATICS DEPARTMENT UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CALIFORNIA 92093