CLAUSEN'S THEOREM AND HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS

Ron Evans
Department of Mathematics
University of California at San Diego
La Jolla, CA 92093-0112
and
John Greene
Department of Mathematics and Statistics University of Minnesota-Duluth
Duluth, MN 55812

April, 2008

2000 Mathematics Subject Classification. 11T24, 33C20, 33C45.
Key words and phrases. Hypergeometric functions over finite fields, Clausen's Theorem, Gegenbauer functions, Gauss sums, Jacobi sums.

Abstract

We prove a general identity for a ${ }_{3} F_{2}$ hypergeometric function over a finite field \mathbb{F}_{q}, where q is a power of an odd prime. A special case of this identity was proved by Greene and Stanton in 1986. As an application, we prove a finite field analogue of Clausen's Theorem expressing a ${ }_{3} F_{2}$ as the square of a ${ }_{2} F_{1}$. As another application, we evaluate an infinite family of ${ }_{3} F_{2}(z)$ over \mathbb{F}_{q} at $z=-1 / 8$. This extends a result of Ono, who evaluated one of these ${ }_{3} F_{2}(-1 / 8)$ in 1998, using elliptic curves.

1 Introduction and main theorems

Let \mathbb{F}_{q} be a field of q elements, where q is a power of an odd prime p. Throughout this paper, $A, B, C, D, E, R, S, T, M, W, \chi, \psi, \varepsilon, \phi$ will denote complex multiplicative characters on \mathbb{F}_{q}^{*}, extended to map 0 to 0 . The notation ε, ϕ will always be reserved for the trivial and quadratic characters, respectively. Write \bar{A} for the inverse (complex conjugate) of A. For $y \in \mathbb{F}_{q}$, define the additive character

$$
\begin{equation*}
\zeta^{y}:=\exp \left(\frac{2 \pi i}{p}\left(y^{p}+y^{p^{2}}+\cdots+y^{q}\right)\right) . \tag{1.1}
\end{equation*}
$$

Recall the definitions of the Gauss sum

$$
\begin{equation*}
G(A)=\sum_{y \in \mathbb{F}_{q}} A(y) \zeta^{y} \tag{1.2}
\end{equation*}
$$

and the Jacobi sum

$$
\begin{equation*}
J(A, B)=\sum_{y \in \mathbb{F}_{q}} A(y) B(1-y) . \tag{1.3}
\end{equation*}
$$

Note that

$$
G(\varepsilon)=-1, \quad J(\varepsilon, \varepsilon)=q-2,
$$

and for nontrivial A,

$$
G(A) G(\bar{A})=A(-1) q, \quad J(A, \bar{A})=-A(-1)
$$

Gauss and Jacobi sums are related by [5, (1.14)], [2, p. 59]

$$
\begin{equation*}
J(A, B)=G(A) G(B) / G(A B), \quad \text { if } A B \neq \varepsilon \tag{1.4}
\end{equation*}
$$

The Gauss sums satisfy the Hasse-Davenport relation [5, (2.18)], [2, p. 59]

$$
\begin{equation*}
A(4) G(A) G(A \phi)=G\left(A^{2}\right) G(\phi) \tag{1.5}
\end{equation*}
$$

For $x \in \mathbb{F}_{q}$, define the hypergeometric ${ }_{2} F_{1}$ function over \mathbb{F}_{q} by $[5$, p. 82]

$$
{ }_{2} F_{1}\left(\begin{array}{r|r}
A, & B \tag{1.6}\\
C & x
\end{array}\right)=\frac{\varepsilon(x)}{q} \sum_{y \in \mathbb{F}_{q}} B(y) \bar{B} C(y-1) \bar{A}(1-x y)
$$

and the hypergeometric ${ }_{3} F_{2}$ function over \mathbb{F}_{q} by [5, p. 83]

$$
\begin{align*}
& { }_{3} F_{2}\left(\left.\begin{array}{r}
A, B, C \\
D, E
\end{array} \right\rvert\, x\right) \\
& \quad=\frac{\varepsilon(x)}{q^{2}} \sum_{y, z \in \mathbb{F}_{q}} C(y) \bar{C} E(y-1) B(z) \bar{B} D(z-1) \bar{A}(1-x y z) . \tag{1.7}
\end{align*}
$$

The "binomial coefficient" over \mathbb{F}_{q} is defined by [5, p. 80]

$$
\begin{equation*}
\binom{A}{B}=\frac{B(-1)}{q} J(A, \bar{B}) . \tag{1.8}
\end{equation*}
$$

Define the function

$$
\begin{equation*}
F(A, B ; x)=\frac{q}{q-1} \sum_{\chi}\binom{A \chi^{2}}{\chi}\binom{A \chi}{B \chi} \chi\left(\frac{x}{4}\right), \quad x \in \mathbb{F}_{q} \tag{1.9}
\end{equation*}
$$

and its normalization

$$
\begin{equation*}
F^{*}(A, B ; x)=F(A, B ; x)+A B(-1) \bar{A}(x / 4) / q \tag{1.10}
\end{equation*}
$$

We will relate the function F^{*} to a ${ }_{2} F_{1}$ in both Theorems 1.2 and 1.6 below.
Our main result is the following theorem.
Theorem 1.1. Let $A B=C^{2}$ where $C \neq \phi$ and $A, B \notin\{\varepsilon, C\}$. Then for $x \neq 1$,

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left.\begin{array}{c}
A, B, C \phi \\
C^{2}, C
\end{array} \right\rvert\, x\right)=-\bar{C}(x) \phi(1-x) / q \\
& \quad+\bar{C}(-4) \bar{C} \phi(1-x) F^{*}\left(A, C ; \frac{x}{x-1}\right) F^{*}\left(B, C ; \frac{x}{x-1}\right) .
\end{aligned}
$$

The proof of Theorem 1.1 is given in Section 2.
The special case $A=B=\phi, C=\varepsilon$ of Theorem 1.1 is due to Greene and Stanton [6]. This case was used by Ono [8, Theorem 5], [9] to give explicit determinations of

$$
{ }_{3} F_{2}\left(\begin{array}{r|r}
\phi, \phi, \phi & \\
\varepsilon, \varepsilon & x
\end{array}\right)
$$

for special values of x. For an infinite family of such determinations, see [3].
We proceed to apply Theorem 1.1 to produce a finite field analogue (Theorem 1.5) of Clausen's famous classical identity [1, p. 86]

$$
{ }_{3} F_{2}\left(\left.\begin{array}{c}
2 c-2 s-1,2 s, c-\frac{1}{2} \tag{1.11}\\
2 c-1, c
\end{array} \right\rvert\, x\right)={ }_{2} F_{1}\left(\left.\begin{array}{c}
c-s-\frac{1}{2}, s \\
c
\end{array} \right\rvert\, x\right)^{2} .
$$

Formula (1.11) was utilized in de Branges' proof of the Bieberbach conjecture. For further applications of (1.11), consult Askey's Foreword in [4, pp. xiv-xv].

In the special case when the character A is a square, we can relate $F^{*}(A, C ; x)$ to a ${ }_{2} F_{1}$ as follows.

Theorem 1.2. Let $R^{2} \notin\left\{\varepsilon, C, C^{2}\right\}$. Then

$$
F^{*}\left(R^{2}, C ; x\right)=R(4) \frac{J\left(\phi, C \bar{R}^{2}\right)}{J(\bar{R} C, \bar{R} \phi)}{ }_{2} F_{1}\left(\begin{array}{c|c}
R \phi, R & x \\
C & x
\end{array}\right) .
$$

Theorem 1.2 is proved in Section 3. Combining Theorems 1.1 and 1.2, we obtain the following result.
Proposition 1.3. Let $C^{2}=R^{2} S^{2}$, where $C \neq \phi$ and $R^{2}, S^{2} \notin\{\varepsilon, C\}$. Then for $x \neq 1$,

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left.\begin{array}{r}
R^{2}, S^{2}, C \phi \\
C^{2}, C
\end{array} \right\rvert\, x\right)=-\bar{C}(x) \phi(1-x) / q \\
& +\frac{C(-1) \bar{C} \phi(1-x) J\left(\phi, C \bar{R}^{2}\right) J\left(\phi, C \bar{S}^{2}\right)}{J(\bar{R} C, \bar{R} \phi) J(\bar{S} C, \bar{S} \phi)} F_{1}\left(\left.\begin{array}{r}
R \phi, R \\
C
\end{array} \right\rvert\, \frac{x}{x-1}\right){ }_{2} F_{1}\left(\left.\begin{array}{r}
S \phi, S \\
C
\end{array} \right\rvert\, \frac{x}{x-1}\right) .
\end{aligned}
$$

For $x \neq 1$, there is a transformation formula [5, Thm. 4.4(iv)]

$$
{ }_{2} F_{1}\left(\begin{array}{r|r}
R \phi, R & x \tag{1.12}\\
C & x-1
\end{array}\right)=C(-1) \bar{C} R^{2} \phi(1-x){ }_{2} F_{1}\left(\left.\begin{array}{r}
\bar{R} C \phi, \bar{R} C
\end{array} \right\rvert\, \frac{x}{C}\right) .
$$

Using (1.12) in Proposition 1.3, we obtain the following result.

Proposition 1.4. Let $C=R S$, where $C \neq \phi$ and $R^{2}, S^{2} \notin\{\varepsilon, C\}$. Then for $x \neq 1$,

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left.\begin{array}{c}
R^{2}, S^{2}, C \phi \\
C^{2}, C
\end{array} \right\rvert\, x\right)=-\bar{C}(x) \phi(1-x) / q \\
& \quad+\frac{J\left(\phi, C \bar{R}^{2}\right) J\left(\phi, C \bar{S}^{2}\right)}{J(\bar{R} C, \bar{R} \phi) J(\bar{S} C, \bar{S} \phi)} \bar{S}^{2}(1-x)_{2} F_{1}\left(\left.\begin{array}{r}
S \phi, S \\
C
\end{array} \right\rvert\, \frac{x}{x-1}\right)^{2}
\end{aligned}
$$

For $x \neq 1$, there is another transformation formula [5, Thm 4.4(iii)]

$$
{ }_{2} F_{1}\left(\begin{array}{r|r}
S \phi, S & x \tag{1.13}\\
C & \frac{x}{x-1}
\end{array}\right)=S(1-x)_{2} F_{1}\left(\left.\begin{array}{r}
C \bar{S} \phi, S \\
C
\end{array} \right\rvert\, x\right) .
$$

Using (1.13) in Proposition 1.4, along with (1.5), we obtain the following direct finite field analogue of Clausen's identity (1.11).
Theorem 1.5. Let $C \neq \phi$ and $S^{2} \notin\left\{\varepsilon, C, C^{2}\right\}$. Then for $x \neq 1$,
${ }_{3} F_{2}\left(\left.\begin{array}{c}C^{2} \bar{S}^{2}, S^{2}, C \phi \\ C^{2}, C\end{array} \right\rvert\, x\right)=-\bar{C}(x) \phi(1-x) / q+\frac{\bar{C}(4) J(S \bar{C}, S \bar{C})}{J(S, S)}{ }_{2} F_{1}\left(\left.\begin{array}{r}C \bar{S} \phi, S \\ C\end{array} \right\rvert\, x\right)^{2}$.
Theorem 1.2 relates $F^{*}(A, C ; x)$ to a ${ }_{2} F_{1}$ when A is a square. We can also relate $F^{*}(A, C ; x)$ to a ${ }_{2} F_{1}$ when x is a square, as follows.

Theorem 1.6. Let $C \neq \phi, A \neq \varepsilon$, and $u \notin\{0,1\}$. Then
$F^{*}\left(A, C ; u^{-2}\right)=\frac{A C(-1) C \phi(2) A(u) C \bar{A} \phi(1-u) J(A \phi, C \bar{A})}{J(\phi, A \phi)}{ }_{2} F_{1}\left(\begin{array}{r}\bar{C} \phi, C \phi \\ C \bar{A} \phi\end{array} \frac{1-u}{2}\right)$.
Theorem 1.6 is proved in Section 4, by means of two lemmas relating F^{*} and ${ }_{2} F_{1}$ to finite field analogues of Gegenbauer functions.

With $x=1 /\left(1-u^{2}\right)$, use Theorem 1.6 and (4.9) to substitute for the first and second factors F^{*} in Theorem 1.1, respectively. This yields the following specialization of our main result.
Theorem 1.7. Let $C \neq \phi, A \notin\left\{\varepsilon, C, C^{2}\right\}$, and $u^{2} \notin\{0,1\}$. Then

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left.\begin{array}{c}
A, \bar{A} C^{2}, C \phi \\
C^{2}, C
\end{array} \right\rvert\, \frac{1}{1-u^{2}}\right)=-\phi(-1) C \phi\left(1-u^{2}\right) / q \\
& \quad+\frac{\phi(-1) \bar{A} C^{2}(1-u) A(1+u) J\left(A, \bar{A} C^{2}\right)}{J(C \phi, C \phi)} F_{1}\left(\left.\begin{array}{r}
\bar{C} \phi, C \phi \\
C \bar{A} \phi
\end{array} \right\rvert\, \frac{1-u}{2}\right)^{2} .
\end{aligned}
$$

As an application, we will prove in Section 5 the following evaluation of ${ }_{3} F_{2}(-1 / 8)$ for an infinite family of hypergeometric ${ }_{3} F_{2}$ functions over \mathbb{F}_{q}.

Theorem 1.8. Suppose that S is a character whose order is not 1, 3, or 4. Then

$$
\begin{align*}
& { }_{3} F_{2}\left(\left.\begin{array}{c}
\bar{S}, S^{3}, S \\
S^{2}, S \phi
\end{array} \right\rvert\,-\frac{1}{8}\right) \\
& =\left\{\begin{array}{l}
-\phi(-1) S(-8) / q, \quad \text { if } S \text { is not a square } \\
\phi(-1) S(8) / q+\frac{\phi(-1) S(2) J\left(\bar{S}, S^{3}\right)}{q^{2} J(S, S)}\left(J(S, D)^{2}+J(S, D \phi)^{2}\right), \quad \text { if } S=D^{2} .
\end{array}\right. \tag{1.14}
\end{align*}
$$

Formula (1.14) is a direct finite field analogue of the following evaluation [10] of a classical ${ }_{3} F_{2}$:

$$
{ }_{3} F_{2}\left(\left.\begin{array}{r}
s, 1-s, 3 s-1 \tag{1.15}\\
2 s, s+1 / 2
\end{array} \right\rvert\,-\frac{1}{8}\right)=\frac{2^{3 s-3} \Gamma(s / 2)^{2} \Gamma(s+1 / 2)^{2}}{\pi \Gamma(3 s / 2)^{2}} .
$$

This classical identity is a consequence of Clausen's Theorem (1.11) and Kummer's Theorem [5, (4.12)]. In Section 5, we show that our identity (1.14) follows analogously from a version of Clausen's Theorem over \mathbb{F}_{q} (Theorem 1.7) and Kummer's Theorem over $\mathbb{F}_{q}[5,(4.11)]$.

We remark that it is not difficult to give separate evaluations of the left side of (1.14) in the three exceptional cases where S has order 1, 3, or 4 . In the case where S has order 2, i.e., $S=\phi$, Theorem 1.8 reduces to Ono's evaluation of a ${ }_{3} F_{2}(-1 / 8)$ in $[8$, Theorem $6(i i)]$, $[9]$. This can be easily seen from the fact [2, Table 3.2.1] that when D is a quartic character on \mathbb{F}_{q} for a prime $q=x^{2}+y^{2}$ with x odd, then $J(\phi, D)^{2}=(x+i y)^{2}$.

The left side of (1.14) can also be expressed in the form

$$
S \phi(-8){ }_{3} F_{2}\left(\begin{array}{c|c}
\phi, \bar{S}^{2} \phi, S^{2} \phi & -\frac{1}{8} \tag{1.16}\\
\bar{S} \phi, S \phi & -
\end{array}\right.
$$

this can be seen by applying [5, Theorem 4.2(i)] with $A=\bar{S}, B=S, C=S^{3}$, $D=S \phi$, and $E=S^{2}$. If we now apply [5, Theorem 4.2(ii)] directly to (1.16), we see that the left side of (1.14) also equals

$$
S(-8) \phi(-1)_{3} F_{2}\left(\left.\begin{array}{c}
\phi, S, \bar{S} \tag{1.17}\\
S^{2}, \bar{S}^{2}
\end{array} \right\rvert\,-8\right) .
$$

Thus we obtain the following theorem:

Theorem 1.9. Suppose that S is a character whose order is not 1, 3, or 4. Then

$$
\begin{align*}
& { }_{3} F_{2}\left(\left.\begin{array}{r}
\phi, S, \bar{S} \\
S^{2}, \bar{S}^{2}
\end{array} \right\rvert\,-8\right) \\
& =\left\{\begin{array}{l}
-1 / q, \quad \text { if } S \text { is not a square } \\
1 / q+\frac{\bar{S}(4) J\left(\bar{S}, S^{3}\right)}{q^{2} J(S, S)}\left(J(S, D)^{2}+J(S, D \phi)^{2}\right), \quad \text { if } S=D^{2} .
\end{array}\right. \tag{1.18}
\end{align*}
$$

In the case where $S=\phi$, Theorem 1.9 reduces to Ono's evaluation of a ${ }_{3} F_{2}(-8)$ in $[8$, Theorem 6(i)], [9].

We have also evaluated infinite families of ${ }_{3} F_{2}(-1)$ and ${ }_{3} F_{2}(1 / 4)$ over \mathbb{F}_{q}. These more complicated evaluations require further machinery and are thus written up in a separate paper. Note that while Theorem 1.7 covers the argument $z=-1 / 8$ (via the choice $u=3$), it cannot be applied to cover $z=-1$ and $z=1 / 4$ over all finite fields. We have tried to extend the result of Ono [8, Theorem 6 (vii)] by evaluating an infinite family of ${ }_{3} F_{2}(1 / 64)$, but our attempts have not been successful.

2 Proof of Theorem 1.1

Let $A B=C^{2}$ where $C \neq \phi$ and $A, B \notin\{\varepsilon, C\}$. Let $u \neq 1$. The object of this section is to prove

$$
\begin{align*}
& { }_{3} F_{2}\left(\left.\begin{array}{r}
A, B, C \phi \\
C^{2}, C
\end{array} \right\rvert\, u\right)=-\bar{C}(u) \phi(1-u) / q \\
& \quad+\bar{C}(-4) \bar{C} \phi(1-u) F^{*}\left(A, C ; \frac{u}{u-1}\right) F^{*}\left(B, C ; \frac{u}{u-1}\right) . \tag{2.1}
\end{align*}
$$

Both sides of (2.1) vanish when $u=0$, so we will assume that $u \notin\{0,1\}$.
The following proof of (2.1) is best read alongside the paper [5], to which we refer numerous times. We take this opportunity to correct two misprints in [5, p. 94]: the argument 1 is missing on the far right in $[5,(4.25)]$, and the lower case b should be changed to B in [5, Thm. 4.28].

For a character S on \mathbb{F}_{q} and an element $y \in \mathbb{F}_{q}$, define

$$
\delta(y)=\left\{\begin{array}{ll}
1, & \text { if } y=0 \tag{2.2}\\
0, & \text { if } y \neq 0
\end{array}, \quad \delta(S)= \begin{cases}1, & \text { if } S=\varepsilon \\
0, & \text { if } S \neq \varepsilon\end{cases}\right.
$$

Let R, S, T, M, W be characters on \mathbb{F}_{q}, with $R \neq \varepsilon$. By [5, Thm. 4.28], for $t \notin\{0,1\}$,

$$
\begin{aligned}
& { }_{3} F_{2}\left(\begin{array}{c}
R, \\
T \bar{R}, T \\
\hline
\end{array}, T \mid t\right)=\frac{(1-q)}{q^{2}} R T(-1) \delta(S)+\frac{(1-q)}{q^{2}} \bar{R}(-t) \delta(\overline{R S} T) \\
& \quad+\frac{1}{q} R S T(-1) \delta(1+t)+\frac{1}{q}\binom{S}{R S} S T(-1) T\left(\frac{t-1}{t}\right) \\
& \quad+S T(-1) \bar{T}(1-t) \frac{q}{q-1} \sum_{\chi}\binom{T \chi^{2}}{\chi}\binom{T \chi}{R T \chi}\binom{\overline{R S} T \chi}{\bar{S} T \chi} \chi\left(\frac{-t}{(1-t)^{2}}\right) .
\end{aligned}
$$

Multiplying both sides by $S M W(-1) \bar{M}(t) M W(1-t) / q$ and the summing over $t \in \mathbb{F}_{q}$, we obtain

$$
\begin{align*}
& S(-1){ }_{4} F_{3}\left(\begin{array}{ccc}
R, & S, & T, \\
T \bar{R}, T & \bar{S}, W & 1
\end{array}\right)= \\
& \frac{(1-q)}{q^{2}} R S T W(-1)\binom{M W}{M} \delta(S)+\frac{(1-q)}{q^{2}} S W(-1)\binom{M W}{M R} \delta(\overline{R S} T) \\
& +\frac{R T W(-1) M W(2)}{q^{2}}+\frac{T W(-1)}{q}\binom{S}{R S}\binom{M W T}{W} \tag{2.3}\\
& +\frac{q}{q-1} \sum_{\chi}\binom{T \chi^{2}}{\chi}\binom{T \chi}{\bar{R} T \chi}\binom{\overline{R S} T \chi}{\bar{S} T \chi}\binom{\bar{M} \chi}{M W T \chi^{2}} \chi(-1),
\end{align*}
$$

where the ${ }_{4} F_{3}$ is defined in [5, Def. 3.10]. Define, for $x \notin\{0,1\}$,

$$
\begin{equation*}
Q(x)=F(A, C ; x) F(B, C ; x) . \tag{2.4}
\end{equation*}
$$

Then,

$$
\begin{align*}
Q(x) & =\left(\frac{q}{q-1}\right)^{2} \sum_{\chi, \psi}\binom{A \chi^{2}}{\chi}\binom{A \chi}{C \chi}\binom{B \psi}{C \psi}\binom{B \psi^{2}}{\psi} \chi \psi\left(\frac{x}{4}\right) \tag{2.5}\\
& =\left(\frac{q}{q-1}\right)^{2} \sum_{\psi} \psi\left(\frac{x}{4}\right) \sum_{\chi}\binom{A \chi^{2}}{\chi}\binom{A \chi}{C \chi}\binom{B \psi \bar{\chi}}{C \psi \bar{\chi}}\binom{B \psi^{2} \bar{\chi}^{2}}{\psi \bar{\chi}} \\
& =C(-1) \frac{q}{q-1} \sum_{\psi} \psi\left(-\frac{x}{4}\right)\left\{\frac{q}{q-1} \sum_{\chi}\binom{A \chi^{2}}{\chi}\binom{A \chi}{C \chi}\left(\begin{array}{c}
\overline{C \psi} \chi \\
B \psi \\
\hline
\end{array}\right)\binom{\bar{\psi} \chi}{\overline{B \psi}^{2} \chi^{2}} \chi(-1)\right\}
\end{align*}
$$

by $[6,(2.8)]$. By (2.5) and (2.3) with $T=A, \quad R=A \bar{C}, \quad M=\psi, S=W=C^{2} \psi$,

$$
\begin{align*}
Q(x) & =Q_{1}(x)+C(-1) \frac{q}{q-1} \sum_{\psi} \psi\left(-\frac{x}{4}\right)\left\{\frac{-C \psi(-4)}{q^{2}}\right. \tag{2.6}\\
& \left.-\frac{A \psi(-1)}{q}\binom{C^{2} \psi}{A C \psi}\binom{A C^{2} \psi^{2}}{C^{2} \psi}+\psi(-1)_{4} F_{3}\left(\begin{array}{ccc}
A \bar{C}, & C^{2} \psi, & A, \\
& C, \bar{\psi}, & C^{2} \psi
\end{array}\right)\right\}
\end{align*}
$$

where

$$
Q_{1}(x)=\frac{1}{q} \bar{C}^{2}\left(\frac{x}{4}\right)\binom{\bar{C}^{2}}{\bar{C}^{2}}+\frac{1}{q} \bar{C}\left(\frac{x}{4}\right)\binom{\varepsilon}{B}
$$

By [5, (2.12)-(2.13)], since $C \neq \phi$,

$$
\begin{equation*}
Q_{1}(x)=\frac{1}{q^{2}} \bar{C}^{2}\left(\frac{x}{4}\right)\{-1+(q-1) \delta(C)\}-\frac{1}{q^{2}} B(-1) \bar{C}\left(\frac{x}{4}\right) . \tag{2.7}
\end{equation*}
$$

By $[6,(2.6)]$,

$$
\begin{equation*}
\frac{A C(-1)}{q-1} \sum_{\psi}\binom{C^{2} \psi}{A C \psi}\binom{A C^{2} \psi^{2}}{C^{2} \psi} \psi\left(\frac{x}{4}\right)=\frac{A C(-1) \bar{A}(x / 4)}{q} F(B, C ; x) \tag{2.8}
\end{equation*}
$$

Since $\sum_{\psi} \psi(x)$ vanishes, it follows from (2.6)-(2.8) that

$$
\begin{align*}
& Q(x)=\frac{1}{q^{2}} \bar{C}^{2}\left(\frac{x}{4}\right)\{-1+(q-1) \delta(C)\}-\frac{B(-1)}{q^{2}} \bar{C}\left(\frac{x}{4}\right) \tag{2.9}\\
& -\frac{A C(-1) \bar{A}(x / 4)}{q} F(B, C ; x)+\frac{C(-1) q}{q-1} \sum_{\psi} \psi\left(\frac{x}{4}\right){ }_{4} F_{3}\binom{A \bar{C}, C^{2} \psi, \bar{\psi}, A}{C, C^{2} \psi, \overline{B \psi}} .
\end{align*}
$$

By [5, Thm. 3.15(v)], the degenerate ${ }_{4} F_{3}$ in (2.9) equals

$$
\begin{align*}
& { }_{4} F_{3}\left(\left.\begin{array}{r}
A \bar{C}, C^{2} \psi, \bar{\psi}, A \\
C, C^{2} \psi, \overline{B \psi}
\end{array} \right\rvert\, 1\right)=\binom{\bar{\psi} C}{C \psi}{ }_{3} F_{2}\left(\left.\begin{array}{r}
A \bar{C}, \bar{\psi}, A \\
C, \overline{B \psi}
\end{array} \right\rvert\, 1\right) \tag{2.10}\\
& -\frac{1}{q} C \psi(-1)\binom{\overline{B C \bar{\psi}}}{\bar{C}^{2} \bar{\psi}}\left(\frac{\overline{B \psi}}{\overline{B C}^{2} \bar{\psi}^{2}}\right)+\frac{(q-1)}{q^{2}} C \psi(-1) \delta\left(C \psi{ }_{2} F_{1}\left(\begin{array}{c}
A \bar{C}, A \\
\bar{B} \bar{\psi}
\end{array} 1\right) .\right.
\end{align*}
$$

By [5, Thm. 4.9], the rightmost term in (2.10) is

$$
\frac{q-1}{q^{2}} A \psi(-1)\left(\frac{A}{C \psi}\right) \delta(C \psi)
$$

so the contribution of this term to the right side of (2.9) is

$$
\begin{equation*}
\frac{C(-1) q}{q-1} \bar{C}\left(\frac{x}{4}\right) \frac{(q-1)}{q^{2}} A \bar{C}(-1)\binom{A}{\varepsilon}=\frac{-A(-1) \bar{C}(x / 4)}{q^{2}} . \tag{2.11}
\end{equation*}
$$

The contribution of the middle term on the right side of (2.10) to the right side of (2.9) is

$$
\begin{align*}
-\frac{B C(-1)}{q-1} \sum_{\psi} \psi\left(\frac{x}{4}\right) & \binom{B C^{2} \psi^{2}}{B \psi}\binom{C^{2} \psi}{B C \psi} \tag{2.12}\\
& =-\frac{B C(-1)}{q} \bar{B}\left(\frac{x}{4}\right) F(A, C ; x) .
\end{align*}
$$

Therefore, by (2.9)-(2.12),

$$
\begin{align*}
Q(x) & =\frac{1}{q^{2}} \bar{C}^{2}\left(\frac{x}{4}\right)\{-1+(q-1) \delta(C)\}-\frac{B(-1)}{q^{2}} \bar{C}\left(\frac{x}{4}\right) \\
& -\frac{A C(-1)}{q} \bar{A}\left(\frac{x}{4}\right) F(B, C ; x)-\frac{B C(-1)}{q} \bar{B}\left(\frac{x}{4}\right) F(A, C ; x) \tag{2.13}\\
& -\frac{A(-1)}{q^{2}} \bar{C}\left(\frac{x}{4}\right)+Q_{2}(x),
\end{align*}
$$

where

$$
Q_{2}(x):=C(-1) \frac{q}{q-1} \sum_{\psi} \psi\left(\frac{x}{4}\right)\binom{\overline{C \psi}}{C \psi}{ }_{3} F_{2}\left(\begin{array}{c}
A \bar{C}, \bar{\psi}, A \tag{2.14}\\
C, \bar{B} \psi
\end{array} 1\right) .
$$

We proceed to evaluate $Q_{2}(x)$. By [5, (2.16)],

$$
\binom{\overline{C \psi}}{C \psi}=\binom{C \phi \psi}{C \psi} C \psi(-4)+\frac{q-1}{q} \delta(C \psi) .
$$

Thus (2.14) becomes

$$
\begin{equation*}
Q_{2}(x)=Q_{3}(x)+Q_{4}(x), \tag{2.15}
\end{equation*}
$$

where

$$
Q_{3}(x)=C(4) \frac{q}{q-1} \sum_{\psi}\binom{C \phi \psi}{C \psi} \psi(-x)_{3} F_{2}\left(\begin{array}{r}
A \bar{C}, \bar{\psi}, A \tag{2.16}\\
C, \bar{B} \psi
\end{array} 1\right)
$$

and

$$
Q_{4}(x)=\bar{C}\left(\frac{-x}{4}\right){ }_{3} F_{2}\left(\left.\begin{array}{c}
A \bar{C}, C, A \tag{2.17}\\
C, A \bar{C}
\end{array} \right\rvert\, 1\right) .
$$

By [5, Thm. 3.15(ii) and Cor. 3.16(iii)],

$$
\begin{align*}
Q_{4}(x) & =\bar{C}\left(\frac{-x}{4}\right) B(-1)\binom{C}{B}\binom{B}{C}-\frac{1}{q} \bar{C}\left(\frac{-x}{4}\right){ }_{2} F_{1}\left(\begin{array}{c}
A \bar{C}, A \\
A \bar{C} \mid 1) \\
\\
\end{array}=\frac{1}{q^{2}} \bar{C}\left(\frac{x}{4}\right)\{q+(1-q) \delta(C)\}+\bar{C}\left(\frac{x}{4}\right) \frac{A(-1)}{q^{2}} .\right. \tag{2.18}
\end{align*}
$$

We now evaluate $Q_{3}(x)$. By [5, (4.25)],

$$
Q_{3}(x)=C(4) \frac{q}{q-1} \sum_{\psi}\binom{C \phi \psi}{C \psi} \psi(x)_{3} F_{2}\left(\left.\begin{array}{c}
B, A, \bar{\psi} \tag{2.19}\\
C^{2}, C
\end{array} \right\rvert\, 1\right) .
$$

Thus

$$
\begin{align*}
Q_{3}(x) & =C(4) \frac{q}{q-1} \sum_{\chi}\binom{B \chi}{\chi}\binom{A \chi}{C^{2} \chi} \frac{q}{q-1} \sum_{\psi} \psi(x)\binom{C \phi \psi}{C \psi}\binom{\chi \bar{\psi}}{\chi C} \tag{2.20}\\
& =C(-4) \frac{q}{q-1} \sum_{\chi}\binom{B \chi}{\chi}\binom{A \chi}{C^{2} \chi} \chi(-1) \frac{q}{q-1} \sum_{\psi} \psi(x)\binom{C \phi \psi}{C \psi}\binom{C \psi}{\chi \psi}
\end{align*}
$$

by $[5,(2.6)$ and (2.8)]. Replacing ψ by $\bar{C} \psi$, we see that

$$
Q_{3}(x)=C\left(\frac{-4}{x}\right) \frac{q}{q-1} \sum_{\chi}\binom{B \chi}{\chi}\binom{A \chi}{C^{2} \chi} \chi(-1)_{2} F_{1}\left(\left.\begin{array}{c}
\phi, \varepsilon \tag{2.21}\\
\bar{C} \bar{\chi}
\end{array} \right\rvert\, x\right) .
$$

By [5, Cor. 3.16(ii)],

$$
{ }_{2} F_{1}\left(\begin{array}{c|c}
\phi, \varepsilon \\
\bar{C} \bar{\chi} & x
\end{array}\right)=\binom{\bar{C} \bar{\chi}}{\phi \bar{C} \bar{\chi}} \phi(-1) C \chi(x) \bar{C} \bar{\chi} \phi(1-x)-\frac{C \chi(-1)}{q} .
$$

Therefore

$$
Q_{3}(x)=-\frac{C(4 / x)}{q}{ }_{2} F_{1}\left(\left.\begin{array}{c}
B, A \tag{2.22}\\
C^{2}
\end{array} \right\rvert\,\right)+Q_{5}(x),
$$

where

$$
Q_{5}(x)=C(-4) \bar{C} \phi(1-x)_{3} F_{2}\left(\begin{array}{c|c}
B, A, C \phi & x \tag{2.23}\\
C^{2}, C & x-1
\end{array}\right) .
$$

In view of [5, Thm. 4.9 and (2.12)], the first term on the right of (2.22) equals

$$
\begin{equation*}
A(-1) \bar{C}(x / 4) / q^{2} \tag{2.24}
\end{equation*}
$$

since $A(-1)=B(-1)$. By [5, Thm. 3.20(i)], the (nontrivial) numerator parameters B, A in (2.23) may be interchanged. Thus (2.13) becomes

$$
\begin{align*}
Q(x) & =\frac{1}{q^{2}} \bar{C}^{2}\left(\frac{x}{4}\right)\{-1+(q-1) \delta(C)\}-\frac{A(-1)}{q^{2}} \bar{C}\left(\frac{x}{4}\right) \\
& -\frac{A C(-1)}{q} \bar{A}\left(\frac{x}{4}\right) F(B, C ; x)-\frac{B C(-1)}{q} \bar{B}\left(\frac{x}{4}\right) F(A, C ; x) \tag{2.25}\\
& -\frac{A(-1)}{q^{2}} \bar{C}\left(\frac{x}{4}\right)+\frac{1}{q^{2}} \bar{C}\left(\frac{x}{4}\right)\{q+(1-q) \delta(C)\}+\frac{A(-1)}{q^{2}} \bar{C}\left(\frac{x}{4}\right) \\
& +\frac{A(-1)}{q^{2}} \bar{C}\left(\frac{x}{4}\right)+C(-4) \bar{C} \phi(1-x)_{3} F_{2}\left(\left.\begin{array}{c}
A, B, C \phi \\
C^{2}, C
\end{array} \right\rvert\, \frac{x}{x-1}\right) .
\end{align*}
$$

For $u \notin\{0,1\}$, take $x=u /(u-1)$ in (2.25), so that $u=x /(x-1)$ and $1-x=1 /(1-u)$. Then (2.25) becomes, in view of definition (1.10),

$$
\begin{align*}
& { }_{3} F_{2}\left(\left.\begin{array}{c}
A, B, C \phi \\
C^{2}, C
\end{array} \right\rvert\, u\right)=\bar{C}(-4) \bar{C} \phi(1-u) F^{*}\left(A, C ; \frac{u}{u-1}\right) F^{*}\left(B, C ; \frac{u}{u-1}\right) \tag{2.26}\\
& \quad-\frac{1}{q} \bar{C}(u) \phi(1-u)+\bar{C}(-4) \bar{C} \phi(1-u) \delta(C) \frac{(q-1)}{q^{2}}\left(C\left(\frac{4 u-4}{u}\right)-C^{2}\left(\frac{4 u-4}{u}\right)\right) .
\end{align*}
$$

The rightmost term in (2.26) vanishes, and so (2.1) is proved.

3 Proof of Theorem 1.2

Let $R^{2} \notin\left\{\varepsilon, C, C^{2}\right\}$. Our goal is to prove

$$
F^{*}\left(R^{2}, C ; x\right)=R(4) \frac{J\left(\phi, C \bar{R}^{2}\right)}{J(\bar{R} C, \bar{R} \phi)}{ }_{2} F_{1}\left(\begin{array}{c|c}
R \phi, R & x \tag{3.1}\\
C &)
\end{array}\right)
$$

By definition (1.9) of F,

$$
F\left(R^{2}, C ; x\right)=\frac{q}{q-1} \sum_{\chi}\binom{R^{2} \chi^{2}}{\chi}\binom{R^{2} \chi}{C \chi} \chi\left(\frac{x}{4}\right)
$$

Then from [5, (4.21)],

$$
\begin{align*}
F\left(R^{2}, C ; x\right) & =\frac{q}{q-1} \sum_{\chi}\binom{R \phi \chi}{\chi}\binom{R \chi}{R^{2} \chi}\binom{R^{2} \chi}{C \chi}\binom{\phi}{R \phi}^{-1} R(4) \chi(x) \tag{3.2}\\
& =\binom{\phi}{R \phi}^{-1} R(4)_{3} F_{2}\left(\left.\begin{array}{c}
R \phi, R^{2}, R \\
C, R^{2}
\end{array} \right\rvert\, x\right)
\end{align*}
$$

where the last equality follows from [5, Def. 3.10]. Thus by [5, Thm.3.15(v)], (3.2) becomes

$$
\begin{align*}
\binom{\phi}{R \phi} \bar{R}(4) & F\left(R^{2}, C ; x\right) \\
& =\binom{R \bar{C}}{R^{2} \bar{C}}{ }_{2} F_{1}\left(\left.\begin{array}{c}
R \phi, R \\
C
\end{array} \right\rvert\, x\right)-\frac{C(-1)}{q} \bar{R}^{2}(x)\binom{\phi \bar{R}}{\bar{R}^{2}} . \tag{3.3}
\end{align*}
$$

By the definition (1.10) of F^{*},

$$
\begin{equation*}
\binom{\phi}{R \phi} \bar{R}(4) F\left(R^{2}, C ; x\right)=\binom{\phi}{R \phi} \bar{R}(4) F^{*}\left(R^{2}, C ; x\right)-R(4)\binom{\phi}{R \phi} \frac{C(-1)}{q} \bar{R}^{2}(x) . \tag{3.4}
\end{equation*}
$$

Applying $[5,(2.6)]$ and then $[5,(2.16)]$ with $A=B=\bar{R}$, we have

$$
R(4)\binom{\phi}{R \phi}=\binom{\phi \bar{R}}{\bar{R}^{2}} .
$$

Thus, equating the right sides of (3.3) and (3.4), we obtain

$$
\binom{\phi}{R \phi} \bar{R}(4) F^{*}\left(R^{2}, C ; x\right)=\binom{R \bar{C}}{R^{2} \bar{C}}{ }_{2} F_{1}\left(\begin{array}{c|c}
R \phi, R & x \tag{3.5}\\
C & x
\end{array}\right)
$$

With the aid of (1.4), we see that (3.5) yields the desired result (3.1).

4 Proof of Theorem 1.6

For $u \in \mathbb{F}_{q}$, define the function

$$
\begin{equation*}
P_{R}^{S}(u)=\frac{1}{q} \sum_{t \in \mathbb{F}_{q}} \bar{R}(t) \bar{S}\left(1-2 u t+t^{2}\right) \tag{4.1}
\end{equation*}
$$

This is a finite field analogue of the classical Gegenbauer function [7, (5.12.7)]. For the proof of Theorem 1.6, we will need Lemmas 4.1 and 4.2 below, which relate $P_{R}^{S}(u)$ to functions ${ }_{2} F_{1}$ and F^{*}, respectively.

Lemma 4.1. Let $u \neq 1$ and $R \notin\{\varepsilon, \bar{S} \phi\}$. Then

$$
P_{R}^{S}(u)=\phi(-1) \bar{S}(4) \frac{J(\bar{R}, \bar{S})}{J(\phi, R S)}{ }_{2} F_{1}\left(\begin{array}{c|c}
\bar{R}, R S^{2} & 1-u \tag{4.2}\\
S \phi & \frac{1}{2}
\end{array}\right) .
$$

Proof. Let $u=1-2 v$. Then

$$
\begin{aligned}
P_{R}^{S}(u) & =\frac{1}{q} \sum_{t \neq 1} \bar{R}(t) \bar{S}\left((1-t)^{2}+4 v t\right) \\
& =\frac{1}{q} \bar{S}(4 v)+\frac{1}{q} \sum_{t} \bar{R}(t) \bar{S}^{2}(1-t) \bar{S}\left(1+\frac{4 v t}{(1-t)^{2}}\right) .
\end{aligned}
$$

Applying the finite field analogue $[5,(2.10)]$ of the binomial theorem with $A=S$, we obtain

$$
\begin{align*}
P_{R}^{S}(u) & =\frac{1}{q} \bar{S}(4 v)+\frac{1}{q-1} \sum_{\chi}\binom{S \chi}{\chi} \chi(-4 v) \sum_{t} \bar{R} \chi(t) \bar{S}^{2} \bar{\chi}^{2}(1-t) \\
& =\frac{1}{q} \bar{S}(4 v)+\frac{1}{q-1} \sum_{\chi}\binom{S \chi}{\chi} \chi(-4 v) J\left(\bar{R} \chi, \bar{S}^{2} \bar{\chi}^{2}\right) \tag{4.3}
\end{align*}
$$

Using [5, (2.16)] with $A=\bar{S} \phi \bar{\chi}$ and $B=R S \phi$, we have

$$
\begin{align*}
J\left(\bar{R} \chi, \bar{S}^{2} \bar{\chi}^{2}\right) & =q R \chi(-1)\binom{\bar{S}^{2} \bar{\chi}^{2}}{R \bar{\chi}} \\
& =q R \chi(-1)\binom{\phi}{R S \phi}^{-1}\binom{\bar{S} \phi \bar{\chi}}{R S \phi}\binom{\bar{S} \bar{\chi}}{R \bar{\chi}} \bar{S} \bar{\chi}(4) . \tag{4.4}
\end{align*}
$$

Combining (4.3)-(4.4) and using [5, (2.6)-(2.8)], we have

$$
\begin{aligned}
P_{R}^{S}(u) & =\frac{1}{q} \bar{S}(4 v)+\binom{\phi}{R S \phi}^{-1} \bar{S}(4) R \phi(-1) \frac{q}{q-1} \sum_{\chi}\binom{S \chi}{\chi}\binom{R S^{2} \chi}{S \phi \chi}\binom{\bar{R} \chi}{S \chi} \chi(v) \\
& =\frac{1}{q} \bar{S}(4 v)+\binom{\phi}{R S \phi}^{-1} \bar{S}(4) R \phi(-1)_{3} F_{2}\left(\left.\begin{array}{c}
S, \bar{R}, R S^{2} \\
S, S \phi
\end{array} \right\rvert\, v\right)
\end{aligned}
$$

Thus by [5, Thm. 3.15(iv)],

$$
\begin{aligned}
P_{R}^{S}(u) & =\frac{1}{q} \bar{S}(4 v)+\binom{\phi}{R S \phi}^{-1}\binom{\bar{R}}{S} \bar{S}(4) R \phi(-1)_{2} F_{1}\left(\left.\begin{array}{c}
\bar{R}, R S^{2} \\
S \phi
\end{array} \right\rvert\, v\right) \\
& -\frac{1}{q} R S \phi(-1) \bar{S}(4 v)\binom{\phi}{R S \phi}^{-1}\binom{R S}{\phi} .
\end{aligned}
$$

Since

$$
\binom{\phi}{R S \phi}=\left(\frac{\phi}{R S}\right)=R S \phi(-1)\binom{R S}{\phi}
$$

the first and last terms on the right cancel and the result follows.

Lemma 4.2. Let $u \neq 0$. Then

$$
\begin{equation*}
P_{R}^{S}(u)=R(2 u) S(-1) F^{*}\left(\bar{R}, \overline{R S} ; u^{-2}\right) \tag{4.5}
\end{equation*}
$$

Proof. Applying [5, (2.10)] (again with $A=S$) to the right side of

$$
P_{R}^{S}(u)=\frac{1}{q} \sum_{t} \bar{R}(t) \bar{S}(1-t(2 u-t))
$$

we have

$$
\begin{equation*}
P_{R}^{S}(u)=\frac{1}{q} \bar{R}(2 u)+\frac{1}{q-1} \sum_{\chi}\binom{S \chi}{\chi} \sum_{t} \bar{R} \chi(t) \chi(2 u-t) \tag{4.6}
\end{equation*}
$$

The inner sum in (4.6) equals

$$
\begin{equation*}
\bar{R} \chi^{2}(2 u) J(\bar{R} \chi, \chi)=q \bar{R}(2 u) \chi\left(-4 u^{2}\right)\binom{\bar{R} \chi}{\bar{\chi}} \tag{4.7}
\end{equation*}
$$

Combining (4.6)-(4.7) and replacing χ by $\bar{\chi}$, we obtain

$$
P_{R}^{S}(u)=\frac{1}{q} \bar{R}(2 u)+\bar{R}(2 u) \frac{q}{q-1} \sum_{\chi}\binom{S \bar{\chi}}{\bar{\chi}}\binom{\bar{R} \bar{\chi}}{\chi} \chi\left(\frac{-1}{4 u^{2}}\right)
$$

Then from [5, (2.7)-(2.8)],

$$
P_{R}^{S}(u)=\frac{1}{q} \bar{R}(2 u)+\bar{R}(2 u) S(-1) \frac{q}{q-1} \sum_{\chi}\left(\begin{array}{c}
\chi \\
S \\
\chi
\end{array}\right)\binom{R \chi^{2}}{\chi} \chi\left(\frac{1}{4 u^{2}}\right)
$$

Finally replacing χ by $\bar{R} \chi$, we obtain

$$
\begin{aligned}
P_{R}^{S}(u) & =\frac{1}{q} \bar{R}(2 u)+R(2 u) S(-1) \frac{q}{q-1} \sum_{\chi}\left(\frac{\bar{R} \chi^{2}}{\bar{R} \chi}\right)\left(\frac{\bar{R} \chi}{R S} \chi\right) \chi\left(\frac{1}{4 u^{2}}\right) \\
& =R(2 u) S(-1) F^{*}\left(\bar{R}, \overline{R S} ; u^{-2}\right)
\end{aligned}
$$

by $[5,(2.6)]$ and Definition 1.10.
We proceed to apply Lemmas 4.1 and 4.2 to prove Theorem 1.6. Suppose that $C \neq \phi, A \neq \varepsilon$, and $u \notin\{0,1\}$. By (4.2) and (4.5),

$$
F^{*}\left(A, C ; u^{-2}\right)=\left\{\frac{\bar{A} C^{2}(2) A C(-1) A(u) J(C \bar{A}, A \phi)}{J(\phi, A \phi)}\right\}_{2} F_{1}\left(\begin{array}{c|c}
A, A \bar{C}^{2} & \frac{1-u}{\bar{C} A \phi} \tag{4.8}
\end{array}\right)
$$

First suppose that $u=-1$. Then Theorem 1.6 follows readily from (4.8) and [5, Thm. 4.9]. Thus assume that $u^{2} \notin\{0,1\}$.

Since $u \neq-1$, we can apply [5, Thm. 4.4(iv)] to the ${ }_{2} F_{1}$ in (4.8) to obtain

$$
\begin{align*}
& F^{*}\left(A, C ; u^{-2}\right)= \tag{4.9}\\
& \left\{\frac{\bar{A} C^{2}(2) A C(-1) A(u) J(C \bar{A}, A \phi)}{J(\phi, A \phi)}\right\} C \bar{A} \phi\left(\frac{-1-u}{2}\right){ }_{2} F_{1}\left(\begin{array}{c|c}
\bar{C} \phi, C \phi \\
\bar{C} A \phi & \left.\frac{1-u}{2}\right) .
\end{array}\right.
\end{align*}
$$

Again since $u \neq-1$, we can apply [5, Thm. 4.4(i)] to the ${ }_{2} F_{1}$ in (4.9) to obtain

$$
\begin{aligned}
& F^{*}\left(A, C ; u^{-2}\right)= \\
& \left\{\frac{\bar{A} C^{2}(2) A C(-1) A(u) J(C \bar{A}, A \phi)}{J(\phi, A \phi)}\right\} C \bar{A} \phi\left(\frac{-1-u}{2}\right) \bar{C} \phi(-1){ }_{2} F_{1}\left(\begin{array}{c}
\bar{C} \phi, C \phi \\
C \bar{A} \phi
\end{array} \frac{1+u}{2}\right) .
\end{aligned}
$$

Theorem 1.6 now follows upon replacing u by $-u$.

5 Proof of Theorem 1.8

Let S be a character whose order is not 1, 3, or 4 . Then the hypotheses of Theorem 1.7 are satisfied with $A=\bar{S}, C=S \phi$, and $u=3$. With these choices, Theorem 1.7 yields

$$
\begin{align*}
{ }_{3} F_{2}\left(\left.\begin{array}{r}
\bar{S}, S^{3}, S \\
S^{2}, S \phi
\end{array} \right\rvert\,-\frac{1}{8}\right) & =-\phi(-1) S(-8) / q \\
& +\frac{\phi(-1) S(-2) J\left(\bar{S}, S^{3}\right)}{J(S, S)}{ }_{2} F_{1}\left(\left.\begin{array}{r}
\bar{S}, S \\
S^{2}
\end{array} \right\rvert\,-1\right)^{2} . \tag{5.1}
\end{align*}
$$

First suppose that S is not a square. Then by [5, (4.11)], the ${ }_{2} F_{1}$ in (5.1) vanishes, so (1.14) follows in this case.

Finally, suppose that $S=D^{2}$ for some character D. Then by [5, (4.11)], the ${ }_{2} F_{1}$ in (5.1) equals

$$
S(-1)(J(S, D)+J(S, D \phi)) / q,
$$

so its square equals

$$
\left(J(S, D)^{2}+J(S, D \phi)^{2}\right) / q^{2}+2 J(S, D) J(S, D \phi) / q^{2}
$$

It remains to show that

$$
2 \phi(-1) S(8) / q=\frac{\phi(-1) S(2) J\left(\bar{S}, S^{3}\right)}{J(S, S)}\left(\frac{2 J(S, D) J(S, D \phi)}{q^{2}}\right),
$$

or equivalently,

$$
q S(4) J(S, S)=J\left(\bar{S}, S^{3}\right) J(S, D) J(S, D \phi), \quad S=D^{2}
$$

This identity follows easily from (1.4)-(1.5).

References

[1] W. N. Bailey, Generalized hypergeometric series, Strechert-Hafner, New York, 1964.
[2] B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi sums, WileyInterscience, New York, 1998.
[3] R. J. Evans and F. Lam, Special values of hypergeometric functions over finite fields, Ramanujan J., to appear.
[4] G. Gasper and M. Rahman, Basic hypergeometric series, 2nd ed., Cambridge University Press, Cambridge, 2004.
[5] J. Greene, Hypergeometric functions over finite fields, Trans. Amer. Math. Soc. 301 (1987), 77-101.
[6] J. Greene and D. Stanton, A character sum evaluation and Gaussian hypergeometric series, J. Number Theory 23 (1986), 136-148.
[7] N. N. Lebedev, Special functions and their applications, Dover, New York, 1972.
[8] K. Ono, Values of Gaussian hypergeometric series, Trans. Amer. Math. Soc. 350 (1998), 1205-1223.
[9] K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and q-series, CBMS No. 102, Amer. Math. Soc., Providence, R. I., 2004.
[10] http://functions.wolfram.com/HypergeometricFunctions/
Hypergeometric3F2/03/04/01/0001/

