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Abstract

We prove a general identity for a 3F2 hypergeometric function over a finite
field Fq, where q is a power of an odd prime. A special case of this identity
was proved by Greene and Stanton in 1986. As an application, we prove a
finite field analogue of Clausen’s Theorem expressing a 3F2 as the square of a
2F1. As another application, we evaluate an infinite family of 3F2(z) over Fq at
z = −1/8. This extends a result of Ono, who evaluated one of these 3F2(−1/8)
in 1998, using elliptic curves.

1 Introduction and main theorems

Let Fq be a field of q elements, where q is a power of an odd prime p. Throughout
this paper, A,B,C,D,E,R, S, T,M,W, χ, ψ, ε, φ will denote complex multiplicative
characters on F∗

q, extended to map 0 to 0. The notation ε, φ will always be reserved

for the trivial and quadratic characters, respectively. Write A for the inverse (complex
conjugate) of A. For y ∈ Fq, define the additive character

(1.1) ζy := exp

(
2πi

p

(
yp + yp2

+ · · · + yq
))

.

Recall the definitions of the Gauss sum

(1.2) G(A) =
∑
y∈Fq

A(y)ζy

and the Jacobi sum

(1.3) J(A,B) =
∑
y∈Fq

A(y)B(1 − y).

Note that
G(ε) = −1, J(ε, ε) = q − 2,

and for nontrivial A,

G(A)G(A) = A(−1)q, J(A,A) = −A(−1).

Gauss and Jacobi sums are related by [5, (1.14)], [2, p. 59]

(1.4) J(A,B) = G(A)G(B)/G(AB), if AB 6= ε.
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The Gauss sums satisfy the Hasse–Davenport relation [5, (2.18)], [2, p. 59]

(1.5) A(4)G(A)G(Aφ) = G(A2)G(φ).

For x ∈ Fq, define the hypergeometric 2F1 function over Fq by [5, p. 82]

(1.6) 2F1

(
A,B

C
x

)
=

ε(x)

q

∑
y∈Fq

B(y)BC(y − 1)A(1 − xy)

and the hypergeometric 3F2 function over Fq by [5, p. 83]

3F2

(
A,B,C

D,E
x

)

=
ε(x)

q2

∑
y,z∈Fq

C(y)CE(y − 1)B(z)BD(z − 1)A(1 − xyz).
(1.7)

The “binomial coefficient” over Fq is defined by [5, p. 80]

(1.8)

(
A
B

)
=

B(−1)

q
J(A,B).

Define the function

(1.9) F (A,B; x) =
q

q − 1

∑
χ

(
Aχ2

χ

)(
Aχ
Bχ

)
χ

(x

4

)
, x ∈ Fq,

and its normalization

(1.10) F ∗(A,B; x) = F (A,B; x) + AB(−1)A(x/4)/q.

We will relate the function F ∗ to a 2F1 in both Theorems 1.2 and 1.6 below.

Our main result is the following theorem.

Theorem 1.1. Let AB = C2 where C 6= φ and A,B 6∈ {ε, C}. Then for x 6= 1,

3F2

(
A,B,Cφ

C2, C
x

)
= −C(x)φ(1 − x)/q

+ C(−4)Cφ(1 − x)F ∗
(

A,C;
x

x − 1

)
F ∗

(
B,C;

x

x − 1

)
.
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The proof of Theorem 1.1 is given in Section 2.

The special case A = B = φ, C = ε of Theorem 1.1 is due to Greene and Stanton
[6]. This case was used by Ono [8, Theorem 5], [9] to give explicit determinations of

3F2

(
φ, φ, φ

ε, ε
x

)

for special values of x. For an infinite family of such determinations, see [3].

We proceed to apply Theorem 1.1 to produce a finite field analogue (Theorem
1.5) of Clausen’s famous classical identity [1, p. 86]

(1.11) 3F2

(
2c − 2s − 1, 2s, c − 1

2

2c − 1, c
x

)
= 2F1

(
c − s − 1

2
, s

c
x

)2

.

Formula (1.11) was utilized in de Branges’ proof of the Bieberbach conjecture. For
further applications of (1.11), consult Askey’s Foreword in [4, pp. xiv–xv].

In the special case when the character A is a square, we can relate F ∗(A,C; x) to
a 2F1 as follows.

Theorem 1.2. Let R2 6∈ {ε, C, C2}. Then

F ∗(R2, C; x) = R(4)
J(φ,CR

2
)

J(RC,Rφ)
2F1

(
Rφ,R

C
x

)
.

Theorem 1.2 is proved in Section 3. Combining Theorems 1.1 and 1.2, we obtain the
following result.

Proposition 1.3. Let C2 = R2S2, where C 6= φ and R2, S2 6∈ {ε, C}. Then for
x 6= 1,

3F2

(
R2, S2, Cφ

C2, C
x

)
= −C(x)φ(1 − x)/q

+
C(−1)Cφ(1 − x)J(φ,CR

2
)J(φ,CS

2
)

J(RC,Rφ)J(SC, Sφ)
2F1

(
Rφ,R

C

x

x − 1

)
2F1

(
Sφ, S

C

x

x − 1

)
.

For x 6= 1, there is a transformation formula [5, Thm. 4.4(iv)]

(1.12) 2F1

(
Rφ,R

C

x

x − 1

)
= C(−1)CR2φ(1 − x) 2F1

(
RCφ,RC

C

x

x − 1

)
.

Using (1.12) in Proposition 1.3, we obtain the following result.
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Proposition 1.4. Let C = RS, where C 6= φ and R2, S2 6∈ {ε, C}. Then for x 6= 1,

3F2

(
R2, S2, Cφ

C2, C
x

)
= −C(x)φ(1 − x)/q

+
J(φ,CR

2
)J(φ,CS

2
)

J(RC,Rφ)J(SC, Sφ)
S

2
(1 − x) 2F1

(
Sφ, S

C

x

x − 1

)2

.

For x 6= 1, there is another transformation formula [5, Thm 4.4(iii)]

(1.13) 2F1

(
Sφ, S

C

x

x − 1

)
= S(1 − x) 2F1

(
CSφ, S

C
x

)
.

Using (1.13) in Proposition 1.4, along with (1.5), we obtain the following direct finite
field analogue of Clausen’s identity (1.11).

Theorem 1.5. Let C 6= φ and S2 6∈ {ε, C, C2}. Then for x 6= 1,

3F2

(
C2S

2
, S2, Cφ
C2, C

x

)
= −C(x)φ(1 − x)/q +

C(4)J(SC, SC)

J(S, S)
2F1

(
CSφ, S

C
x

)2

.

Theorem 1.2 relates F ∗(A,C; x) to a 2F1 when A is a square. We can also relate
F ∗(A,C; x) to a 2F1 when x is a square, as follows.

Theorem 1.6. Let C 6= φ, A 6= ε, and u 6∈ {0, 1}. Then

F ∗(A,C; u−2) =
AC(−1)Cφ(2)A(u)CAφ(1 − u)J(Aφ,CA)

J(φ,Aφ)
2F1

(
Cφ,Cφ

CAφ

1 − u

2

)
.

Theorem 1.6 is proved in Section 4, by means of two lemmas relating F ∗ and 2F1 to
finite field analogues of Gegenbauer functions.

With x = 1/(1 − u2), use Theorem 1.6 and (4.9) to substitute for the first and
second factors F ∗ in Theorem 1.1, respectively. This yields the following specialization
of our main result.

Theorem 1.7. Let C 6= φ, A 6∈ {ε, C, C2}, and u2 6∈ {0, 1}. Then

3F2

(
A,AC2, Cφ

C2, C

1

1 − u2

)
= −φ(−1)Cφ(1 − u2)/q

+
φ(−1)AC2(1 − u)A(1 + u)J(A,AC2)

J(Cφ,Cφ)
2F1

(
Cφ,Cφ

CAφ

1 − u

2

)2

.
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As an application, we will prove in Section 5 the following evaluation of 3F2(−1/8)
for an infinite family of hypergeometric 3F2 functions over Fq.

Theorem 1.8. Suppose that S is a character whose order is not 1, 3, or 4. Then

3F2

(
S, S3, S
S2, Sφ

− 1

8

)

=

{
−φ(−1)S(−8)/q, if S is not a square

φ(−1)S(8)/q + φ(−1)S(2)J(S,S3)
q2J(S,S)

(J(S,D)2 + J(S,Dφ)2), if S = D2.

(1.14)

Formula (1.14) is a direct finite field analogue of the following evaluation [10] of
a classical 3F2:

(1.15) 3F2

(
s, 1 − s, 3s − 1

2s, s + 1/2
− 1

8

)
=

23s−3Γ(s/2)2Γ(s + 1/2)2

πΓ(3s/2)2
.

This classical identity is a consequence of Clausen’s Theorem (1.11) and Kummer’s
Theorem [5, (4.12)]. In Section 5, we show that our identity (1.14) follows analogously
from a version of Clausen’s Theorem over Fq (Theorem 1.7) and Kummer’s Theorem
over Fq [5, (4.11)].

We remark that it is not difficult to give separate evaluations of the left side of
(1.14) in the three exceptional cases where S has order 1, 3, or 4. In the case where
S has order 2, i.e., S = φ, Theorem 1.8 reduces to Ono’s evaluation of a 3F2(−1/8)
in [8, Theorem 6(ii)], [9]. This can be easily seen from the fact [2, Table 3.2.1] that
when D is a quartic character on Fq for a prime q = x2 + y2 with x odd, then
J(φ,D)2 = (x + iy)2.

The left side of (1.14) can also be expressed in the form

(1.16) Sφ(−8) 3F2

(
φ, S

2
φ, S2φ

Sφ, Sφ
− 1

8

)
;

this can be seen by applying [5, Theorem 4.2(i)] with A = S, B = S, C = S3,
D = Sφ, and E = S2. If we now apply [5, Theorem 4.2(ii)] directly to (1.16), we see
that the left side of (1.14) also equals

(1.17) S(−8)φ(−1) 3F2

(
φ, S, S

S2, S
2 − 8

)
.

Thus we obtain the following theorem:
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Theorem 1.9. Suppose that S is a character whose order is not 1, 3, or 4. Then

3F2

(
φ, S, S

S2, S
2 − 8

)

=

{
−1/q, if S is not a square

1/q + S(4)J(S,S3)
q2J(S,S)

(J(S,D)2 + J(S,Dφ)2), if S = D2.

(1.18)

In the case where S = φ, Theorem 1.9 reduces to Ono’s evaluation of a 3F2(−8)
in [8, Theorem 6(i)], [9].

We have also evaluated infinite families of 3F2(−1) and 3F2(1/4) over Fq. These
more complicated evaluations require further machinery and are thus written up in
a separate paper. Note that while Theorem 1.7 covers the argument z = −1/8 (via
the choice u = 3), it cannot be applied to cover z = −1 and z = 1/4 over all finite
fields. We have tried to extend the result of Ono [8, Theorem 6(vii)] by evaluating
an infinite family of 3F2(1/64), but our attempts have not been successful.

2 Proof of Theorem 1.1

Let AB = C2 where C 6= φ and A,B 6∈ {ε, C}. Let u 6= 1. The object of this section
is to prove

3F2

(
A,B,Cφ

C2, C
u

)
= −C(u)φ(1 − u)/q

+ C(−4)Cφ(1 − u)F ∗
(

A,C;
u

u − 1

)
F ∗

(
B,C;

u

u − 1

)
.

(2.1)

Both sides of (2.1) vanish when u = 0, so we will assume that u 6∈ {0, 1}.
The following proof of (2.1) is best read alongside the paper [5], to which we refer

numerous times. We take this opportunity to correct two misprints in [5, p. 94]: the
argument 1 is missing on the far right in [5, (4.25)] , and the lower case b should be
changed to B in [5, Thm. 4.28].

For a character S on Fq and an element y ∈ Fq, define

(2.2) δ(y) =

{
1, if y = 0

0, if y 6= 0
, δ(S) =

{
1, if S = ε

0, if S 6= ε.
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Let R,S, T,M,W be characters on Fq, with R 6= ε. By [5, Thm. 4.28], for t 6∈ {0, 1},

3F2

(
R, S, T

TR, TS
t

)
=

(1 − q)

q2
RT (−1)δ(S) +

(1 − q)

q2
R(−t)δ(RST )

+
1

q
RST (−1)δ(1 + t) +

1

q

(
S

RS

)
ST (−1)T

(
t − 1

t

)

+ ST (−1)T (1 − t)
q

q − 1

∑
χ

(
Tχ2

χ

) (
Tχ

RTχ

) (
RSTχ
STχ

)
χ

( −t

(1 − t)2

)
.

Multiplying both sides by SMW (−1)M(t)MW (1−t)/q and the summing over t ∈ Fq,
we obtain

S(−1) 4F3

(
R, S, T, M

TR, TS,W
1

)
=

(1 − q)

q2
RSTW (−1)

(
MW
M

)
δ(S) +

(1 − q)

q2
SW (−1)

(
MW
MR

)
δ(RST )

+
RTW (−1)MW (2)

q2
+

TW (−1)

q

(
S

RS

) (
MWT

W

)

+
q

q − 1

∑
χ

(
Tχ2

χ

)(
Tχ

RTχ

) (
RSTχ
STχ

) (
Mχ

MWTχ2

)
χ(−1),

(2.3)

where the 4F3 is defined in [5, Def. 3.10]. Define, for x 6∈ {0, 1},

(2.4) Q(x) = F (A,C; x)F (B,C; x).

Then,

Q(x) =

(
q

q − 1

)2 ∑
χ,ψ

(
Aχ2

χ

)(
Aχ
Cχ

)(
Bψ
Cψ

)(
Bψ2

ψ

)
χψ

(x

4

)

=

(
q

q − 1

)2 ∑
ψ

ψ
(x

4

) ∑
χ

(
Aχ2

χ

)(
Aχ
Cχ

) (
Bψχ
Cψχ

)(
Bψ2χ2

ψχ

)

= C(−1)
q

q − 1

∑
ψ

ψ
(
−x

4

) {
q

q − 1

∑
χ

(
Aχ2

χ

)(
Aχ
Cχ

)(
Cψχ

Bψχ

) (
ψχ

Bψ
2
χ2

)
χ(−1)

}

(2.5)
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by [6, (2.8)]. By (2.5) and (2.3) with T = A, R = AC, M = ψ, S = W = C2ψ,

Q(x) = Q1(x) + C(−1)
q

q − 1

∑
ψ

ψ
(
−x

4

) {−Cψ(−4)

q2

− Aψ(−1)

q

(
C2ψ
ACψ

)(
AC2ψ2

C2ψ

)
+ ψ(−1) 4F3

(
AC, C2ψ, A, ψ

C, Bψ, C2ψ
1

) }
,

(2.6)

where

Q1(x) =
1

q
C

2
(x

4

) (
C

2

C
2

)
+

1

q
C

(x

4

) (
ε
B

)
.

By [5, (2.12)–(2.13)], since C 6= φ,

(2.7) Q1(x) =
1

q2
C

2
(x

4

)
{−1 + (q − 1)δ(C)} − 1

q2
B(−1)C

(x

4

)
.

By [6, (2.6)],

(2.8)
AC(−1)

q − 1

∑
ψ

(
C2ψ
ACψ

)(
AC2ψ2

C2ψ

)
ψ

(x

4

)
=

AC(−1)A(x/4)

q
F (B,C; x).

Since
∑
ψ

ψ(x) vanishes, it follows from (2.6)–(2.8) that

Q(x) =
1

q2
C

2
(x

4

)
{−1 + (q − 1)δ(C)} − B(−1)

q2
C

(x

4

)

− AC(−1)A (x/4)

q
F (B,C; x) +

C(−1)q

q − 1

∑
ψ

ψ
(x

4

)
4F3

(
AC,C2ψ, ψ, A

C,C2ψ,Bψ
1

)
.

(2.9)

By [5, Thm. 3.15(v)], the degenerate 4F3 in (2.9) equals

4F3

(
AC,C2ψ, ψ, A

C,C2ψ,Bψ
1

)
=

(
ψC
Cψ

)
3F2

(
AC,ψ,A

C,Bψ
1

)

− 1

q
Cψ(−1)

(
BCψ

C
2
ψ

) (
Bψ

BC
2
ψ

2

)
+

(q − 1)

q2
Cψ(−1)δ(Cψ) 2F1

(
AC,A

Bψ
1

)
.

(2.10)

9



By [5, Thm. 4.9], the rightmost term in (2.10) is

q − 1

q2
Aψ(−1)

(
A

Cψ

)
δ(Cψ),

so the contribution of this term to the right side of (2.9) is

(2.11)
C(−1)q

q − 1
C

(x

4

) (q − 1)

q2
AC(−1)

(
A
ε

)
=

−A(−1)C (x/4)

q2
.

The contribution of the middle term on the right side of (2.10) to the right side of
(2.9) is

−BC(−1)

q − 1

∑
ψ

ψ
(x

4

)(
BC2ψ2

Bψ

)(
C2ψ
BCψ

)

= −BC(−1)

q
B

(x

4

)
F (A,C; x).

(2.12)

Therefore, by (2.9)–(2.12),

Q(x) =
1

q2
C

2
(x

4

)
{−1 + (q − 1)δ(C)} − B(−1)

q2
C

(x

4

)

− AC(−1)

q
A

(x

4

)
F (B,C; x) − BC(−1)

q
B

(x

4

)
F (A,C; x)

− A(−1)

q2
C

(x

4

)
+ Q2(x),

(2.13)

where

(2.14) Q2(x) := C(−1)
q

q − 1

∑
ψ

ψ
(x

4

)(
Cψ
Cψ

)
3F2

(
AC,ψ,A

C,Bψ
1

)
.

We proceed to evaluate Q2(x). By [5, (2.16)],(
Cψ
Cψ

)
=

(
Cφψ
Cψ

)
Cψ(−4) +

q − 1

q
δ(Cψ).

Thus (2.14) becomes

(2.15) Q2(x) = Q3(x) + Q4(x),
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where

(2.16) Q3(x) = C(4)
q

q − 1

∑
ψ

(
Cφψ
Cψ

)
ψ(−x) 3F2

(
AC,ψ,A

C,Bψ
1

)

and

(2.17) Q4(x) = C

(−x

4

)
3F2

(
AC,C,A

C,AC
1

)
.

By [5, Thm. 3.15(ii) and Cor. 3.16(iii)],

Q4(x) = C

(−x

4

)
B(−1)

(
C
B

)(
B
C

)
− 1

q
C

(−x

4

)
2F1

(
AC,A

AC
1

)

=
1

q2
C

(x

4

)
{q + (1 − q)δ(C)} + C

(x

4

) A(−1)

q2
.

(2.18)

We now evaluate Q3(x). By [5, (4.25)],

(2.19) Q3(x) = C(4)
q

q − 1

∑
ψ

(
Cφψ
Cψ

)
ψ(x) 3F2

(
B,A, ψ

C2, C
1

)
.

Thus

Q3(x) = C(4)
q

q − 1

∑
χ

(
Bχ
χ

)(
Aχ
C2χ

)
q

q − 1

∑
ψ

ψ(x)

(
Cφψ
Cψ

) (
χψ
χC

)

= C(−4)
q

q − 1

∑
χ

(
Bχ
χ

)(
Aχ
C2χ

)
χ(−1)

q

q − 1

∑
ψ

ψ(x)

(
Cφψ
Cψ

)(
Cψ
χψ

)
(2.20)

by [5, (2.6) and (2.8)]. Replacing ψ by Cψ, we see that

(2.21) Q3(x) = C

(−4

x

)
q

q − 1

∑
χ

(
Bχ
χ

)(
Aχ
C2χ

)
χ(−1)2F1

(
φ, ε
Cχ

x

)
.

By [5, Cor. 3.16(ii)],

2F1

(
φ, ε
Cχ

x

)
=

(
Cχ
φCχ

)
φ(−1)Cχ(x)Cχφ(1 − x) − Cχ(−1)

q
.
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Therefore

(2.22) Q3(x) = −C(4/x)

q
2F1

(
B,A

C2 1

)
+ Q5(x),

where

(2.23) Q5(x) = C(−4)Cφ(1 − x)3F2

(
B,A,Cφ

C2, C

x

x − 1

)
.

In view of [5, Thm. 4.9 and (2.12)], the first term on the right of (2.22) equals

(2.24) A(−1)C(x/4)/q2,

since A(−1) = B(−1). By [5, Thm. 3.20(i)], the (nontrivial) numerator parameters
B,A in (2.23) may be interchanged. Thus (2.13) becomes

Q(x) =
1

q2
C

2
(x

4

)
{−1 + (q − 1)δ(C)} − A(−1)

q2
C

(x

4

)

− AC(−1)

q
A

(x

4

)
F (B,C; x) − BC(−1)

q
B

(x

4

)
F (A,C; x)

− A(−1)

q2
C

(x

4

)
+

1

q2
C

(x

4

)
{q + (1 − q)δ(C)} +

A(−1)

q2
C

(x

4

)

+
A(−1)

q2
C

(x

4

)
+ C(−4)Cφ(1 − x) 3F2

(
A,B,Cφ

C2, C

x

x − 1

)
.

(2.25)

For u 6∈ {0, 1}, take x = u/(u−1) in (2.25), so that u = x/(x−1) and 1−x = 1/(1−u).
Then (2.25) becomes, in view of definition (1.10),

3F2

(
A,B,Cφ

C2, C
u

)
= C(−4)Cφ(1 − u)F ∗

(
A,C;

u

u − 1

)
F ∗

(
B,C;

u

u − 1

)

− 1

q
C(u)φ(1 − u) + C(−4)Cφ(1 − u)δ(C)

(q − 1)

q2

(
C

(
4u − 4

u

)
− C2

(
4u − 4

u

))
.

(2.26)

The rightmost term in (2.26) vanishes, and so (2.1) is proved.
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3 Proof of Theorem 1.2

Let R2 6∈ {ε, C, C2}. Our goal is to prove

(3.1) F ∗(R2, C; x) = R(4)
J(φ,CR

2
)

J(RC,Rφ)
2F1

(
Rφ,R

C
x

)
.

By definition (1.9) of F ,

F (R2, C; x) =
q

q − 1

∑
χ

(
R2χ2

χ

)(
R2χ
Cχ

)
χ

(x

4

)
.

Then from [5, (4.21)],

F (R2, C; x) =
q

q − 1

∑
χ

(
Rφχ

χ

)(
Rχ
R2χ

) (
R2χ
Cχ

)(
φ

Rφ

)−1

R(4)χ(x)

=

(
φ

Rφ

)−1

R(4) 3F2

(
Rφ,R2, R

C,R2 x

)
,

(3.2)

where the last equality follows from [5, Def. 3.10]. Thus by [5, Thm.3.15(v)], (3.2)
becomes (

φ
Rφ

)
R(4)F (R2, C; x)

=

(
RC
R2C

)
2F1

(
Rφ,R

C
x

)
− C(−1)

q
R

2
(x)

(
φR

R
2

)
.

(3.3)

By the definition (1.10) of F ∗,

(3.4)

(
φ

Rφ

)
R(4)F (R2, C; x) =

(
φ

Rφ

)
R(4)F ∗(R2, C; x)−R(4)

(
φ

Rφ

)
C(−1)

q
R

2
(x).

Applying [5, (2.6)] and then [5, (2.16)] with A = B = R, we have

R(4)

(
φ

Rφ

)
=

(
φR

R
2

)
.

Thus, equating the right sides of (3.3) and (3.4), we obtain

(3.5)

(
φ

Rφ

)
R(4)F ∗(R2, C; x) =

(
RC
R2C

)
2F1

(
Rφ,R

C
x

)
.

With the aid of (1.4), we see that (3.5) yields the desired result (3.1).
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4 Proof of Theorem 1.6

For u ∈ Fq, define the function

(4.1) P S
R(u) =

1

q

∑
t∈Fq

R(t)S(1 − 2ut + t2).

This is a finite field analogue of the classical Gegenbauer function [7, (5.12.7)]. For
the proof of Theorem 1.6, we will need Lemmas 4.1 and 4.2 below, which relate P S

R(u)
to functions 2F1 and F ∗, respectively.

Lemma 4.1. Let u 6= 1 and R 6∈ {ε, Sφ}. Then

(4.2) P S
R(u) = φ(−1)S(4)

J(R, S)

J(φ,RS)
2F1

(
R,RS2

Sφ

1 − u

2

)
.

Proof. Let u = 1 − 2v. Then

P S
R(u) =

1

q

∑
t6=1

R(t)S((1 − t)2 + 4vt)

=
1

q
S(4v) +

1

q

∑
t

R(t)S
2
(1 − t)S

(
1 +

4vt

(1 − t)2

)
.

Applying the finite field analogue [5, (2.10)] of the binomial theorem with A = S, we
obtain

P S
R(u) =

1

q
S(4v) +

1

q − 1

∑
χ

(
Sχ
χ

)
χ(−4v)

∑
t

Rχ(t)S
2
χ2(1 − t)

=
1

q
S(4v) +

1

q − 1

∑
χ

(
Sχ
χ

)
χ(−4v)J(Rχ, S

2
χ2).

(4.3)

Using [5, (2.16)] with A = Sφχ and B = RSφ, we have

J(Rχ, S
2
χ2) = qRχ(−1)

(
S

2
χ2

Rχ

)

= qRχ(−1)

(
φ

RSφ

)−1 (
Sφχ
RSφ

)(
Sχ
Rχ

)
Sχ(4).

(4.4)
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Combining (4.3)–(4.4) and using [5, (2.6)–(2.8)], we have

P S
R(u) =

1

q
S(4v) +

(
φ

RSφ

)−1

S(4)Rφ(−1)
q

q − 1

∑
χ

(
Sχ
χ

)(
RS2χ
Sφχ

)(
Rχ
Sχ

)
χ(v)

=
1

q
S(4v) +

(
φ

RSφ

)−1

S(4)Rφ(−1) 3F2

(
S,R,RS2

S, Sφ
v

)
.

Thus by [5, Thm. 3.15(iv)],

P S
R(u) =

1

q
S(4v) +

(
φ

RSφ

)−1 (
R
S

)
S(4)Rφ(−1) 2F1

(
R,RS2

Sφ
v

)

− 1

q
RSφ(−1)S(4v)

(
φ

RSφ

)−1 (
RS
φ

)
.

Since (
φ

RSφ

)
=

(
φ

RS

)
= RSφ(−1)

(
RS
φ

)
,

the first and last terms on the right cancel and the result follows.

Lemma 4.2. Let u 6= 0. Then

(4.5) P S
R(u) = R(2u)S(−1)F ∗(R, RS; u−2)

Proof. Applying [5, (2.10)] (again with A = S) to the right side of

P S
R(u) =

1

q

∑
t

R(t)S(1 − t(2u − t)),

we have

(4.6) P S
R(u) =

1

q
R(2u) +

1

q − 1

∑
χ

(
Sχ
χ

) ∑
t

Rχ(t)χ(2u − t).

The inner sum in (4.6) equals

(4.7) Rχ2(2u)J(Rχ, χ) = qR(2u)χ(−4u2)

(
Rχ
χ

)
.
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Combining (4.6)–(4.7) and replacing χ by χ, we obtain

P S
R(u) =

1

q
R(2u) + R(2u)

q

q − 1

∑
χ

(
Sχ
χ

) (
Rχ
χ

)
χ

(−1

4u2

)
.

Then from [5, (2.7)–(2.8)],

P S
R(u) =

1

q
R(2u) + R(2u)S(−1)

q

q − 1

∑
χ

(
χ
Sχ

)(
Rχ2

χ

)
χ

(
1

4u2

)
.

Finally replacing χ by Rχ, we obtain

P S
R(u) =

1

q
R(2u) + R(2u)S(−1)

q

q − 1

∑
χ

(
Rχ2

Rχ

)(
Rχ
RSχ

)
χ

(
1

4u2

)

= R(2u)S(−1)F ∗(R,RS; u−2),

by [5, (2.6)] and Definition 1.10.

We proceed to apply Lemmas 4.1 and 4.2 to prove Theorem 1.6. Suppose that
C 6= φ, A 6= ε, and u 6∈ {0, 1}. By (4.2) and (4.5),

(4.8) F ∗(A,C; u−2) =

{
AC2(2)AC(−1)A(u)J(CA,Aφ)

J(φ,Aφ)

}
2F1

(
A,AC

2

CAφ

1 − u

2

)
.

First suppose that u = −1. Then Theorem 1.6 follows readily from (4.8) and [5,
Thm. 4.9]. Thus assume that u2 6∈ {0, 1}.

Since u 6= −1, we can apply [5, Thm. 4.4(iv)] to the 2F1 in (4.8) to obtain

F ∗(A,C; u−2) ={
AC2(2)AC(−1)A(u)J(CA,Aφ)

J(φ,Aφ)

}
CAφ

(−1 − u

2

)
2F1

(
Cφ,Cφ

CAφ

1 − u

2

)
.

(4.9)

Again since u 6= −1, we can apply [5, Thm. 4.4(i)] to the 2F1 in (4.9) to obtain

F ∗(A,C; u−2) ={
AC2(2)AC(−1)A(u)J(CA,Aφ)

J(φ,Aφ)

}
CAφ

(−1 − u

2

)
Cφ(−1) 2F1

(
Cφ,Cφ

CAφ

1 + u

2

)
.

Theorem 1.6 now follows upon replacing u by −u.
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5 Proof of Theorem 1.8

Let S be a character whose order is not 1, 3, or 4. Then the hypotheses of Theorem
1.7 are satisfied with A = S, C = Sφ, and u = 3. With these choices, Theorem 1.7
yields

3F2

(
S, S3, S
S2, Sφ

− 1

8

)
= −φ(−1)S(−8)/q

+
φ(−1)S(−2)J(S, S3)

J(S, S)
2F1

(
S, S

S2 − 1

)2

.

(5.1)

First suppose that S is not a square. Then by [5, (4.11)], the 2F1 in (5.1) vanishes,
so (1.14) follows in this case.

Finally, suppose that S = D2 for some character D. Then by [5, (4.11)], the 2F1

in (5.1) equals
S(−1)(J(S,D) + J(S,Dφ))/q,

so its square equals

(J(S,D)2 + J(S,Dφ)2)/q2 + 2J(S,D)J(S,Dφ)/q2.

It remains to show that

2φ(−1)S(8)/q =
φ(−1)S(2)J(S, S3)

J(S, S)

(
2J(S,D)J(S,Dφ)

q2

)
,

or equivalently,

qS(4)J(S, S) = J(S, S3)J(S,D)J(S,Dφ), S = D2.

This identity follows easily from (1.4)–(1.5).
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