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Abstract

Let q be a positive squarefree integer. A prime p is said to be
q-admissible if the equation p = u2 + qv2 has rational solutions u, v.
Equivalently, p is q-admissible if there is a positive integer k such that
pk2 ∈ N , where N is the set of norms of algebraic integers in Q(

√
−q).

Let k(q) denote the smallest positive integer k such that pk2 ∈ N for
all q-admissible primes p. It is shown that k(q) has subexponential but
suprapolynomial growth in q, as q →∞.

Keywords: binary quadratic forms, principal genus theorem, Brauer-
Siegel theorem, 4-rank of class group, imaginary quadratic fields, Gauss
bound.
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1 Introduction

Fix a positive squarefree integer q. A prime p is called q-admissible (or simply
admissible) if the equation

(1.1) p = u2 + qv2

has rational solutions u, v. (For a thorough investigation of the case where
u, v ∈ Z, see Cox [2].) As an example with q = 89, the primes 2, 5, and 17
are each 89-admissible, since

2 = (19/15)2 + 89(1/15)2, 5 = (18/15)2 + 89(3/15)2,

17 = (40/15)2 + 89(5/15)2.(1.2)

There are no such representations for the three 89-admissible primes 2, 5,
17 that share a common denominator smaller than 15, although each of
2, 5, 17 can be represented individually with a smaller denominator, e.g.,
2 = (3/7)2 + 89(1/7)2. Roughly this paper addresses the question: For a
large q, what is the size of the minimal common denominator shared by all
q-admissible primes?

Clearly a prime p is q-admissible if and only if p = N(γ) for some γ ∈
Q(
√
−q), where N denotes the norm. Equivalently, p is q-admissible if and

only if there is a positive integer k (depending on p) such that

(1.3) pk2 ∈ N := {N(α) : α ∈ O},

where O is the ring of algebraic integers in Q(
√
−q).

Let k(q) denote the smallest positive integer k such that (1.3) holds for
all of the (infinitely many) q-admissible primes p. It is not difficult to show
that k(q) exists; see the proof of Theorem 3.1. The example (1.2) suggests
that perhaps k(89) = 15, and this turns out to be the case, as can be easily
shown via the algorithm illustrated in Section 6.

The primary purpose of this paper is to estimate the growth of k(q) as
q →∞. Theorem 3.1 shows that k(q) has subexponential growth in q, while
Theorem 5.2 shows that k(q) has suprapolynomial growth in q. The proof of
Theorem 5.2 depends on Theorem 4.7, which gives an upper bound for the
prime power factors of k(q).

As preparation, we discuss conditions equivalent to admissibility in Sec-
tion 2. The notion of admissibility is extended to squarefree positive integers
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m in (2.7), and Theorem 2.1 gives a formula for the number of q-admissible
divisors of m. As corollaries of Theorem 2.1, we elementarily derive the for-
mulas (2.20), (2.21) given by Rédei [8] for the 4-rank of the class group H of
Q(
√
−q); these formulas are useful for computing numerical values of k(q),

as is discussed in Section 6.
Tables of values of k(q) and k(−q) for q < 6000 with q either prime or

twice a prime are currently available at [www.math.ucsd.edu/∼revans/table1].
We remark that for q > 1, the results of Section 2–4 remain valid when the
parameter q is replaced throughout by −q, provided that the ideal classes
in H are regarded in the narrow sense and the denominator in the Gauss
bound G (defined in Theorem 3.1) is changed from 3 to 8. We cannot sim-
ilarly extend the results of Section 5, as we have no counterpart of Siegel’s
result (5.5) for real quadratic fields Q(

√
q).

2 Conditions equivalent to admissibility

We begin by demonstrating (2.3) and (2.4) below, which are known charac-
terizations of admissibility of a prime p. For the history, see Lemmermeyer
[6], but note that only unramified p is discussed in [6, Section 7].

Let d denote the discriminant of the quadratic field Q(
√
−q). Thus

d =

{
−q, if q ≡ 3 (mod 4)
−4q, if q ≡ 1 or 2 (mod 4).

Write

(2.1) d = d1d2 · · · dt,

where the di are the prime discriminants. For any prime p, define the func-
tions ψi(p), 1 ≤ i ≤ t, by

(2.2) ψi(p) =


(di/p), if p 6 | di

(ddi
−1/p), if p|di,

where the symbols in (2.2) are Kronecker symbols. For non-inert p, the ψi(p)
are values of genus characters; see [5, p. 52].

The equivalence

(2.3) p is admissible ⇔ ψ1(p) = · · · = ψt(p) = 1
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is elementary. It follows directly from Legendre’s Theorem [5, Theorem 1.7],
after lengthy but straightforward computations. For example, for q = 89
with d1 = −4, d2 = 89, d = d1d2, we have

ψ1(7) = (−4/7) = −1, ψ1(2) = ψ2(2) = (89/2) = 1;

thus, by (2.3), p = 7 is not 89-admissible but p = 2 is.
If p is admissible and unramified in O, then (d/p) = 1 by (2.1)–(2.3).

Thus no inert prime is admissible, and every admissible prime p satisfies
p = N(P ) for some prime ideal P dividing (p). It follows from (2.3) and
genus theory [5, Theorem 2.17] that p = N(P ) is admissible if and only if
the ideal class [P ] is a square in the class group H of Q(

√
−q). In other

words,

(2.4) p is admissible ⇔ p = N(P ) with [P ] ∈ H2.

We can prove (2.4) without genus theory, as follows. If p is admissible,
then by (1.3), N(Pk/α) = 1 for some α ∈ O. The simple “Satz 90 for
ideals” [5, Prop. 2.5] thus yields Pk/α = E/E for some ideal E ⊂ O. Since
EE = (N(E)) is principal, [P ] = [E]2 ∈ H2. Conversely, if [P ] = [E]2 for

some ideal E ⊂ O, then PE
2

is a principal integral ideal (α). Thus, by
taking norms, we see that (1.3) holds for k = N(E), so p is admissible.

Consider the example q = 37. In [1, Cor. 8.3.3], it is proved that for
prime p with p ≡ 1 (mod 4) and (p/37) = 1, we have

(2.5) p = x2 + 37y2 for some x, y ∈ Z.

This can also be seen from (2.3) - (2.4) as follows. Since (−4/p) = (37/p) =
1, p is 37-admissible by (2.3); hence by (2.4), p = N(P ) with [P ] ∈ H2.
Since |H| = 2, we have |H2| = 1, so P is principal, and (2.5) follows.

By a similar argument, when q = 21 and p is prime with p ≡ 1, 25, or 37
(mod 84), we have

(2.6) p = x2 + 21y2 for some x, y ∈ Z.

This is because p = N(P ) is 21-admissible with [P ] ∈ H2, which implies that
P is principal since H is an elementary abelian group of order 4. As a final
example, when q = 105 and p is prime with p ≡ 1, 109, 121, 169, 289, or 361
(mod 420), we have p = x2 + 105y2 since H is elementary abelian of order 8.
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A positive squarefree integer m is called q-admissible if

(2.7) mk2 ∈ N

for some positive integer k (depending on m). The smallest positive integer
k for which (2.7) holds for all q-admissible squarefree m turns out to be k(q);
see Remark 4.3.

We proceed to prove (2.10) and (2.12) below, which characterize the ad-
missibility of squarefreem. In the sequel, suppose thatm has the factorization

(2.8) m = m1m2 · · ·mn

for distinct primes mj, 1 ≤ j ≤ n. (Interpret m = 1 when n = 0.) If m is
admissible, then by (2.7), (d/mj) = 1 for each prime mj which is unramified
in O. (This is not immediately obvious in the case mj = 2, but it follows
from the fact that x2 + qy2 ≡ 4 (mod 8) when q ≡ 3 (mod 8) and x, y are
odd.) Thus if m is admissible, no mj can be inert. We assume from now on
that the primes mj in (2.8) are all non-inert; thus there are prime ideals Mj

for which N(Mj) = mj and

(2.9) m = N(M), M := M1M2 · · ·Mn.

We have the following extension of (2.4):

(2.10) m is admissible ⇔ [M ] ∈ H2.

The proof of (2.10) is just like our proof of (2.4) above, except with M in
place of P .

The function ψi in (2.2) has been defined on primes, but we can extend
the definition by multiplicativity:

(2.11) ψi(m) :=
n∏
j=1

ψi(mj).

Then we have the following extension of (2.3):

(2.12) m is admissible ⇔ ψ1(m) = ψ2(m) = · · · = ψt(m) = 1.

Like (2.3), the equivalence (2.12) is elementary; it follows directly from Leg-
endre’s Theorem [5, Theorem 1.7]. However, the many cases involved make

6



the proof quite tedious. A quicker (but less elementary) proof is based on the
genus characters χi defined in [5, p. 53]. By the Principal Genus Theorem
[5, p. 53], [M ] ∈ H2 if and only if χi([M ]) = 1 for all genus characters χi,
1 ≤ i ≤ t. Since

(2.13) ψi(m) = χi([M ]), 1 ≤ i ≤ t,

we see that (2.12) follows from (2.10).
It is useful to reformulate (2.12) in terms of the t by n matrix

(2.14) S(m, d) := (( ψi(mj) ))1≤i≤t, 1≤j≤n .

By (2.11) - (2.12), m is admissible if and only if the product of the n entries
in each of the t rows of S(m, d) equals 1. (The product of the t entries in
each of the n columns always equals 1, by the Product Formula for genus
characters [5, p. 53].)

An “additive” version of the matrix S(m, d) is the t by n matrix

(2.15) R(m, d) := ((aij))1≤i≤t, 1≤j≤n

over the field of two elements, where the aij are defined (mod 2) by

(2.16) ψi(mj) = (−1)aij .

We see that m is admissible if and only if the sum of the n columns of R(m, d)
vanishes (mod 2). Similarly, a divisor mj1 · · ·mjν of m is admissible if and
only if the sum of columns j1, . . . , jν vanishes. Thus there is a one to one
correspondence between the admissible divisors of m and the column vectors
in the null space of R(m, d). Since there are 2η elements in the null space,
where η denotes the nullity, we have proved the following theorem.

Theorem 2.1 Let m be the product of n distinct non-inert primes. Then
there are 2η admissible divisors of m, where η = n− rank R(m, d).

An interesting special case of Theorem 2.1 arises when n = t and the t
prime factors of m = m1 · · ·mt are the ramified primes. In this special case,
write

(2.17) S(d) := S(m, d), R(d) := R(m, d) .
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By genus theory, as the sets {j1, . . . , jν} run through the 2t subsets of {1, . . . , t},
the ideal classes [Mj1 · · ·Mjν ] run twice through the 2t−1 elements of the group
{z ∈ H : z2 = 1}. Thus those classes [Mj1 · · ·Mjν ] that lie in H2 run twice
through the elements of the group

(2.18) A := {z ∈ H2 : z2 = 1}.

By (2.10), [Mj1 · · ·Mjν ] ∈ H2 if and only if mj1 · · ·mjν is admissible. There-
fore the number of admissible divisors of m is 2|A|. It thus follows from
Theorem 2.1 that

(2.19) |A| = 2t−1−rank R(d) .

On the other hand, clearly |A| = 2r, where r is the 4-rank of H (i.e., r
is the number of cyclic factors of order ≡ 0 (mod 4) in the direct product
decomposition of H into cyclic groups). Therefore by (2.19), the 4-rank r
satisfies

(2.20) r := t− 1− rank R(d) .

The formula (2.20) for the 4-rank of H is essentially a result of Rédei
[8]. We’ve given a new proof of his result by treating it as a special case of
Theorem 2.1.

A formula for the 4-rank r will be needed for computing the quantity w in
(6.4). An alternative method of computing r is based on the following result
of Rédei-Reichardt (see [3], [8]). Let Nd be the number of factorizations
d = ∆1∆2, where the ∆i are quadratic field discriminants or 1, such that
(∆1/p) = 1 for every prime p dividing ∆2 and (∆2/p) = 1 for every prime p
dividing ∆1; then

(2.21) Nd = 2r+1.

(Here d = ∆1∆2 and d = ∆2∆1 are counted as different factorizations; if we
were to identify them, then of course Nd would be cut in half.)

Formula (2.21) is a straightforward consequence of (2.20). To see this,
let m1, . . . ,mt be the ramified primes, and recall from (2.17) the definition
of the t by t matrix

(2.22) S(d) := (( ψi(mj) )) .
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The allowable choices of ∆1 = di1di2 · · · diν are in one to one correspondence
with the subsets {i1, . . . , iν} ⊂ {1, 2, . . . , t} for which the dot product of rows
i1, i2, . . . , iν of S(d) equals (1, 1, . . . , 1). These subsets in turn are in one to
one correspondence with the left null space of the t by t matrix R(d) over the
field of two elements. This null space has dimension t− rank R(d) = r + 1,
by (2.20), so the null space has 2r+1 elements. This proves (2.21).

3 An upper bound for k(q)

The following theorem shows that k(q) has subexponential growth in q.

Theorem 3.1 Write
G := Floor[(|d|/3)1/2],

where d is the discriminant of Q(
√
−q). Then for any constant c > 1,

k(q) < exp(cG), as |d| → ∞.

Proof. Fix any ideal class in the class group H for Q(
√
−q), and denote

it by [E], where E is an integral ideal in this class of minimal norm, i.e.,
N(E) ≤ N(F ) for all integral ideals F ∈ [E]. By the Gauss bound [4,
Theorem 2],

(3.1) N(E) ≤ G.

Let p be any admissible prime with p = N(P ), [P ] = [E]2. (There are

infinitely many such p; see [7, p. 358].) As PE
2

is principal, it follows upon
taking norms that (1.3) holds for k = N(E), i.e., pN(E)2 ∈ N .

Define

(3.2) k0 = LCM
[E]∈H

{N(E)},

where again E has minimal norm in each [E]. Note that k0 depends only on
q. We have pk2

0 ∈ N for every admissible prime p, because

pN(E)2 = N(α) ∈ N ⇒ pk2
0 = N(αk0/N(E)) ∈ N .

This proves that k(q) exists and

(3.3) k(q) ≤ k0.
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By (3.1) – (3.3),

(3.4) k(q) ≤ LCM{1, 2, . . . , G}.

As G→∞,

(3.5) LCM{1, 2, . . . , G} ≤
∏
p≤G

plogpG =
∏
p≤G

G = exp(G+ o(G)),

by the Prime Number Theorem. The result now follows from (3.4) – (3.5).

Let p = N(P ), E ⊂ O. We observe that while [P ] = [E]2 implies pk2 ∈ N
for k = N(E), it is not conversely true that pk2 ∈ N implies k = N(E) for
some E ⊂ O with [P ] = [E]2; see Remark 4.1.

4 The prime factors of k(q)

For each admissible prime p, the definition of k(q) yields

(4.1) pk(q)2 = N(αp) for some αp ∈ O.

Suppose for the moment that q ≡ 1 or 2 (mod 4). Then N(αp) = a2
p+qb2

p for
some integers ap, bp. If k(q) were even, then by (4.1), ap and bp would have
to be even for all p, which violates the minimality of k(q). Therefore k(q) is
odd when q ≡ 1 or 2 (mod 4). Similarly one can show that k(q) is odd when
q ≡ 3 (mod 8).

By (4.1), −q is a square modulo each odd prime divisor of k(q). Thus no
prime divisor (odd or even) of k(q) can be inert.

Consider the factorization

(4.2) k(q) =
s∏
i=1

vi
fi , fi ≥ 1,

where v1, · · · , vs are distinct primes. Since no vi is inert, there are prime
ideals Vi such that

(4.3) vi = N(Vi), 1 ≤ i ≤ s.

Write

C =
s∏
i=1

V fi
i ,
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with the interpretation C = O if s = 0. By (4.2) – (4.3), N(C) = k(q).
For each admissible prime p = N(P ), we have pN(C)2 = N(αp) for some

αp ∈ O, by (4.1). We will always assume that P divides (αp), otherwise
replace αp by αp. Since N(PC2/αp) = 1, we have

(4.4) (αp)/P = C2E/E

for some ideal E ⊂ O depending on P . Since (αp)/P is an integral ideal, we
may stipulate that E divides C2. Thus (4.4) can be written as

(4.5) (αp)/P =
s∏
i=1

V 2fi−ei
i V

ei
i ,

where the ei are integers depending on P such that 0 ≤ ei ≤ 2fi, and where
p = N(P ) is admissible. Note that while αp and the ei depend on p (and on
P ), the fi and Vi are independent of p.

Formula (4.5) is crucial in the sequel. Let us illustrate (4.5) for q =
146. To facilitate the computations, we first note that the class group H of
Q(
√
−146) is cyclic of order 16, generated by [P7], where N(P7) = 7. We

have
[P7]j = [Pa(j)], 1 ≤ j ≤ 8,

where a(1), a(2), . . . , a(8) are the primes 7, 3, 29, 19, 5, 41, 13, 2, respectively,
and N(Pa(j)) = a(j), 1 ≤ j ≤ 8. Note that the even powers of [P7] (i.e.,
square classes) correspond to the admissible primes 3, 19 , 41, 2.

The algorithm in Section 6 can be used to show that k(146) = 35; ac-
cordingly, in (4.5), take

V1 = P5, V2 = P7, f1 = f2 = 1, s = 2.

Then we have the following instances of (4.5):

(α2)/P2 = P 2
5P

2

7 , α2 = 48 +
√
−146

(α3)/P3 = P5P 5P
2

7 , α3 = 5 + 5
√
−146

(α19)/P19 = P 2
5P

2
7 , α19 = 107 + 9

√
−146

(α41)/P41 = P 2
5P7P 7 , α41 = 147 + 14

√
−146 .

Remark 4.1 The (integral) ideal on the right side of (4.5) has norm k(q)2

and is in the class [P ] ∈ H2. This ideal may not be a square; in fact there
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need not exist any ideal B ⊂ O of norm k(q) with B2 ∈ [P ]. For example, let
q = 89 and consider the 89-admissible prime p = 5 = N(P5). Assume for the
purpose of contradiction that there is an ideal B ⊂ O of norm k(89) = 15
such that B2P5 is principal. Then B2P5 = (x + y

√
−89) with x, y ∈ Z,

x2 + 89y2 = 152 · 5 = 1125. This forces x = ±18, y = ±3. There is a
first degree prime ideal P3 dividing 3. Since P3 divides x and y, P3 must
divide B. Thus P 2

3 divides x+ y
√
−89. Since P 2

3 divides x = ±18, P 2
3 must

therefore divide 3
√
−89, which is absurd.

Remark 4.2 Let p = N(P ) and p′ = N(P ′) be primes for which [P ′] =
[P ]±1. We say that the primes p and p′ are equivalent. This is easily seen
to give an equivalence relation on the set of non-inert primes. Suppose that
pk2 = N(α) for some α ∈ O. Then we claim that (for the same k) p′k2 =
N(β) for some β ∈ O. To see this, assume that P |(α) (otherwise replace α
by α) and note that N(Pk/α) = 1, so Pk/α = E/E for some ideal E ⊂ O.
Thus P (kE/E) = (α). Since P |(α), we have kE/E ⊂ O. Since [P ′] = [P ]±1,
it follows that P ′(kE/E) or P ′(kE/E) is a principal integral ideal (β), and
the claim follows by taking norms. This result shows that for a given k, one
can check if (1.3) holds for all admissible primes p without having to check
more than one prime p from each equivalence class.

Remark 4.3 Consider any squarefree admissible m with m = N(M) as in
(2.9). We can write [M ] = [P ] for some first degree prime ideal P (see [7,
p. 358]), and p = N(P ) must be admissible by (2.4) and (2.10). Hence
the argument of Remark 4.2 (with m in place of p′) shows that for every
admissible squarefree m,

mk(q)2 = N(αm) for some αm ∈ O.

For example, when q = 146, k(q) = 35, we have

91 k(q)2 = 712 + 146 · 272,
265 k(q)2 = 2592 + 146 · 422.

for the q-admissible integers m = 91 and m = 265.

Remark 4.4 Let V be a prime ideal dividing (k(q)). Lemma 4.5 below shows
V has minimal norm in [V ], by which we mean V has minimal norm among
all the integral ideals in the class [V ]. Let k′(q) be a (not necessarily minimal)
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positive integer such that pk′(q)2 ∈ N for all q-admissible primes p. Of course
k′(q) ≥ k(q), with equality if and only if k′(q) is minimal. Suppose that for
each prime ideal V ′ dividing (k′(q)), V ′ has minimal norm in [V ′]. Is this
supposition enough to force k′(q) to equal k(q)? The answer is no. For
example, let q = 47. We have

2 · 42 = N((9 +
√
−47)/2)

and
3 · 42 = N(1 +

√
−47).

The algorithm in Section 6 shows that for a given k, if pk2 ∈ N for each of
the two primes p in L := {2, 3}, then pk2 ∈ N for all 47-admissible primes
p. From this and the two identities above, it is easily checked that k(47) = 4.
Since also

2 · 92 = N(15 + 3
√
−47)/2)

and
3 · 92 = N(142 +

√
−47),

we may take k′(47) = 9. Then for each prime ideal V ′ dividing (k′(47)), V ′

has norm 3 and the class [V ′] contains no integral ideal of norm 1 or 2, so V ′

has minimal norm in [V ′].

Lemma 4.5 Let V1, . . . , Vs be as in (4.3). Then for each i, Vi has minimal
norm among all integral ideals in the class [Vi].

Proof. Suppose for the purpose of contradiction that W1 is an integral ideal
in [V1] with

(4.6) N(W1) < N(V1).

Define Wi := Vi for i > 1. For each P with p = N(P ) admissible, consider
the integral ideal

(4.7) YP =
s∏
i=1

W 2fi−ei
i W

ei
i

where e1, . . . , es are as in (4.5). We have N(YP ) = j(q)2, where

(4.8) j(q) :=
s∏
i=1

N(Wi)
fi <

s∏
i=1

N(Vi)
fi =

s∏
i=1

vfii = k(q),
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by (4.6) and (4.2). Note that j(q) is independent of p. Since [W1] = [V1], it
follows from (4.5) that PYP is principal. Hence, since YP is integral,
PYP = (βP ) for some βP ∈ O. Taking norms, we see that pj(q)2 ∈ N for
each admissible p; thus (4.8) contradicts the minimality of k(q).

The following theorem shows that k(q) has only “small” prime factors.
Recall that G := Floor[(|d|/3)1/2].

Theorem 4.6 For each prime vi dividing k(q), we have vi ≤ G.

Proof. For each i, Lemma 4.5 and the Gauss bound yield vi = N(Vi) ≤ G.

For q = 4162, e.g., k(q) = 22747 = 232 · 43 and the prime factors 23, 43
are less than G = 74. On the other hand, some prime power factors of k(q)
may exceed G. When q = 4162, e.g., 232 = 529 > G = 74. However, the
following theorem shows that no prime power factor of k(q) can exceed G2.
This theorem will be applied in Section 5.

Theorem 4.7 For each prime power vfii dividing k(q), we have vfii ≤ G2.

Proof. Assume for the purpose of contradiction that vf1

1 > G2. Then
vc1 > G, where c := Ceiling(f1/2). Choose an integral ideal A of smallest
norm in the ideal class [V c

1 ]. By the Gauss bound,

(4.9) N(A) ≤ G < vc1 = N(V c
1 ).

For each P with p = N(P ) admissible, let e1, . . . , es be as in (4.5), and
define an ideal BP by

(4.10) BP :=


A2V 2f1−e1−2c

1 V
e1
1 , if f1 > e1

A
2
V 2f1−e1

1 V
e1−2c

1 , if e1 > f1

AAV f1−c
1 V

f1−c
1 , if e1 = f1 .

Note that the ideal BP is integral, since 2f1− e1− 2c ≥ 0 when f1 > e1, and
e1 − 2c ≥ 0 when e1 > f1. Consider the integral ideal

(4.11) XP = BP

s∏
i=2

V 2fi−ei
i V

ei
i .
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We have N(XP ) = `(q)2, where

(4.12) `(q) := N(A)N(V1)f1−c
s∏
i=2

N(Vi)
fi <

s∏
i=1

N(Vi)
fi = k(q),

by (4.9) and (4.2). Note that `(q) does not depend on p. Since [A] = [V c
1 ], we

have [XP ] =
s∏
i=1

[Vi]
2fi−2ei by (4.10) – (4.11). It follows from (4.5) that PXP

is principal, so since XP is integral, PXP = (γP ) for some γP ∈ O. Taking
norms, we see that p`(q)2 ∈ N for each admissible p; thus (4.12) contradicts
the minimality of k(q).

5 A lower bound for k(q)

Recall from (4.2) the prime factorization

(5.1) k(q) =
s∏
i=1

vfii , fi ≥ 1,

and recall from Theorem 3.1 the definition G := Floor[(|d|/3)1/2]. The next
theorem shows that s (the number of distinct prime factors of k(q)) tends to
infinity as q →∞ (so in particular k(q)→∞).

Theorem 5.1 Let s be as in (5.1). Then for any constant c < 1,

s >
c logG

log logG
, as d→ −∞.

Proof. By (4.5), for each first degree prime ideal P with [P ] ∈ H2,

(5.2) [P ] =
s∏
i=1

[Vi]
2fi−2ei

for some ei (depending on P ) such that 0 ≤ ei ≤ 2fi. Since every element of
H2 has the form [P ] for some first degree prime ideal P [7, p. 358], there must
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exist at least |H2| distinct integer vectors (e1, e2, . . . , es) with 0 ≤ ei ≤ 2fi.
Therefore,

s∏
i=1

(2fi + 1) ≥ |H2|.

Let h = |H| be the class number of Q(
√
−q). By genus theory [5, Theorem

2.11], we have |H2| = h/2t−1. Thus

(5.3)
s∏
i=1

(2fi + 1) ≥ h/2t−1.

By the Prime Number Theorem, the product of the first t primes is
exp(t log t + o(t log t)), as t → ∞. Since |d| = |d1| · · · |dt| is at least as
large as the product of the first t primes, we have log |d| ≥ t log t+ o(t log t).
Thus

(5.4) t = o(log |d|), as |d| → ∞.

The Brauer-Siegel Theorem [7, p. 446] shows that for any ε > 0,

(5.5) h > |d|1/2−ε, as d→ −∞.

Combining (5.3) – (5.5), we have for any ε > 0,

(5.6)
s∏
i=1

(2fi + 1) > |d|1/2−ε, as d→ −∞.

Thus for any constant c < 1,

(5.7)
s∏
i=1

(2fi + 1) > Gc, as d→ −∞.

Since vfii ≤ G2 by Theorem 4.7,

(5.8) fi log vi ≤ 2 logG (i = 1, 2, . . . , s).

Thus

(5.9) 2fi + 1 < 9 logG (i = 1, 2, . . . , s).
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Taking logs in (5.7), we thereby obtain

(5.10) c logG <
s∑
i=1

log(2fi + 1) < s(log 9 + log logG),

and the result follows.

We remark that there are many values of q for which equality holds in
(5.3). For example, if q = 3623, then k(q) = 384 = 27 · 3, so

s∏
i=1

(2fi + 1) = 15 · 3 = 45 = h = h/2t−1;

if q = 4373, then k(q) = 1323 = 33 · 72, so

s∏
i=1

(2fi + 1) = 7 · 5 = 35 = h/2 = h/2t−1;

if q = 4502, then k(q) = 741 = 3 · 13 · 19, so

s∏
i=1

(2fi + 1) = 3 · 3 · 3 = 27 = h/2 = h/2t−1.

The next theorem shows that k(q) grows faster than any polynomial in
q, as q →∞.

Theorem 5.2 For any positive constant α < 1/ log 3,

k(q) > Gα log s as d→ −∞,

and so (by Theorem 5.1),

k(q) > Gα log logG as d→ −∞.

Proof. By (5.1) and the first inequality in (5.10), it suffices to prove that
as d→ −∞,

(5.11) α(log s)
s∑
i=1

log(2fi + 1) <
s∑
i=1

fi log vi.
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Fix a constant β such that

α log 3 < β < 1.

The sum on the right of (5.11) equals R1 +R2, where

R1 :=
∑
vi≤sβ

fi log vi, R2 :=
∑
vi>sβ

fi log vi.

The expression on the left of (5.11) equals L1 + L2, where

L1 := α(log s)
∑
vi≤sβ

log(2fi + 1), L2 := α(log s)
∑
vi>sβ

log(2fi + 1).

Since (5.11) is equivalent to

(R2 − L2) +R1 > L1,

it suffices to prove that as d→ −∞,

(5.12) L1 < s

and for some positive constant γ,

(5.13) R2 − L2 > γs log s.

Let |d| be large. By (5.9), L1 < α(log s) log(9 logG)sβ. By Theorem 5.1,
log(9 logG) < 2(log s), so (5.12) follows. It remains to prove (5.13). We have

R2 =
∑
vi>sβ

fi log vi > β(log s)
∑
vi>sβ

fi,

so

(5.14) R2 − L2 > β(log s)
∑
vi>sβ

(fi −
α

β
log(2fi + 1)).

Since f − α
β

log(2f + 1) is an increasing function of f for f ≥ 1, we have for
each i,

fi −
α

β
log(2fi + 1) ≥ δ := 1− α

β
log 3 > 0,

by definition of β. Thus (5.14) gives

R2 − L2 > βδ(log s)(s− sβ) > (βδ/2)s log s,

which proves (5.13).
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6 Computing numerical values of k(q)

We present here an example illustrating the computation of k(146), elabo-
rating where needed on the procedure for general q. Let q = 146, so that
Q(
√
−q) has discriminant d = −584 = d1d2 with d1 = −8, d2 = 73. As

will be explained at the end of this section, k(146) is the smallest positive
integer k for which the four elements of the set {2k2, 3k2, 19k2, 41k2} each
have the form x2 + 146y2 (x, y ∈ Z). The smallest such k could be discov-
ered by successively checking {2k2, 3k2, 19k2, 41k2} for each of the candidates
k = 1, 2, 3, . . . , but the search for k(146) can be expedited by skipping cer-
tain k based on results from Section 4. For example, by the first paragraph
of Section 4, we could skip those k divisible by inert primes 11, 17, 23, . . . ,
and we could skip those k divisible by 2 (since k(146) is odd). We could also
skip those k divisible by the any of the primes 17, 19, 23, 29, 31, . . . , because
by Theorem 4.6, every prime factor of k(146) is ≤ G = 13.

For some w to be determined below, H2 can be expressed as a union of
w + 1 disjoint sets of the form

(6.1) {[Ppi ], [P pi ]}, 0 ≤ i ≤ w,

where p0, p1, . . . , pw are distinct admissible primes with pi = N(Ppi), and Pp0

is principal, i.e.,
[Pp0 ] = [P p0 ] = [1].

Recalling the definition of equivalence in Remark 4.2, we see that {p0, p1, . . . , pw}
is a full set of pairwise inequivalent admissible primes. Thus, by Remark 4.2,
one can determine k(q) just by testing (1.3) for each of these w + 1 primes
pi. However, the prime p0 ∈ N does not aid in the determination because
p0k

2 ∈ N for every integer k. Thus, for the determination of k(q), it suffices
to consider the w primes in the set

(6.2) L = L(q) = {p1, . . . , pw}.

We next show how to determine w numerically. Clearly |H2| = 2a + b,
where a is the number of classes C ∈ H2 with C2 6= [1] and b is the number
of classes C ∈ H2 with C2 = [1]. Since w = a+ b− 1,

(6.3) w = |H2|/2− 1 + b/2 = h/2t − 1 + b/2.
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Now, b = 2r, where r is the 4-rank of H, i.e., r is the number of nontrivial
cyclic direct factors in the 2-part of H2. Thus

(6.4) w = h/2t − 1 + 2r−1.

We can compute r from (2.20) or (2.21). When q is an odd prime, for
example,

(6.5) r =

{
0, if q ≡ 3, 5, or 7 (mod 8)
1, if q ≡ 1 (mod 8).

As another example, when q = 2u for odd prime u,

(6.6) r =

{
0, if u ≡ 3 or 5 (mod 8)
1, if u ≡ 1 or 7 (mod 8).

(On the other hand, when −q is either an odd prime or twice an odd prime,
then r = 0 except when q ≡ −2 (mod 16), whereupon r = 1.) For q = 146,
we have r = 1 by (6.6), so that by (6.4), w = h/2t = 16/4 = 4. This shows
that the set L(146) in (6.2) contains four primes.

It is not difficult to see that non-inert primes p, p′ are equivalent if and
only if pp′ ∈ N . Thus the w members p1, . . . , pw of the set L(q) in (6.2) can
be chosen numerically by the following procedure. Let p1 be the smallest
admissible prime with p1 6∈ N . Let p2 be the smallest admissible prime > p1

such that p2 6∈ N and such that pp2 6∈ N for all admissible primes p < p2.
Let p3 be the smallest admissible prime > p2 such that p3 6∈ N and such
that pp3 6∈ N for all admissible primes p < p3. Continue this way until
exactly w primes pi are chosen, where w is computed from (6.4). This yields
the desired set L(q). In the special case q = 146, the first four admissible
primes are p1 = 2, p2 = 3, p3 = 19, p4 = 41. These four primes already
satisfy all the conditions of the procedure, e.g., for every admissible prime
p < 41, 41p fails to have the form x2 + 146y2. This shows that we can take
L(146) = {2, 3, 19, 41}.
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