A FAMILY OF POLYNOMIALS WITH CONCYCLIC ZEROS. II

RONALD J. EVANS AND KENNETH B. STOLARSKY ${ }^{1}$

AbStract. Let $\lambda_{1}, \ldots, \lambda_{J}$ be nonzero real numbers. Expand

$$
E(z)=\prod\left(-1+\exp \lambda_{j} z\right),
$$

rewrite products of exponentials as single exponentials, and replace every $\exp (a z)$ by its approximation $\left(1+a n^{-1} z\right)^{n}$, where $n \geq J$. The resulting polynomial has all zeros on the (possibly infinite) circle of radius $|r|$ centered at $-r$, where $r=n / \sum \lambda_{j}$.

1. Introduction. Our purpose is to establish Conjecture [1] of [S2]. For positive integers n let P_{n} be the linear mapping from the exponential polynomials over \mathbf{C} to the polynomials over \mathbf{C} that replaces $\exp (a z)$ by

$$
\begin{equation*}
\left(1+\frac{a z}{n}\right)^{n} \tag{1.1}
\end{equation*}
$$

but is otherwise the identity. For example,

$$
P_{n}\left\{\left(e^{5 z}-1\right)\left(e^{z}-1\right)\right\}=\left(1+\frac{6 z}{n}\right)^{n}-\left(1+\frac{5 z}{n}\right)^{n}-\left(1+\frac{z}{n}\right)^{n}+1
$$

Thus P_{∞} applied to any exponential polynomial $E(z)$ would be the identity. Next, a set of points in the complex plane is said to be concyclic if each of its points lies on the same circle, or on the same line.

The above-mentioned conjecture is now the
THEOREM. Assume $n \geq J$. Let the λ_{j}, for $1 \leq j \leq J$, be nonzero real numbers. Then the zeros of $P_{n} E(z)$, where

$$
\begin{equation*}
E(z)=\prod_{j=1}^{J}\left(e^{\lambda_{j} z}-1\right) \tag{1.2}
\end{equation*}
$$

are concyclic. In fact, they all lie on $C(r)$, the circle of radius $|r|$ centered at $-r$, where

$$
\begin{equation*}
r=n / \sum_{j=1}^{J} \lambda_{j} . \tag{1.3}
\end{equation*}
$$

If $\sum \lambda_{j}=0$, this means the zeros are purely imaginary.
The condition $n \geq J$ is needed to insure that $P_{n} E(z)$ is not identically zero. The fact that $P_{n} E(z)$ is identically zero if and only if $J>n$ is established in the course of the proof (see formula (3.5)).

[^0]Our proof uses a theorem of N . Obrechkoff $[\mathbf{O}]$ and seems quite different from the approach used in $[\mathbf{S 1}]$ where a theorem of A. Cohn $[\mathbf{C}]$ was used to obtain partial results. However, Cohn's theorem can be used to obtain a " q-analogue" of these [S3].

We remark that the present method of proof also establishes the result for

$$
\begin{equation*}
E(z)=\sum_{j=1}^{J}\left(e^{\lambda_{j} z+i b_{j}}-1\right) \tag{1.4}
\end{equation*}
$$

where b_{1}, \ldots, b_{J} are any real numbers. For other results related to zeros of exponential polynomials see $[\mathbf{D e B}, \mathbf{I}, \mathbf{L}-\mathbf{S}]$ and the references of $[\mathbf{S 1}]$.
2. A theorem of Obrechkoff. For complex α and a fixed real h let $T(\alpha)=$ $T_{h}(\alpha)$ be the operator on the set of all polynomials that is defined by

$$
\begin{equation*}
T(\alpha) g(z)=g(z+h)+\alpha g(z-h) \tag{2.1}
\end{equation*}
$$

In [O, pp. 95-97] Obrechkoff showed (his angular parameter ϕ may be set equal to zero with no loss of generality) that if α lies on the unit circle U (i.e. $|\alpha|=1$) and the zeros of $g(z)$ lie in a vertical strip S, then the zeros of $T(\alpha) g(z)$ lie in the same strip S.

Now define an operator Δ_{i} by

$$
\begin{equation*}
\Delta_{i} g(z)=g\left(z+\lambda_{i}\right)-g(z) . \tag{2.2}
\end{equation*}
$$

Lemma. If all zeros of the nonconstant polynomial $g(z)$ lie on $\operatorname{Re} z=\sigma$, then all zeros of $\Delta_{i} g(z)$ lie on

$$
\begin{equation*}
\operatorname{Re} z=\sigma-\left(\lambda_{i} / 2\right) \tag{2.3}
\end{equation*}
$$

Proof. Let $s=z+\left(\lambda_{i} / 2\right)$. Then

$$
\begin{equation*}
\Delta_{i} g(z)=g\left(s+\left(\lambda_{i} / 2\right)\right)-g\left(s-\left(\lambda_{i} / 2\right)\right) \tag{2.4}
\end{equation*}
$$

Since all zeros of $g(s)$ have real part σ, the result follows from the case $\alpha=-1$ of Obrechkoff's theorem.

Corollary. All zeros of

$$
\begin{equation*}
\Delta_{1} \Delta_{2} \cdots \Delta_{J} z^{n}=0 \tag{2.5}
\end{equation*}
$$

lie on

$$
\begin{equation*}
\operatorname{Re} z=-\left(\sum_{j=1}^{J} \lambda_{j}\right) / 2 \tag{2.6}
\end{equation*}
$$

Proof. Apply the above lemma J times with $\sigma=0$.
The above lemma can also be deduced from a lemma in [T, p. 238].
3. Proof of the theorem. Clearly

$$
\begin{equation*}
R_{n}(z):=P_{n} E(z)=1-\sum_{j}\left(1+\frac{\lambda_{j} z}{n}\right)^{n}+\sum_{i<j}\left(1+\frac{\left(\lambda_{i}+\lambda_{j}\right) z}{n}\right)^{n}-\cdots \tag{3.1}
\end{equation*}
$$

Set $w=n / z$. Thus

$$
\begin{equation*}
w^{n} R_{n}(n / w)=w^{n}-\sum_{j}\left(w+\lambda_{j}\right)^{n}+\sum_{i<j}\left(w+\lambda_{i}+\lambda_{j}\right)^{n}-\cdots \tag{3.2}
\end{equation*}
$$

where the signs alternate and (consider w^{n} as the 0 th sum on the right) the k th sum has the form

$$
\begin{equation*}
\sum\left(w+\lambda\left(j_{1}\right)+\cdots+\lambda\left(j_{k}\right)\right)^{n} \tag{3.3}
\end{equation*}
$$

where $\lambda(j)=\lambda_{j}$ and the sum is over all k-tuples

$$
\begin{equation*}
j_{1}<\cdots<j_{k} \tag{3.4}
\end{equation*}
$$

It is now clear that

$$
\begin{equation*}
w^{n} R_{n}(n / w)=\Delta_{1} \Delta_{2} \cdots \Delta_{J} w^{n} \tag{3.5}
\end{equation*}
$$

and that the right-hand side is not identically zero unless $J>n$. By the previous corollary,

$$
\begin{equation*}
R_{n}(z)=0 \tag{3.6}
\end{equation*}
$$

implies

$$
\begin{equation*}
\operatorname{Re} w=-\left(\sum \lambda_{j}\right) / 2 \tag{3.7}
\end{equation*}
$$

so $z=n / w$ lies on a circle through the origin that is symmetric with respect to the real axis, and cuts the real axis at

$$
\begin{equation*}
x_{0}=-2 n / \sum \lambda_{j} . \tag{3.8}
\end{equation*}
$$

Hence z must lie on a circle of radius $|r|$ and center $-r$ where

$$
\begin{equation*}
r=n / \sum_{j=1}^{J} \lambda_{j} \tag{3.9}
\end{equation*}
$$

If r is infinite, the above argument shows that the zeros all lie on the imaginary axis. This completes the proof.

REMARK. Define the operators Δ and B_{J} by

$$
\begin{equation*}
\Delta F(n)=F(n+1)-F(n) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{J} F(n)=J!^{-1} \Delta^{J} F(n) \tag{3.11}
\end{equation*}
$$

for any number theoretic function $F=F(n)$. Thus,

$$
\begin{equation*}
B_{J} F(n)=\frac{1}{J!} \sum_{k=0}^{J}(-1)^{J-k}\binom{J}{k} F(n+k) \tag{3.12}
\end{equation*}
$$

If $F=F_{u}(n)$ is the function n^{u}, where u is a nonnegative integer, then it is well known that $B_{J} F_{u}(0)$ is a Stirling number of the second kind, and

$$
\begin{equation*}
B_{J} F_{u}(0)=\delta(J, u), \quad 0 \leq u \leq J \tag{3.13}
\end{equation*}
$$

where $\delta(i, j)$ is the Kronecker delta. Professor Graydon Bell of the University of Northern Arizona has pointed out to us that

$$
\begin{equation*}
B_{J} P_{n} e^{z}=\sum_{k=0}^{J} \frac{z^{k}}{k!} \tag{3.14}
\end{equation*}
$$

Hence the operator B_{J} provides a link between the two most common approximations to e^{z}. Formula (3.14) can be deduced from (3.13). Also, it can be inverted to yield

$$
\begin{equation*}
\left(1+\frac{z}{n}\right)^{n}=\sum_{k=0}^{n} k n^{-k-1} \frac{n!}{(n-k)!} \sum_{j=0}^{k} \frac{z^{j}}{j!} \tag{3.15}
\end{equation*}
$$

REFERENCES

[C] A. Cohn, Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z. 14 (1922), 110-148.
[DeB] N. G. de Briijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197-226.
[I] L. Ilieff, Über die Nullstellen einiger Klassen von Polymomen, Tôhoku Math. J. 45 (1939), 259-264.
[L-S] E. H. Lieb and A. D. Sokal, A general Lee-Yang theorem for one-component and multicomponent ferromagnets, Comm. Math. Phys. 80 (1981), 153-179.
[O] N. Obrechkoff, Sur les racines des équations algébriques, Tôhoku Math. J. 38 (1933), 93-100.
[S1] K. B. Stolarsky, A family of polymomials with concyclic zeros, Proc. Amer. Math. Soc. 88 (1983), 622-624.
[S2]__ Zeros of exponential polynomials and "reductionism", Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai, vol. 34, Elsevier, North-Holland (to appear).
[S3]_, A family of polymomials with concyclic zeros. III (in preparation).
[T] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951.
Department of Mathematics, C-012, University of California, San Diego, La Jolla, California 92093

Department of Mathematics, 1409 West Green, University of Illinois, URBANA, ILLINOIS 61801

[^0]: Received by the editors November 16, 1983.
 1980 Mathematics Subject Classification. Primary 30C15; Secondary 33A10.
 Key words and phrases. Concyclic zeros, exponential, exponential polynomial, linear fractional transformations, zeros of polynomials.
 ${ }^{1}$ Partially supported by NSF grant MCS-8301615.

