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A FAMILY OF POLYNOMIALS WITH CONCYCLIC ZEROS. II

RONALD J. EVANS AND KENNETH B. STOLARSKY1

ABSTRACT. Let Ai,..., Aj be nonzero real numbers. Expand

E(z) = Yl(-l + expX3z),

rewrite products of exponentials as single exponentials, and replace every

exp(az) by its approximation (1 + an~lz)n, where n > J. The resulting

polynomial has all zeros on the (possibly infinite) circle of radius \r\ centered

at —r, where r = n/YL^j-

1. Introduction. Our purpose is to establish Conjecture [1] of [S2]. For

positive integers n let Pn be the linear mapping from the exponential polynomials

over C to the polynomials over C that replaces exp(az) by

(1.1) (i + S)

but is otherwise the identity. For example,

Thus Pqo applied to any exponential polynomial E(z) would be the identity. Next,

a set of points in the complex plane is said to be concyclic if each of its points lies

on the same circle, or on the same line.

The above-mentioned conjecture is now the

THEOREM. Assume n> J. Let the Xj, for 1 < j < J, be nonzero real numbers.

Then the zeros of PnE(z), where

j

(1.2) E(z) = Y[(ex>*-l),

are concyclic. In fact, they all lie on C(r), the circle of radius \r\ centered at —r,

where

(1.3) r = nJYj\3.
I    3 = 1

If J2 ^j = 0, this means the zeros are purely imaginary.

The condition n > J is needed to insure that PnE(z) is not identically zero. The

fact that PnE(z) is identically zero if and only if J > n is established in the course

of the proof (see formula (3.5)).
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Our proof uses a theorem of N. Obrechkoff [O] and seems quite different from

the approach used in [SI] where a theorem of A. Cohn [C] was used to obtain

partial results. However, Cohn's theorem can be used to obtain a "ç-analogue" of

these [S3].

We remark that the present method of proof also establishes the result for

j
(1.4) E(z) = Y^(ex'z+lh> - 1)

3=1

where bi,...,bj are any real numbers. For other results related to zeros of expo-

nential polynomials see [DeB, I, L-S] and the references of [SI].

2. A theorem of Obrechkoff. For complex a and a fixed real h let T(a) =

Th(a) be the operator on the set of all polynomials that is defined by

(2.1) T(a)g(z) = g(z + h) + ag(z - h).

In [O, pp. 95-97] Obrechkoff showed (his angular parameter <j> may be set equal

to zero with no loss of generality) that if a lies on the unit circle U (i.e. \a\ — 1)

and the zeros of g(z) lie in a vertical strip S, then the zeros of T(a)g(z) lie in the

same strip S.

Now define an operator A, by

(2.2) A,g(z) = g(z + Xt) - g(z).

LEMMA. If all zeros of the nonconstant polynomial g(z) lie on Re 2 — o~, then

all zeros of A¿o(z) lie on

(2.3) Rez = o-(Xl/2).

PROOF. Let s = z + (A</2). Then

(2.4) Al9(z) = g(s + (Ai/2)) - g(s - (XJ2)).

Since all zeros of g(s) have real part o, the result follows from the case a = — 1 of

Obrechkoff's theorem.

Corollary. All zeros of

(2.5) A1A2---Ajen =0

lie on

(2.6) Rez=-    ¿A, W2.

PROOF.  Apply the above lemma J times with o — 0.

The above lemma can also be deduced from a lemma in [T, p. 238].

3. Proof of the theorem. Clearly

(3.1)    Rn(z):-PnE(z) = l-y:(l + ^)\^(l+{-^^y----.
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Set w = n/z. Thus

(3.2) _        wnRn(n/w) =wn- £(«; + Ay)1* + ^(w + A* + Aj)"-

J i<3

where the signs alternate and (consider wn as the Oth sum on the right) the kth

sum has the form

(3.3) X> + A0'i) + --- + A(jfc)r

where X(j) = Xj and the sum is over all fc-tuples

(3-4) ji<--- <jk-

It is now clear that

(3.5) wnRn(n/w) = AiA2---Ajwn,

and that the right-hand side is not identically zero unless J > n. By the previous

corollary,

(3.6) Rn(z) = 0

implies

(3.7) Rew = -(j2Xj)/2

so z = n/w lies on a circle through the origin that is symmetric with respect to the

real axis, and cuts the real axis at

(3.8) x0 = -2n/^2,Xj.

Hence z must lie on a circle of radius |r| and center —r where

/  J
(3.9) r = n/J2XJ-

I   j=1

If r is infinite, the above argument shows that the zeros all lie on the imaginary

axis. This completes the proof.

REMARK. Define the operators A and Bj by

(3.10) AF(n) = F(n+l)-F(n)

and

(3.11) BJF(n) = jr1AJF(n)

for any number theoretic function F = F(n). Thus,

(3.12) BjF(n) = I ¿(-l)J-fc (J)F(n + k).

' fc=0 ^    '

If F = Fu(n) is the function nu, where u is a nonnegative integer, then it is well

known that BjFu(0) is a Stirling number of the second kind, and

(3.13) BjFu(0) = 6(J, u),        0<u<J,
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where 6(i,j) is the Kronecker delta. Professor Graydon Bell of the University of

Northern Arizona has pointed out to us that

(3.14) BJpnez = EÍ-
fe=0     '

Hence the operator Bj provides a link between the two most common approxima-

tions to ez. Formula (3.14) can be deduced from (3.13). Also, it can be inverted to

yield

<»-) (i+iD"=E^-'<^¿f-fc=0 V '   3=0 J
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