
transactions of the
american mathematical society
Volume 229, 1977

FIELDS GENERATED BY LINEAR COMBINATIONS

OF ROOTS OF UNITY
BY

R. J. EVANS AND I. M. ISAACS(')

Abstract. It is shown that a linear combination of roots of unity with

rational coefficients generates a large subfield of the field generated by the

set of roots of unity involved, except when certain partial sums vanish. Some

related results about polygons with all sides and angles rational are also

proved.

1. Introduction. Let U denote the group of roots of unity in the complex

numbers and let e,, e2,..., e, G U be distinct. Suppose a,, a2,..., a, G Q

and assume that 2,era,e, ¥= 0 for every nonempty subset T C [1,2,... ,s).

Let a = 2;_ia,a( and define the field E = Q(e,,..., es). Our main result is

that the degree d =\E : Q(a)\ is bounded by some function of s, indepen-

dently of the choice of the e¡. In fact we show that d < 2s~l. For s < 4 this is

best possible and for arbitrary s we produce examples with d > (3I/3),_1.

(See §4.)

We also consider convex polygons with all sides and angles rational (angles

measured in degrees). Such an w-gon corresponds to an equality S^a,^, = 0

with e, G U and a¡ E Q. We prove for n < 5 that either two sides of the

polygon are parallel or else the figure is an equilateral triangle or a regular

pentagon.

2. The main theorem. We introduce some notation which enables us to

distinguish between formal linear combinations of roots of unity and the

values of such combinations. We consider functions/: U->Q where U is the

group of roots of unity. Write S(f) = {u E U\S(u) ¥= 0), the support of /,

and define

^= {/: t/-*Q| |S(/)| < oo}.

For /£f, write 2(f) = 2u6S(/)/(m)m. Also, write Q(/) = Q(S(f)), the
field generated over Q by the support of/. (Note that Q(/) is Galois over Q

and that Gal(Q(/)/Q) is abelian.) Finally, write G(f) = Gal(Q(/)/Q(E(/))).
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250 R. J. EVANS AND I. M. ISAACS

Thus \G(f)\ = |Q(/) : Q(2(/))| and our object is to bound \G(f)\ in terms of

\S(f)\.
If /, g E ff and S(f) n 5(g) = 0, we define/ + g E ff by (/4- g)(u) =

f(u) + #(")• The following definition is the key to the proof of Theorem 2.2

(b) which is our main result.

Definition 2.1. Suppose /Gff can be written in the form f*=gx

+ • • • + g, with r > 1 and S(g¡) ^ 0 for 1 < z < r and such that G(/)

permutes the numbers 2( g,), preserving multiplicities. In this case we say that

/is imprimitive. If no such decomposition off exists, then/ is primitive.

For example, if G(/) = 1 and l-SX/)! > 1, then/is imprimitive. If S(f) =
{/, z'co} where w = e2m^ and/(z) = 1 and/(z'w) = 2, then/is primitive since

2(/) = - V3 and complex conjugation does not permute z and 2m.

We need some further notation. For natural numbers n, write Un = {« £

l/|«B = 1} and Q„ = Qie2"'/"). For/ E ff, put £(/) = min{k\S(f) C Qk).
Thus Q(f) = Qk(f) and |Q(/) : Q| = y(k(f)). Also, if u E U and / G ff,
define t// G ff by setting uf(ux) = f(x). (Thus S(uf) = uS(f) and 2(z</) =

ul(f).) Finally, if / = g + h with S (g) i= 0, we say that 2(g) is a subsum of

/. Note that if / is primitive and 2(/) =£ 0, then / has no zero subsum.

Theorem 2.2. Let f G ff wzïA 2(/) ^ 0. Pzzr 5 = \S(f)\ and k = k(f). We
have:

(a) If f is primitive, then Qk/k¡¡ Q Q(2(/)) vvAere k0 is the product of those

prime divisors of k which are less than 2s.

(b) Iff has no zero subsum, then \G(f)\ < 2,_l.

Note that when/is primitive, part (a) of the theorem yields

\G(f)\ < 9(k)/v(k/k0) < k0.

This bound, however, is not as good as that given in part (b). Statement (a) is

included because it gives a specific large subfield of Q(2(/)).

We will use the fact that Up<xp < 4X~X for all x > 1, where p runs over

primes. This is a slight strengthening of Theorem 415 [2]. The easy proof

given there can be made to yield the desired inequality. Although stronger

estimates on H^^p are available, they do not seem to be useful for

strengthening Theorem 2.2(b) because of the inductive nature of the proof.

Proof of Theorem 2.2. We use induction on s. Since both (a) and (b) are

trivial when s = 1, we assume j > 1. First suppose that/ is primitive. Write

G = G(f) and k = pam wherep is a prime, a > 1 andp|zn.

Assume that a > 1 and let 5 be a primitive p"th root of unity. Write

q = pa~x. Then l,8,82,... ,8q~x are coset representatives for U^, in Uk

and we can write

(1) /= So+&! + ••• +«,-IS,-i
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LINEAR COMBINATIONS OF ROOTS OF UNITY 251

where S(g¡) C U^. For o G G, we have 0(5') = u5y for some p G U and

0 < / < q. Write u = p(i, o) and / = i • o. Note that /' i-> i • o defines a

permutation of (0, 1,... ,q - 1} and that /¿(/, o) E Up. n i/^, = Up. We
have

(2) a(8i) = p(i,o)8i°.

Now write a = 2(/) and /?,. = 2(g;) so that (1) yields

(3) a =2 8%
<-o

and

?-i
(4) a = o(a)= 2 li(i,o)8i"o(ßi)

i = 0

for o EG.

However, Qk = Qm,(5) and since \Qk: QJ = <p(k)/<p(mp) = a, it follows
that 1, 5,..., 57-1 are linearly independent over Q^. Since /?, and p(i, o) lie

in Q^p, equations (3) and (4) yield

(5) A.-i»(i,«MÄ)-
Using (2), we obtain

a(o'Ä) = ix(/,a)oioo(/31.) = o'-0A,0

and therefore each a G G permutes the 5'/?, = 2(5 %). Now equation (1) and

the primitivity of/yield some / such that S(gj) = 0 for all/ ^ i and thus

/ = 8%. Since S(f) Z Uk/p, we see that 8' is a primitive p°th root of unity,

and so by a change of notation, we may assume that i = 1.

Now ßj = 0 for/ =«= 1 and /?, =£ 0 since 2(/) 7e 0. Thus (5) yields 1 • o = 1

and thus a(5) = p(l, o)8. Since u(l, a/ = 1, we conclude that G fixes 5'

and, hence,

(6) £/,.- ç Q(2(/)).

To summarize, there exist v E Up., g G 5" and a function ¡i: G-* Up such
that

(7) /-t*   and   %)çi/^

(8) o(v) = vn(o)   for a EG.

In the case that a = 1, we take v = 1, g = /and u(a) = 1 for all o. Thus (7)

and (8) remain valid.

Now in the general situation, a > 1, let e be a primitive pth root of unity
and write

(9) g = h0+ehx + ■■• +ep-%_x
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252 R. J. EVANS AND I. M. ISAACS

with 5(A,) ç Um. Let ß = 2(g) and y, = 2(A,). For a G G, write a(e) = cr(o)

with 1 < r(o) < p and p(o) = e'(<0 with 0 < t(o) < p where p(o) is as in (8).

If a = 1, we have p(o) = 1 and t(o) = 0. If a > 1, we have e G Up.-\ and

hence r(a) = 1 by (6). Thus we have

(10) Either r(o) - 1 for all a G G or /(a) = 0 for all a G G.

Also, observe that r defines a homomorphism from G into the multiplicative

group of integers mod p.

For a G G write i * a = j if ir(o) + t(o) = / modp and 0 < j < p. Thus

the map it-» i * a is a permutation of {0, 1,... ,p — 1}. Now (7) and (9)

yield

p-\
a = vß = 2 ue'Yz»

Í-0

and using (8) we obtain

p-\

a = o(a)= 2 vei*ao(yi).
z-o

Therefore

(11) 0-2 (a(yt) - yuy-
z-o

for all a G G.

Now, 1, e,..., ep~2 are linearly independent over Qm. Since 2?Joe' = 0

and all y, G Qm, it follows that all of the coefficients in (11) are equal and

thus

(12) •(Yi)-Ti. „ + *(*)

where x(a) G Qm is independent of i.

Suppose x(a) = 0 for some a G G. Then

(13) aíWy) = ce'« °a(y,.) = ve' ' "y,. a

and thus a permutes the numbers ue'y,- = 2(ue'A,).

Assume now, that x(a) = 0 for all o E G. Then equations (7) and (9) and

the primitivity of/yield that/= ve% for some i and y} = 0 for/ =£ i. Since

y¡ 7e 0, we conclude from (13) that i * a - i and thus ir(o) + t(o) = i mod p.

If r(o) = 1, this forces t(o) = 0 and if r(o) ¥= 1, (10) yields /(a) « 0. Hence G

fixes u by (8). Also, ir(o) = i modp and thus G fixes e'. Therefore, ve' E

Q(2(/)). Since/= ve'h,, S(h¡) C Um and ve' E Up., it follows that ve' is a

primitive path root of unity and thus

(14) U. ç Q(2(/))   provided all x(o) - 0.
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Suppose now that x(o) ¥= 0 for some a G G. It follows from (12) that if

y,- = 0, then y,, „ ^ 0 and thus at least half of the y¡ are nonzero. Since there

are at most j nonzero y,'s, it follows thatp < 2s.

Now (6) and (14) yield that Up.-x Q Q(2(/)) for allp and Up. C Q(2(/))
forp > 2s. This yields part (a) of the theorem since 2s is not prime.

We continue with the assumption that / is primitive and proceed to prove

(b) in this case. Let 9 be the set of primes p dividing k such that Up. g

Q(2(/)), in the notation of the first part of the proof. By (6) we have

(15) |G|<  IT  P.
pe9

If every p E 9 satisfies/» < s/2, then by the remark preceding the proof we

have

|q<4(V2)-i<2*-i

as required.

Letp be maximal in 9. We may thus assume thatp > s/2 and also by (15)

thatp > 2. We use all of the previous notation with respect to the fixed prime

P-
We claim that t(o) = 0 for all o E G. By (7) and (8), we have vß = a =

o(a) = vp(o)o(ß) and thus o(ß) = ßn(o)~\ If t(o) ¥= 0, then a > 1 and by

(6), o fixes n(o) ^ 1. It follows that ß has exactly p conjugates under the

action of <a> and since ß E Qm/>, we conclude that the image of the

restriction map G -> Gal(Q^,/Q) has order divisible by p. Therefore, there

exists a prime q\m with p\(q — 1) and such that G does not fix all <?-power

roots of unity in Q^,. Thus q E 9, contradicting the maximality of p.

Therefore t(o) = 0 for all o E G, as claimed.

Now let H = {o G G\r(o) =1}. Since r defines a homomorphism from G

into the multiplicative group of integers modp, we have

(16) \G : 77| < p - 1.
Also,

(17) / * o = /   and   o(ve') = ve'   for all o E H,

since / * a s ir(o) + t(o) = i (modp) when o E H.

For 0 < i < p, write s¡ = \S(h¡)\ and let T = {i\s, > 0). Note that i E T

iff y¡ ¥= 0 and, in fact, no subsum of h¡ is zero for / G T. By (14), x does not

vanish on G and thus \T\> p/2 > 1. Since 2i, = s, it follows that all s¡ < s

and thus the inductive hypothesis yields

(18) \G(vElhi)\<2'<-1   íotíeT.

For   i G T,   let   m¡   denote   the   restriction   homomorphism   77 ->

Gal(Q(ü£7i,)/Q). Since the fields Q(ve¡h¡) for i E T generate Q(/), we have
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254 R. J. EVANS AND I. M. ISAACS

H /e7-ker m¡ = 1. Therefore, if K ç H is any subgroup, we conclude that

(19) \K\<U\mi(K)\.
¡ST

Suppose y, = 0 for some/ Then (12) and (17) yield x(o) = 0 for all a G H,

and hence by (13), H fixes all ve'y¡. Therefore, m¡(H) C G(üefA,). Now

(16), (18) and (19) yield

|G|<(/>-l)Il2*-,.i>-l)2'-l7l
/er

and it suffices to show that (p - 1) < 2'r'_l. Since \T\ > p/2, the result

follows in this case.

Assume now that all y¡ ¥^ 0 so that T = {0, 1,. .. ,p - I). Sincep > s/2,

there must exist some/ with.s,. = 1 and we fix such a/. It is not the case that

y¡ is equal to a subsum of h¡ for every i since otherwise we could decompose

h¡ = A,' + h" with 2(A,') = y} for each i, and then

/'=ü(A0+eAi + ... +£"-'A;_,)

would yield a zero subsum for/. Choose/' such that y} is not a subsum of h¡,

and define / G ff by

l(u) = hf(u)- hj(u)   for m G í/.

Since \S(hj)\ = 1, it follows that / has no zero subsum. Also

(20) S(hj)uS(hf) = S(l)

and

(21) |5(/)| < 1 + sf < s

where the latter inequality holds since p > 2 and all s, > 0.

By (12) and (17), H fixes all y,. - y,. and, in particular, H fixes 1(1) = yf —

yr Let K be the kernel of the restriction map m: H -» Gal(Q(/)/Q). Then

m(H)Q G (I) and

(22) |tf:/q = |77(//)| <|G(/)| <2*

by (21) and the inductive hypothesis.

Since y E Q(hj) C Q(l) by (20), we see that K fixes y,- and thus x vanishes

on ä: by (12) and (17). By (13) then, m¡(K) ç G(ve%) for all i. Since K fixes

ue/ by (17), and fixes all elements of S(hf) by (20), we have mj,(K) = 1. Now

(18) and (19) yield

\K\< II 2s'-1 = 2s-1J-p+l.

Combining this with (22) and (16), we obtain
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LINEAR COMBINATIONS OF ROOTS OF UNITY 255

\G\<(p- 1)2-^"2)2J-1 <2,~1.

This proves (b) for primitive/ G 3F.

Now suppose that / G S7 is imprimitive and has no zero subsum. Write

/«/, + . v +Sr where S(S¡) ¥= 0, r > 2, and G = G(/\ permutes the

2(/). Let 77 = {o G G|a(2(/)) = 2(/,) for all /}. Then G/77 is isomorphic

to an abelian subgroup of the symmetric group on r symbols and, hence,

(23) |G:77|<[3r/3]

by [11 Let m¡: H -> Gal(Q(/)/Q) be the restriction map. Then 77,(77) C G(f)

and, reasoning as above, we obtain

|77|<Í[|G(/.)|<2*-'.
i = i

By (23),

|G|<[3r/3]2i-r<2i-1.

This completes the proof.   □

3. Rational polygons. If II is an «-gon in the complex plane, we can view II

as a vector diagram showing that a certain sum of n complex numbers is zero.

Suppose that all sides and angles of II are rational (where angles are

measured in degrees). After a suitable rotation, the sides of II correspond to

positive rational multiples of roots of unity and we have an expression of the

form S". xa¡e¡ = 0 with e¡ G U and a¡ E Q, a, > 0.

For simplicity, we shall consider only convex «-gons II whose interior

angles are all less than 180°. Then all e, are distinct and in the notation of §2

we have 2(/) = 0 where/ G ^ is defined by S(f) = {e,} and/(e,) = a¡. We

mention that II has a pair of parallel sides iff e, = — Cj for some /,/. Also,

note that rotation of II through a rational angle is equivalent to the replace-

ment of / by uf for some u E U.

If h = hx + h2 E ^ with S(h¡) ^ 0, we shall say that each 2(/j,) is a proper

subsum of h. Note that if/corresponds to II as above and « < 5, then/has a

zero proper subsum iff II has a pair of equal and parallel sides.

Theorem 3.1. Let S E 5" with 2(/) = 0 and assume that all proper subsums

oSS are nonzero. Let s = \S(f)\. Then there exist v E U and g E % such that

S'= vg and k(g) divides IT/,<Jp where p runs over primes. In addition, // s is

prime and /(«) > 0 /or all u, then either s\k(g) or else k(g) = s and g is

constant on Us.

Before proving the theorem, we mention some applications to rational

n-gons with n < 5. Results for n > 6 are more complicated to state and we

omit them.
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Corollary 3.2. Let If be a convex n-gon (with interior angles less than

180°). Let n < 5 and assume that all sides and angles ofH are rational. Then

one of the following occurs:

(a) II is a regular pentagon.

(b) n has a pair of equal and parallel sides.

(c) All angles of n lie in {60°, 120°}.

Proof. As in the first two paragraphs of this section, n yields some / G ff

with \S(f)\ < 5,/(z<) > 0 for all u G U and 2(/) = 0. If/has a zero proper

subsum, then (b) occurs. Assume this is not the case. By Theorem 3.1,

therefore, we may assume (by rotating n so that / = g) that k(f) divides

2 • 3 • 5.
If S\k(f), then S(f) Q U6 and (c) follows. Suppose 5\k(f). Then the

theorem yields that S(f) = U5 and/is constant on U5. In this case, (a) holds.

D
As an easy consequence of Corollary 3.2, we mention the following.

Corollary 3.3. Let n be a convex n-gon with n < 5 and all sides and

angles rational. Suppose that no two sides of IT are parallel. Then either H is an

equilateral triangle or it is a regular pentagon.

Proof of Theorem 3.1. Choose u G U so that k(uf) is as small as possible

and write g — uf. Let k — k(g) and write k = p"m where p is prime, a > 1

and p\m. Let 5 be a primitivep°th root of unity.

First assume a > 1 and write q = pa~x and

g = A0 + oA1 + -. • +8"-xhq_x

with S (A,) Q Ump. Since 1,8,.. . ,8q~x are linearly independent over Q^,

and 2(g) = 0, we have 2(A,) = 0 for all i. Since g has no zero proper subsum,

we must have g = 8% for some i. Since

k(h¡) < mp< mpa = k(g),

this contradicts the choice g and we conclude that a = 1.

Now write

g = A0+5A1 + ... +8"-\_x

with S(h¡) Ç Um. Since I, 8,82,... ,8P~2 are linearly independent over Qm

and 2?J0'5' ■ 0, we conclude from 2(g) = 0 that all 2(A,) are equal, say to y.

If y = 0, then the condition that g has no zero proper subsum forces g = S'A,

for some i and this yields a contradiction as above since k(h¡) < k(g).

It follows that y i= 0 and thus S (A,) i= 0 for all i. In particular, this forces

p < s.

To prove the final assertion, suppose s = p and that g(x) > 0 for all

x E U. We have then ^(A,)! = 1 and we write S(h¡) = {e,}. Now A,(e() > 0
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and eih¡(e¡) = y. This forces all e, to be equal, say to e. Then e is a primitive

wth root of unity and g = eg0 where S(g¿) C Up. The minimality of k(g)

forces m = 1 and hence e = 1, S(g) = Up and g has the constant value y on

Up.   D
We give one further corollary.

Corollary 3.4. A triangle with rational angles and two rational sides is

either isosceles or else is a 30°-60°-90° triangle.

Proof. Let triangle ABC have rational angles and assume that sides AB

and AC are rational. If LB > 90°, reflect side AB about the altitude drawn

from A so as to obtain a new triangle AB'C which also satisfies the

hypotheses. We may thus assume that Z B < 90° and Z C < 90°.

Now reflect the triangle about BC so as to obtain the figure BACA'. If

Z B = 90°, this figure is the triangle ACA' and is equilateral by Corollary 3.3.

This yields ¿A = 60° and Z C = 30° as desired.

Suppose LB < 90°. Then BACA' is a convex quadrilateral and has a pair

of parallel sides by Corollary 3.3. If, say, AB and CA' are parallel, we have

¿ABC = LA'CB = LACB and the triangle is isosceles.   □

4. Examples and remarks. For each s < 4, we exhibit a primitive / G ÍF

with 2(/) ^ 0 such that ¡SCOI = í and \G(f)\ = 2*"1. In particular, this
shows that Theorem 2.2(b) is best possible for these s. For s = 1 the situation

is trivial. To handle the cases s = 2, 3 and 4, we introduce the notation

w = e2m/3 and e = e2my5_ We have

i(l + 2w) = - VJ ,   /(l + 2e + 2¿) = iVS ,

i(-u - co2 + 2e + 2¿) = /VJ .

Each of these sums has degree 2 over Q and

|Q(i, /io) : Q| = 4,    |Q(/, ie) : Q| = 8,    |Q(iW, ie) : Q| = 16.

These yield the desired examples. (We omit the proof of primitivity.)

Lemma 4.1. Let S G ?F with no zero subsum. Then there exists gsf with no

zero subsum such that

(a)|G(g)|>3|G(7)|,

(b) \S(g)\ - |S(/)| + 3.

Proof. Choose a prime pj(k(f) such that p 3 1 mod 3 and let e0 be a

primitive pth root of unity. Let a G Ga^Q^/Q) be of order 3 and write

«i = a(eo) ancl e2 " °"(ei)- Let A G S7 with S (A) = (e0, e,, e2} and A(e() = 1.

Let g =/+ h. Thus (b) follows. Since 1, e0, e„ e2 are linearly independent

over Q(/), it follows that g has no zero subsum. Finally, G(g) contains a
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subgroup isomorphic to G(f) X <a> and so |G(g)| > 3|G(/)|.   D

Theorem 4.2. Let s be a natural number. Then there exists f E ff with no

zero subsum and such that

(a) \S(f)\ = s,
(b) \G(f)\ X31/3)1-».

Proof. We use induction on j. For i = 1, 2 or 3, the result follows from the

examples at the beginning of the section. For s > 3, the result follows using

Lemma 4.1 and the inductive hypothesis.   □

Note that for s > 3, the proof of Theorem 4.2 produces examples which

are not necessarily primitive. The authors conjecture that for primitive/ G ff

with 1(f) i= 0, a bound for \G(f)\ exists which is of significantly smaller

order of magnitude than an exponential function of s = |S(/)|.

We also believe that Theorem 2.2(b) would remain true if 2s ~x is replaced

by C(3x/3y for a suitable constant C. Note, however, that an improvement of

the bound on \G(f)\ for primitive/ would not, by itself, yield an improved

bound in the general case.

We close with some questions. Suppose E is an arbitrary field of character-

istic zero and that /: U -» E has finite support and no zero subsum. View U

as being contained in an algebraic closure of E. Is \E(f) : F(2(/))| bounded

in terms of 5 = |5(/)|? Does there exist a uniform bound, independent of El
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