FREE PRODUCTS OF TWO REAL CYCLIC MATRIX GROUPS

by R. J. EVANS

(Received 20 April, 1973)

1. Introduction. We exhibit a large class K^{*} of real 2×2 matrices of determinant ± 1 such that, for nearly all A and B in K^{*}, the group generated by A and B^{t} (the transpose of B) is the free product of the cyclic groups $\langle A\rangle$ and $\left\langle B^{\prime}\right\rangle$. It is shown that K^{*} contains all matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ of determinant ± 1 with integer entries satisfying $|b|>|a|,|c|,|d|$. This gives a generalization of a theorem of Goldberg and Newman [2]. We also prove related results concerning the dominance of b and the discreteness of the free products $\langle A\rangle *\left\langle B^{r}\right\rangle$.

The matrices A will be identified with linear fractional transformations on \mathbb{R}^{*} (the extended reals), except in $\S 5$.

2. Definitions and notation.

(1) A matrix M is unimodular if $\operatorname{det} M= \pm 1$.
(2) A will always denote the real unimodular matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
(3) \mathbb{Z} denotes the integers.
(4) An entry of A is called dominant if its absolute value is larger than that of each other entry.
(5) $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad T=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right], \quad g=2^{-t}\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$.
(6) Γ denotes the interval $(-1,1)$.
(7) $\Delta=\mathbb{R}^{*}-[-1,1]$.
(8) If C is a 2×2 matrix and S is a set of 2×2 matrices, then $S^{C}=\left\{B^{C}: B \in S\right\}$, where $B^{C}=C B C^{-1}$.
(9) $A=\left[\begin{array}{ll}+ & + \\ - & -\end{array}\right]$ means that either the matrix A or $-A$ has the indicated sign pattern, i.e. $a, b \geqq 0, c, d \leqq 0$ or $a, b \leqq 0, c, d \geqq 0$.
(10) A real linear fractional transformation is called minimal if it has a matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ of determinant 1 which satisfies the conditions $c>0, a+d=2 \cos (\pi / q)(q \in \mathbb{Z}, q \geqq 2)$. If a transformation A has period $q \geqq 2$ and $\operatorname{det} A=1$, then $\langle A\rangle$ has a unique minimal member of period q which can be found as follows. Write $|\operatorname{tr} A|=2 \cos (\pi p / q)$, where $(p, q)=1, q \geqq 2$. Choose r such that $r p \equiv 1(\bmod q)$. Then either A^{r} or A^{-r} is minimal.
(11) $J=\{A:|a+b| \geqq|c+d|,|a-b| \geqq|c-d|$ and $|b|>|a|\}$.
(12) $K_{1}=\{A \in J:|\operatorname{tr} A| \geqq 2$, $\operatorname{det} A=1\}$.
(13) $K_{2}=\left\{A: A^{r} \in J\right.$ and A^{r} is minimal, for some $\left.r\right\}$.

It will be shown in Lemma 7 that $K_{2} \subset J$. On the other hand, not every $A \in J$ of determinant 1 and finite period is in K_{2}. For example, if $\lambda=2 \cos (\pi / 5)$, we have

$$
A=\left[\begin{array}{cc}
0 & \lambda \\
1-\lambda & \lambda-1
\end{array}\right] \in J, A^{2} \notin J, \text { and } A^{2} \text { is minimal. }
$$

(14) $K_{3}=\{A \in J: \operatorname{det} A=-1, \operatorname{tr} A=0\}$. Observe that K_{3} consists of all $A \in J$ of determinant -1 with finite period.
(15) $K_{4}=\left\{A \in J: \operatorname{det} A=-1, A^{2} \in J\right\}$.
(16) $K=K_{1} \cup K_{2} \cup K_{3} \cup K_{4}$.

3. Free products of transformations.

Theorem 1. Let $A, B \in K, C=B^{\text {t }}$. Then $\langle A, C\rangle=\langle A\rangle *\langle C\rangle$ if and only if, for every pair r, s satisfying $s^{2}-r^{2}=1$, we have $\{A, C\} \nsubseteq\left\{\left[\begin{array}{rr}r & s \\ -s & -r\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$.

Before proving this theorem, we prove Proposition 1. The following lemmas lead up to Proposition 1.

Lbmma 1. $A \in J$ if and only if $\dot{A}(\Gamma) \subset \Delta$.
Proof. Let $A \in J$; then $|A(1)| \geqq 1,|A(-1)| \geqq 1$, and $A(x)$ does not vanish for $x \in \Gamma$. Moreover, $A(x)$ is monotone on the intervals $(-\infty,-d / c)$ and $(-d / c, \infty)$, since $d / d x(A(x))=$ $\operatorname{det} A /(c x+d)^{2}$. It is thus readily seen that $\min \{|A(x)|: x \in[-1,1]\}$ is attained at $x=1$ or $x=-1$. Thus $A(\Gamma) \subset \Delta$. The converse is readily verified.

Lemma 2. A $\in J$ if and only if $A^{-1} \in J$.
Proof. This follows from Lemma 1.
Lemma 3. Let $\operatorname{det} A=-1$ (so that the fixed points of A are in \mathbb{R}^{*}). Then $A \notin J$ if and only if there is a fixed point of A in Γ.

Proof. Suppose that $A \notin J$. Then the graph of $A(x)$ must intersect the open square whose vertices are $(1,1),(1,-1),(-1,1)$, and $(-1,-1)$. Since $A(x)$ is monotone decreasing on $(-\infty,-d / c)$ and on $(-d / c, \infty)$, the graph of $A(x)$ must intersect the line $y=x$ inside the square. Thus A has a fixed point in Γ. The converse is obvious.

Lemma 4. Let $\operatorname{det} A=-1$. Then, if $A^{2} \in J, A \in J$.
Proof. If $A \notin J$, then, by Lemma 3, there exists $x \in \Gamma$ such that $A(x)=x$. Thus $A^{2}(x)=x$, so that $A^{2} \notin J$.

Lemma 5. Let $A \in K_{1}$. Then $A^{n} \in J$ for all $n>0$.
Proof. By Lemma 1, the fixed points of A must lie in $\mathbb{R}^{*}-\Gamma$. For any $x \in \Gamma$, the sequence $x, A x, A^{2} x, \ldots$ converges to one of these fixed points in that cyclic order on \mathbb{R}^{*}. Thus, for all $n>0, A^{n}(x) \in \Delta$, and so $A^{n}(\Gamma) \subset \Delta$.

Lemma 6. Let $A \in K_{4}$. Then $A^{n} \in J$ for all $n>0$.
Proof. An easy calculation shows that $A^{2} \in K_{1}$. By Lemma 5, $A^{2 n} \in J$ for all $n>0$. By Lemma 4, $A^{n} \in J$ for all $n>0$.

Lemma 7. Let $A \in K_{2}$. Then $A^{n} \in J$ for all n such that $A^{n} \neq I$.
Proof. Let $B \in\langle A\rangle$ be minimal of period q, so that $B \in J$. Fix $x \in \Gamma$. The points $x, B x$, $B^{2} x, \ldots, B^{q-1} x$ occur in that cyclic order on \mathbb{R}^{*}. If one of these points other than x were in $[-1,1]$, then either $B x \in[-1,1]$ or $B^{-1} x \in[-1,1]$. This is impossible since $B \in J$. Thus $\left\{B x, B^{2} x, \ldots, B^{q-1} x\right\} \subset \Delta$. Therefore, for all n such that $A^{n} \neq I$, we have $A^{n}(x) \in \Delta$, and so $A^{n}(\Gamma) \subset \Delta$.

Lemma 8. Let $A \in K_{3}$. Then $A^{n} \in J$ for all n such that $A^{n} \notin I$.
Proof. Since each $A \in K_{3}$ is an involution, the assertion is obvious.
Proposition 1. If $A \in K$, then $A^{n} \in J$ for all n such that $A^{n} \neq I$.
Proof. This follows from Lemmas 2, 5, 6, 7 and 8.
Proof of Theorem 1. Suppose that $B^{m} \neq I$. By Proposition $1, B^{-m} \in J$. Thus

$$
C^{m}(\Delta)=T B^{-m} T(\Delta) \subset T B^{-m}(\Gamma) \subset T(\Delta)=\Gamma
$$

Thus, by the Lemma in [4, p. 161], $\langle A, C\rangle=\langle A\rangle *\langle C\rangle$ unless A and C are involutions such that $(A C)^{n}=I(n>0)$. Suppose that the latter event occurs. We must show that

$$
\{A, C\} \subset\left\{\left[\begin{array}{rr}
r & s \\
-s & -r
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\}
$$

for some pair r, s satisfying $s^{2}-r^{2}=1$. Let $E=\{-1,1\}$. Assume that $C(E) \neq E$. Then there exists $e \in E$ such that $C(e) \in \Gamma$, so that $A C(e) \in \Delta$. By induction, $e=(A C)^{n}(e) \in \Delta$, a contradiction. Thus $C(E)=E$. Since $(C A)^{n}=I$, similar reasoning shows that $A(E)=E$. Therefore

$$
A^{g}(g(E))=C^{g}(g(E))=g(E)=\{0, \infty\}
$$

It follows that A^{g} and C^{g} each have one of the forms $\left[\begin{array}{cc}0 & u \\ -1 / u & 0\end{array}\right]$ or $\left[\begin{array}{cc}v & 0 \\ 0 & -1 / v\end{array}\right]$. (The forms

$$
\left|\begin{array}{cc}
0 & u \\
1 / u & 0
\end{array}\right| \text { and }\left|\begin{array}{cc}
v & 0 \\
0 & 1 / v
\end{array}\right| \text { are ruled out because }\left|\begin{array}{cc}
0 & u \\
1 / u & 0
\end{array}\right|^{g^{-1}} \quad \text { and }\left|\begin{array}{cc}
v & 0 \\
0 & 1 / v
\end{array}\right|^{g^{-1}}
$$

are not in J, by definition of J.) The latter form is an involution only if $v=1$. Suppose that A^{g} and C^{g} both have the former form, say

$$
A^{g}=\left|\begin{array}{cc}
0 & u \\
-1 / u & 0
\end{array}\right|, \quad C^{g}=\left|\begin{array}{cc}
0 & w \\
-1 / w & 0
\end{array}\right| .
$$

Then $A^{g}=C^{g}$, since otherwise $(A C)^{g}$ has infinite period. Therefore we conclude that, for some u,

$$
\left\{A^{g}, C^{g}\right\} \subset\left\{\left|\begin{array}{cc}
0 & u \\
-1 / u & 0
\end{array}\right|,\left|\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right|\right\},
$$

i.e.

$$
\{A, C\} \subset\left\{\left|\begin{array}{rr}
r & s \\
-s & -r
\end{array}\right|,\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|\right\}
$$

for some pair r, s satisfying $s^{2}-r^{2}=1$.
4. Discreteness. The free products $\langle A\rangle *\langle C\rangle$ in Theorem 1 are, in fact, discrete. We shall prove this now in the special case in which $\operatorname{det} A=\operatorname{det} C=1$; we prove the result in full generality in a paper to be submitted later. First we establish some propositions.

If we could find a larger class $K^{\prime} \supset K$ for which Proposition 1 held, we would be able to improve Theorem 1. The next result (the converse of Proposition 1) shows that no such K^{\prime} exists.

Proposition 2. Let $A \neq I$ satisfy $A^{n} \in J$ for all n such that $A^{n} \neq I$. Then $A \in K$.
Proof. First suppose that $\operatorname{det} A=1$. If $|\operatorname{tr} A| \geqq 2$, then $A \in K_{1}$. Suppose that $|\operatorname{tr} A|<2$. If A had infinite period, then $\left\{A^{n}(0): n=1,2, \ldots\right\}$ would be dense in \mathbb{R}; so there would exist an $n>0$ such that $A^{n} \notin J$, a contradiction. Thus $|\operatorname{tr} A|=2 \cos (\pi p / q)$, with $(p, q)=1$, $q \geqq 2$. Since the power of A that is minimal is in J by hypothesis, $A \in K_{2}$.

Now suppose that $\operatorname{det} A=-1$. If A has finite period, then $A \in K_{3}$. If A has infinite period, then, since $A^{2} \in J$ by hypothesis, $A \in K_{4}$.

Lemma 9. $A \in J^{g}$ if and only if $A=\left[\begin{array}{ll}+ & + \\ - & -\end{array}\right]$.
Proof. Suppose that $A \in J^{g}$. Then

$$
A[(0, \infty)]=A[g(\Gamma)] \subset g(\Delta)=(-\infty, 0)
$$

It follows that $\left\{A(0), A^{-1}(0), A(\infty)\right\} \subset[-\infty, 0]$. This shows that $A=\left[\begin{array}{ll}+ & + \\ - & -\end{array}\right]$.
Conversely, if $A=\left[\begin{array}{cc}+ & + \\ - & -\end{array}\right]$, then $A[(0, \infty)] \subset(-\infty, 0)$, so that $A \in J^{g}$.
Proposition 3. Let $A \neq I$. Then $A \in K^{g}$ if and only if $A^{n}=\left[\begin{array}{cc}+ & + \\ - & -\end{array}\right]$ for all n such that $A^{n} \neq I$.

Proof. This follows from Propositions 1 and 2 and Lemma 9.
The next theorem implies that $\left\langle A, B^{t}\right\rangle$ is the discrete free product $\langle A\rangle *\left\langle B^{t}\right\rangle$ for all $A, B \in K$ of determinant 1 . Another consequence is that all the real groups investigated by Lyndon and Ullman in [4] are discrete.

Theorem 2. Let Γ_{0} be an open interval in \mathbb{R}^{*} and let Γ_{0} be its closure. Let $\Delta_{0}=\mathbb{R}^{*}-\Gamma_{0}$. Suppose that A and C are real 2×2 matrices of determinant 1 satisfying the conditions
(1) $A^{n}\left(\Gamma_{0}\right) \subset \Delta_{0}$ for all n such that $A^{n} \neq I$, and
(2) $C^{n}\left(\Delta_{0}\right) \subset \Gamma_{0}$ for all n such that $C^{n} \neq I$.

Then $\langle A, C\rangle$ is the discrete free product $\langle A\rangle *\langle C\rangle$.
Proof. By conjugating A and C, we may assume without loss of generality that $\Gamma=\Gamma_{0}$ and $\Delta=\Delta_{0}$. Let $B=C^{t}$. Since $B=T C^{-1} T$, we have $B^{n}(\Gamma) \subset \Delta$ for all n such that $B^{n} \neq I$. Thus, by Proposition $2, A, B \in K$. By Proposition 3, we have $A^{g}, B^{g}=\left[\begin{array}{ll}+ & + \\ - & -\end{array}\right]$. Define $A_{1}=\left(A^{\theta}\right)^{j}$ where j is chosen as follows. If $A \in K_{1}$, choose $j \in\{1,-1\}$ so that A_{1} has a matrix whose upper entries are $\leqq 0$ and whose trace is $\geqq 2$. If $A \in K_{2}$, choose j so that A_{1} has a matrix whose upper entries are $\leqq 0$ and whose trace is $2 \cos (\pi / q)$ with $q \geqq 2, q \in \mathbb{Z}$. Define B_{1} analogously. It is readily seen that $\left\langle A_{1}, B_{1}^{t}\right\rangle$ is the discrete free product $\left\langle A_{1}\right\rangle *\left\langle B_{1}^{t}\right\rangle$ if and only if $\left\langle A^{g},\left(B^{g}\right)^{t}\right\rangle$ is the discrete free product $\left\langle A^{g}\right\rangle *\left\langle\left(B^{g}\right)^{t}\right\rangle$. Since $\left(B^{g}\right)^{t}=\left(B^{t}\right)^{g}$, it suffices to show that $\left\langle A_{1}, B_{1}^{\mathrm{t}}\right\rangle$ is the discrete free product $\left\langle A_{1}\right\rangle *\left\langle B_{1}^{t}\right\rangle$. This follows immediately from Newman's theorem [6, p. 159]. (For a proof of Newman's theorem, see [7, p. 212].) This completes the proof.

The next theorem shows that, if A and C satisfy certain conditions given in [7, p. 210], one can always find an interval Γ_{0} for which the hypotheses of Theorem 2 hold.

Theorem 3. Let A and C be real 2×2 matrices of determinant 1 , neither of which is elliptic of infinite period. If A has infinite period, let A_{1} be the matrix for A satisfying $\operatorname{tr} A_{1} \geqq 2$; if A has finite period, let A_{1} be the matrix for the minimal transformation in $\langle A\rangle$ satisfying $\operatorname{tr} A_{1}=2 \cos (\pi / q)$ with $q \geqq 2, q \in \mathbb{Z}$. Define C_{1} analogously. Suppose that $A_{1} \neq-C_{1}$ and $\operatorname{tr}\left(A_{1}^{-1} C_{1}\right) \leqq-2$. Then A and C satisfy the conditions of Theorem 2 for some Γ_{0}.

Proof. View A_{1} and C_{1} as transformations. It suffices to prove the conclusion with A and C replaced by A_{1} and C_{1}, respectively. As shown in [7, pp. 210-211], we may assume, by conjugation, that $A_{1}=\left[\begin{array}{rr}0 & -\rho \\ 1 / \rho & \lambda\end{array}\right]$ and $C_{1}=\left[\begin{array}{cc}0 & -\rho_{1} \\ 1 / \rho_{1} & \lambda_{1}\end{array}\right]$ with $\rho \rho_{1}<0$. Suppose, without loss of generality, that $\rho>0$. Letting $B_{1}=C_{1}^{t}$, we have $A_{1}, B_{1}=\left[\begin{array}{ll}+ & + \\ - & -\end{array}\right]$. By Lemma 9, $A_{1}, B_{1} \in J^{g}$, so that $A_{1}, B_{1} \in K^{g}$ by definition of K. The result now follows from Proposition 1.
5. Free products of matrices. In this section, unless otherwise specified, we interpret matrices as elements of the real unimodular 2×2 matrix group G rather than the group \bar{G} of real linear fractional transformations. We define \bar{A} in \bar{G} as the image of $A \in G$ under the natural homomorphism $G \rightarrow \bar{G}$. Define $K^{*}=\{A: \bar{A} \in K\}$.

Theorem 4. Let $A, B \in K^{*}, C=B^{t}$. Then $\langle A, C\rangle=\langle A\rangle *\langle C\rangle$ if any only if

$$
\{A, B\} \nsubseteq\left\{ \pm\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\}
$$

and neither A nor B has even period $\geqq 4$.
Proof. Suppose that A or C, say A, has period $2 n(n \geqq 2)$. Then $A^{n}=-I$. Consequently, $A^{n} C A^{n} C^{-1}=I$, so that $\langle A, C\rangle \neq\langle A\rangle *\langle C\rangle$. Conversely, suppose that

$$
\{A, B\} \notin\left\{ \pm\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\}
$$

and neither A nor B has even period $\geqq 4$. Then it follows from Theorem 1 that $\langle\bar{A}, \bar{C}\rangle=$ $\langle\bar{A}\rangle *\langle\bar{C}\rangle$. Assume that a reduced word $\ldots A^{n} C^{m} \ldots$ in $\langle A, C\rangle$ equals I. Then $\ldots \bar{A}^{n} \bar{C}^{m} \ldots$ equals \bar{I}, which is impossible because $-I \notin\langle A\rangle,-I \notin\langle C\rangle$. Thus $\langle A, C\rangle=\langle A\rangle *\langle C\rangle$. This completes the proof.

Let L^{*} be the set of unimodular matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with integer entries, infinite period, and b dominant. Let $L=\left\{\bar{A}: A \in L^{*}\right\}$. Goldberg and Newman [2] proved that, for all $A, B \in L^{*},\left\langle A, B^{t}\right\rangle$ is free. The next theorem shows that this result is a special case of Theorem 4.

Theorem 5. $L^{*} \subset K^{*}$.
Proof. We must show that $L \subset K$. Let $A \in L$. As is mentioned in [2, p. 446], $|b-a| \geqq$ $|d-c|$. If the same reasoning is applied to $\left[\begin{array}{rr}a & -b \\ -c & d\end{array}\right] \in L$, we obtain $|a+b| \geqq|c+d|$. Hence $A \in J$. This proves, incidentally, that $L \subset J$.

Suppose that $\operatorname{det} A=1$. Since A has infinite period, $|\operatorname{tr} A| \geqq 2$. Thus $A \in K_{1}$. Now suppose that $\operatorname{det} A=-1$. It remains to show that $A^{2} \in L$, for then $A^{2} \in J$ and consequently $A \in K_{4}$. Since A has infinite period, $t=\operatorname{tr} A \neq 0$. Observe that $A^{2}=t A+I=t\left[\begin{array}{cc}a+t^{-1} & b \\ c & d+t^{-1}\end{array}\right]$. We may assume that $\left|a+t^{-1}\right| \geqq\left|d+t^{-1}\right|$, because there is no loss of generality in replacing A^{2} by its inverse, since $L=\left\{A^{-1}: A \in L\right\}$. It remains to show that $|b|>\left|a+t^{-1}\right|$. Clearly, $\left|a+t^{-1}\right| \leqq|a|+1 \leqq|b|$. Assume that $\left|a+t^{-1}\right|=|b|$. Then $t=\operatorname{sgn}(a)$ and

$$
A=\left[\begin{array}{rr}
a & \pm(1+|a|) \\
c & -a+\operatorname{sgn}(a)
\end{array}\right]
$$

so that $\pm c=-1+a^{2} /(1+|a|)$. Since $c \in \mathbb{Z}$, we must have $a=0$. Therefore $|b|=1$, which contradicts the fact that b is dominant in A.
6. Dominance. For each A, write $A^{n}=\left[\begin{array}{ll}a_{n} & b_{n} \\ c_{n} & d_{n}\end{array}\right]$. In [2] it is proved that, if $A \in L$, then b_{n} is dominant in A^{n} for all $n \neq 0$. The next theorem generalizes this result. We first prove one lemma.

Lbmma 10. Let $A \in K$ and suppose that $\left(A^{n}\right)^{n} \in J$ for some n. Then

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { or } A=\left[\begin{array}{rr}
a & b \\
-b & -a
\end{array}\right]
$$

Proof. Let $B=A^{n}$. Since $B^{\mathrm{t}} \in J, B \neq I$. Thus $B \in K$, by Propositions 1 and 2. By Lemma $9, B^{g},\left(B^{g}\right)^{\prime}=\left[\begin{array}{ll}+ & + \\ - & -\end{array}\right]$. Thus $B^{g}=\left[\begin{array}{cc}0 & u \\ -1 / u & 0\end{array}\right]$ or $\left[\begin{array}{cc}v & 0 \\ 0 & -1 / v\end{array}\right]$ for some u, v. If B^{g} has the latter form, then $\left(B^{g}\right)^{2}=\left\lvert\, \begin{array}{ll}+ & + \\ + & +\end{array} \not \ddagger J^{g}\right.$. Hence $B \notin K_{4}$; so we must have $B \in K_{3}$ and consequently $v=1$. We have thus shown that $B^{g}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ or $\left[\begin{array}{cc}0 & u \\ -1 / u & 0\end{array}\right]$, i.e., $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $\left[\begin{array}{rr}r & s \\ -s & -r\end{array}\right]$ for some r, s. In either case A has even period $2 m$. If $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then $\operatorname{det} A=-1$, so that $A \in K_{3}$. Then $A=B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, the desired result. Suppose therefore that $B=\left[\begin{array}{rr}r & s \\ -s & -r\end{array}\right]$. Let $M \in\langle A\rangle$ be minimal. The sequence $1, M(1), \ldots, M^{2 m-1}(1)$ occurs in \mathbb{R}^{*} in that cyclic order and each term lies outside of Γ by Lemma 7. However, -1 must be in the sequence because $B(1)=-1$ and B is a power of M. This is possible only if $-1 \in\left\{M(1), M^{-1}(1)\right\}$. Thus $B=M$ or $B=M^{-1}$, so that $M^{2}=I$. Therefore $A^{2}=I$ and $A=B$, the desired result.

Theorbm 6. Let $A \in K$. Then b_{n} is dominant in A^{n} for all n such that $A^{n} \neq I$, unless $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $A=\left[\begin{array}{rr}a & b \\ -b & -a\end{array}\right]$.

Proof. Let $B=A^{n} \neq I$. Suppose without loss of generality that $b_{n}>0$. Since $B(0)$ and $B^{-1}(0)$ are not in Γ, by Proposition 1, $b_{n}>\left|a_{n}\right|,\left|d_{n}\right|$. Assume that b_{n} is not dominant in B. Then we have $\left|c_{n}\right| \geqq b_{n}>\left|a_{n}\right|,\left|d_{n}\right|$. Since $B \in J$, we have
(1) $b_{n}+a_{n} \geqq\left(c_{n}+d_{n}\right) s$, and
(2) $b_{n}-a_{n} \geqq\left(c_{n}-d_{n}\right) s$,
where $s=\operatorname{sgn}\left(c_{n}\right)$. Adding, we have $b_{n} \geqq\left|c_{n}\right|$. Thus $b_{n}=\left|c_{n}\right|$ and equality must hold in (1) and (2). It follows that $B=\left[\begin{array}{ll}a_{n} & b_{n} \\ s b_{n} & s a_{n}\end{array}\right]$. Hence $B^{t} \in J$. By Lemma $10, A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $A=\left[\begin{array}{rr}a & b \\ -b & -a\end{array}\right]$, the desired result.
7. Comments on the literature. In [1], Brenner showed that $A=\left[\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ m & 1\end{array}\right]$ generate a free group if $|m| \geqq 2$. Brenner asked if there were any algebraic $m \in(0,2)$ for which $\langle A, B\rangle$ is free ($\langle A, B\rangle$ is easily seen to be free for transcendental m). In fact, Brenner's

R. J. EVANS

work answers his own question. For (as pointed out in [5]), it follows immediately that $\langle A, B\rangle$ is free when m has an algebraic conjugate of absolute value $\geqq 2$. Since each $m \in S=$ $\left\{4 \cos \pi \theta: \theta\right.$ rational, $\left.\theta \in\left(\frac{1}{3}, \frac{1}{2}\right)\right\}$ has a conjugate of absolute value $\geqq 2$, we have a dense set of algebraic $m \in(0,2)$ for which $\langle A, B\rangle$ is free. Thus Knapp [3, p. 304] was incorrect when he claimed (in effect) that $\langle A, B\rangle$ is free for no value of $m \in(0,2)$.

In [5, p. 1399], it is claimed that $\left[\begin{array}{ll}1 & u \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ generate a discontinuous group (on the upper half-plane) when $u=2 \cos \pi \alpha$, with α rational. The condition " α rational" should be replaced by the condition " $\alpha=1 / q$, with $q \in \mathbb{Z}^{+}$".

In [4, p. 165], the description of a minimal transformation is rather ambiguous, since, if $|\operatorname{tr} A|$ is maximal, so is $\left|\operatorname{tr} A^{-1}\right|$. With our definition of minimal in $\S 2$, the ambiguity is eliminated and the theorems in [4] involving minimal transformations are correct. In particular, Purzitsky's counterexample [7, p. 214] does not apply because the transformation $\left[\begin{array}{rr}0 & 1 \\ -1 & 1\end{array}\right]$ is not minimal.

Purzitsky's other counterexample [7, p. 213] is incorrect, since $(3+\sqrt{5}) / 2>(5-\sqrt{21}) / 2$.

REFERENCES

1. J. Brenner, Quelques groupes libres de matrices, C.R. Acad. Sci. Paris 241 (1955), 1681-1691.
2. K. Goldberg and M. Newman, Pairs of matrices of order two which generate free groups, Illinois J. Math. 1 (1957), 446-448.
3. A. Knapp, Doubly generated Fuchsian groups, Michigan Math. J. 15 (1968), 289-304.
4. R. Lyndon and J. Ullman, Pairs of real 2-by-2 matrices that generate free products, Michigan Math. J. 15 (1968), 161-166.
5. R. Lyndon and J. Ullman, Groups generated by two parabolic linear fractional transformations, Canadian J. Math. 21 (1969), 1388-1403.
6. M. Newman, Pairs of matrices generating discrete free groups and free products, Michigan Math. J. 15 (1968), 155-160.
7. N. Purzitsky, Two-generator discrete free products, Math. Z. 126 (1972), 209-223.

University of Wisconsin

Madison
Wisconsin 53706
U.S.A.

