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Hecke proved analytically that when h > 2 or when h = 2 CDS (m/q), q E Z, 
q > 3, then B(h) = (7: Im I > 0, / Re 7 1 < h/2, [ 7 j > 1) is a fundamental 
region for the group G(h) = (SA , T), where S,+ : 7 --f 7 + X and T: 7 ---t -l/~. 
He also showed that B(A) fails to be a fundamental region for all other A > 0 
by proving that G(X) is not discontinuous. We give an elementary proof of these 
facts and prove a related result concerning the distribution of G(A)-equivalent 
points. 

For each X > 0, let G(A) be the group generated by the transformations 
S,,:T-+T+~ and T:T -+ --l/7 defined on H = (7: Im 7 > 0). Let 
B(A) = {T E H: / Re 7 1 < A/2, 1 T 1 > l}. Let 2 denote the integers. 
Hecke [l, pp. 11-20; 2, pp. 599-6161 proved analytically that B(h) is a 
fundamental region (as defined in [3, p. 221) for G(h) when h 3 2 or when 
X = 2 cos(~/q) for some 4 E 2, q > 3 (in the latter case we write h E C). 
We give an elementary proof of this fact. When 0 < h < 2, X $ C, 
Hecke [2, pp. 609,613-6141 proved that G(A) is not discontinuous (so that 
there can be no fundamental region for G(h)). We present here a slightly 
simplified version of his proof and show, moreover, that for any T  E H, 
the set of all points G(h)-equivalent to T  is dense in H. 

THEOREM 1. Each y E His G(A)-equivalent to apoint in B(h), (the closure 

of B(4). 

Proof. Define the following transformations on H: 

T,: 7 + T/ j  7 I2 (reflection in the unit circle), 

T,: T -+ --5 (reflection in the line Re T  = 0), 
T3: 7 + -(7 f h) (refleCtiOn in the line Re T  = -A/2). 

Since S,, = T,T, and T = TIT,, it is easily seen that G(A) consists of the 
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words in (TI , Tz , T3) of even length. Hence, it suflkes to find 
V E ( TI , T2 , T3) such that Vy E B(h), for if V # G(h), then T2 Y E G(A). 

Define a sequence of points r,, = x, + iy, inductively as follows: 
apply Tz and T3, if necessary, to move y horizontally to a point TV in the 
strip EA = (T E H: --A/2 < Re 7 < O}. Given r, (n 3 l), apply T, and T3 
to move T,T, horizontally to a point T,+~ E En . We will assume that 
1 7, j < 1 for each n, otherwise the theorem is proved. Thus, Y%+~ = 
h/l 7% 1’ > Yn . Let w  be a cluster point of (7,). Note Im w  > 0. If 
( w  / < 1, then (Tn} has an infinite subsequence (Tak] such that 
1 7% 1 < c -=C 1, SO that Y4 3 Y& 2(k-1) -+ cc as k -+ co, a contradiction. 
Hence, 1 w  ) = 1. When h < 2, let u denote the point of intersection 
between the unit circle and the line Re 7 = ---h/2. We will assume that 
;\ < 2 and that w  = ZJ is the unique cluster point of (TV}, otherwise 
T17, E B(A) for some large n. If arg T ,  < arg u for some n, then 
Im T,+1 > Im 0, contradicting the fact that y, t Im U. Hence, arg To > arg v 
for each n. Now there exists an N such that for all n >, N, T,+~ = T3T17,, , 
so that x,+~ = -A - x,/(x,~ + ym2). Let n > N. Note that X, < 0, since 
X n+l > --A/2 > --A. Letting rrB = rr - arg ZJ (so that X = 2 cos &), we 
have 

1 
X92+1 -x,=- -xx,- 

( 
xn 2 

&a xnz i- Yn2 
- x,2 

1 

= - $ (k& + COS’ (arg 7,) + xn2) 

> - & (Ax, + cos2 (arg v) + x,3 

ZYZZ - $ (&a + cos 7q2 > 0. 

Thus, x,+1 > x, for each IZ > N, which contradicts the fact that 
x, -+ Re v. 1 

Thus, B(A) is a fundamental region for G(A) if and only if no two distinct 
points of B(h) are G(A)-equivalent. We now show this is the case when 
h>,2orhEC. 

THEOREM 2. When A > 2, no two distinct points of B(A) are G(A)- 
equivalent. 

ProoJ: Choose V # I(1 is the identity) in G(h) and 7 E B(h). We will 
show that VT 6 B(A). We can write Yin the form V = S~*TS~-IT *.* S?TS?, 
where r > 1, each ki o 2, and ki # 0 if 2 < i < r - 1. Let 7,. = 
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T@TS;ki--l . , . Tsk ,+v. It is easily seen that I 7i j < 1 for 1 < i < r - 1. 
Thus, VT = @~,-r $ B(X). 1 

In order to handle the case h E C, we shall need two lemmas. Whenever 
h E C, we shall write A = 2 cos(n/q), where q E 2, q >, 3. 

LEMMA 1. When h E C, no two points of B(h) are equivalent under a 
nonidentity transformation in (Tl , T3). 

Proof. If the lemma is false, then there exist points 7, 7’ E B(A) with, 
say, Im 7’ 2 Im T and a word V # lin ( Tl , T3) such that VT = 7’. Note 
I/ # T3, as Tg- 4 B(A). Hence, as Tl and T3 have order 2, V can have 
either the form T3a(TlT3)n or T,“(T,T,)^, where n E 2, n # 0, and CL = 0 
or 1. If V has the latter form, then V = T3U(TlT3)-R because 
T,T, = (TIT&l. Thus, in any case V has the former form. Now for all 
n E 2, (TIT,)” is the linear fractional transformation with matrix 

b, 
t:: 1 

1 
( 
sin &(l - n) -sin An 

dn = sin sin aOn sin 7r6(n $- 1) 1 

Since (TIT,)* = I, we may write V = T,“(T,T,)*, where (Y = 0 or 1, n E 2, 
1 <n<q-1.Write7=X+iy.Ascnd,>0,wehave 

[ C,T + d, j2 = cn2 1 7 I2 + dn2 + 2c,d,x > ca2 + dn2 - hc,d, = 1, 

so that 

Jm7-‘=Im(T,T,)n7= ,c7id 
12 n 

,2 <y=ImT, 

a contradiction. 1 

LEMMA 2. LetXfC,letx +iy = TGH,andlet WE(T,, T,>, W#Z, 
W # Tl . Zf either 

(i) Re T  > 0 

or 

(ii) T  E B(h), 

then Re WT < 0. 

Proof. We can write Win the form W = T,“(T,T,)“, where 01 = 0 or 1, 
n E 2, 1 < n < q - 1. To show that Re WT < 0, it suffices to show that 
Re(T,T$ T  < 0. We have (in the notation of the previous lemma) 

Re(T,T$ 7 = (a,x + b,Xw + 4J+ anw2 
1 C,T + d, 1’ 
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Note that a, < 0, b, < 0, c, 3 0, and d,, 3 0. Hence, if (i) holds, 
a,c, y2 < 0 and (a,~ + b,)(c,x + d,) < 0, so Re(T,T# T < 0. If (ii) 
holds, then 

Re(T,T,)” T = 
b,d,, + a,c, ( T I2 + (a,d, + b,c,) x 

I CUT + 4 I2 

d W, + w, + (and, + b,c&--;\P) 
I C,T + dn I2 

-cosb-m < 0 
= ) CnT + d, 1’ ’ 

THEOREM 3. If h E C, no two distinct points of B(h) are G(A)-equivalent. 

Proof. It suffices to show that no two points of B(A) are equivalent 
under a transformation V E (Tl , Tz , T3), where V # I, V # Ta . If the 
contrary is true, choose a word v for Vin ( Tl , T, , T3) of minimal length L 
for which V # T, , V # 1, and there exists T  E B(X) such that VT E B(A). 
By Lemma 1, such a word must contain T, . No word for V of length L 
can begin or end with T2 . For if V = T,Y, then Y # T2 , Y # Z, and 
Y+r E B(h), which contradicts the minimality of L; similarly, if V = YT, , 
then Y # T, , Y # I, and Y(Tgr) E B(X), a contradiction. Thus, 
v = W,T,W,T, ..* W,T, W,,, (k 3 l), where I f Wi E (Tl , T3) for 
each i. Moreover, for each i, W, # Tl . For if,W, or W,,, equals Tl , then 
since TIT2 = T,T, , V would equal a word of length L which begins or 
ends with T, ; if Wi = Tl for some i such that 2 < i < k, then since 
T,T,T, = Tl , V would equal a word of length smaller than L. 

Let +ri = T2 WiTt Wi+l *.. T, Wk+, 7. We will show by induction on i that 
Re 7i < 0, (2 < i < k + 1). Since VT E B(A), Re +r2 = Re WF’VT < 0 
by Lemma 2. Assume Re r, < 0 for an m such that 2 < m < k. Then 
Re T,T, > 0, so by Lemma 2, Re T,+~ = Re WG’T~T~ < 0, completing 
the induction. As 7 E B(X), Re Wti+1~ < 0 by Lemma 2. Hence, 
Re Tk+l = Re 7’2Wkt1 T > 0, a contradiction. 1 

We now investigate the distribution of G(h)-equivalent points in H when 
O<h<2,)l$C. 

LEMMA 3. Let 

a b ( 1 c d 

be the matrix of the linear fractional transformation WE G(h). Then W has 
afixedpoint in H ifand only if 1 a + d ( < 2. 
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Proof. Wr = r if and only if T = (a - d & d(d + a)” - 4}/2c. 4 

LEMMA 4. Suppose WE G(X) has infinite order and W has a fixed point 
71 E H. Let t(T) = (7 - ~~)/(r - ?I>, w h ere ?l is the complex conjugate of TV. 
Then for each r E H - {TV}, the set J, = {WY: n E Z} is dense on the 
circle K, = {a: ( t(o)/ = / t(7)l). 

Proof. Let 

a b 
( 1 c d 

be the matrix of W. Note that p = CT~ + d is the characteristic value of 

a b 
( 1 c d 

corresponding to the characteristic vector (2). 
Since p and p are the roots of the characteristic equation 

x2 - (a + d)x + 1 = 0, 

we have pp = 1. Now for any T, t( WT) = ( WT - WT~)/( WT - WF~) 
since r1 and ?1 are fixed by W. Thus, 

t(W7) = 7 - 3-1 i i- - ?I 
(CT + d)(cTl + 4 - e t(7) = p-3(7). (CT + d)(c?, + 4 - p 

Thus, for all n E Z, t(wnT) = p-2nt(7). Since TV is nonreal and W has 
infinite order, 

(;‘)#(z f;)“(;‘)=~~(;‘), foreachn>,l. 

Otherwise, writing 

we would have (a(“) - 1) 71 = --b(“) and c%~ = 1 - dtn), so that 
a(“) = dtn) = 1 and b(“) = ctn) = 0, a contradiction. 

Therefore, p is not a root of unity, and, consequently, (t( W?): n E Z} 
is dense on the circle {z: ) z 1 = 1 t(7))). Thus, J, is dense on K, . 1 

LEMMA 5. If 0 < X < 2, h $ C, then there exists a WE G(A) such that W 
has infinite order and W has ajxed point in H. 
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Proof. Case 1. 0 is irrational. Choose W = TS, so that W has 
matrix 

al b, 
( 1 Cl 4 

(in the notation of the proof of Lemma 1). By Lemma 3, W has a fixed 
point in H. Since 8 is irrational, c, # 0 for all n 3 1. Thus W has infinite 
order. 

Case 2. 13 = p/q, (p, q) = 1, 2 < p < q/2. Choose W = T(TS,)“, 
where kp E 1 (mod q). Note that W has matrix 

Since 

sinb-&/d 
’ ” ’ = I sin(Tp/q) = 

sin(?r/q) < 1 
sin(vlq) ’ 

W has a fixed point by Lemma 3. 
To show that W has infinite order, we will show that 

-ck -dk 
ak -ck 

has a characteristic value p which is not a root of unity. Let ck’ be any 
algebraic conjugate of ck . Since p satisfies the characteristic equation 
x2 + 2cg + 1 = 0, a root p’ of x2 + 2ck’x + 1 = 0 is a conjugate of p. 
When (J 2q) = 1, (sin(mpkj/q))/(sin(7Tpjlq)) is a conjugate of c, . If we let 
c,’ = (sin(rpkj/q))/(sin(npj/q)), where j is odd and jp = 1 (mod q), then 
) ck’ ( = I(sin(rk/q))/sin(n/q)l 3 1. Thus, p’ is real. Now suppose p is a 
root of unity. Then so is p’, so p’ = il. Thus, p = &I, which contradicts 
IckI <l.Thus,p is not a root of unity. 1 

It follows from Lemmas 4 and 5 that G(A) is not discontinuous when 
0 < h < 2, X 4 C. We can prove a bit more. 

THEOREM 4. Let A(r) be the set of points which are G(h)-equivalent to 7. 
If 0 -c A -c 2, A 6 C, then for each r E H, A(r) is dense in H. 

Proof. By Lemma 5, we can find a WE G(h) such that W has infinite 
order and W has a fixed point 71 E H. Define t(r) = (7 - T~)/(T - or) as 
before. Assume there is a 7 E H for which A(T) is not dense in H. Then there 
is an open disk NC H - {rl} such that N n A(7) = izr . If o E K, n A(7) 
for some o! E N, then N would contain a point in J, by Lemma 4, a contra- 
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diction. Thus, K, n A(T) = aa, for each 01 E N. We can, therefore, find 
e, and e2 such that 

{u E A(T): e, < 1 t(u)] < es} = m. 

Let e3 be the largest number for which {u E A(T): e, < 1 t(u)\ < e3} = ia. 
Note e3 < 1, since 1 t(S,+)\ -+ 1, as m + co. Define j3 to be the point 
with the largest real part satisfying j @)I = e3 . Note that ,8 is the right- 
most point on K, . The circles KB and S;‘K,+, intersect at p but they are 
not tangent because the center of SL’K~+~ is higher than the center of KB . 
(The center of KB is (x1 , y,[(2/(1 - ef)) - 11) and the center of 
K BfA is (x1, y,[(2/(1 - e43) - l]), where TV = x1 + iyl and e3 < e4 = 
( t@ + h)l < 1). By definition of e3, there are points of A(T) arbitrarily 
close to KB . Hence, there are circles Kv(v E A(7)) in any small annulus 
containing K, . Lemma 4, thus, shows that p is a cluster point of A(7). 
Choose p E A(T) so close to /3 that KB and SylK,+, intersect but are not 
tangent. Then there are points of S;lJ,,, in (u: e, < ] t(u)! < eJ, a 
contradiction. 1 

We conclude with some remarks concerning the distribution of G(h)- 
fixed points in H. A G(X)-fixed point is a point in If fixed by some non- 
identity element of G(h). When h Z 2 or h E C, it is clear that B(h) contains 
no G(h)-fixed points. (For suppose VT = T, where VE G(h), 7 E B(h). As V 
is continuous at 7, I/ maps a neighborhood N of 7 into B(A). As no two 
distinct points of B(X) are G(X)-equivalent, V acts as the identity on N. 
By the identity theorem, V = I.) 

The following corollary shows that the situation is quite different when 
O<h<2,h$C. 

COROLLARY. If 0 < A < 2, A $ C, then the set F of G(h)-jixedpoints is 
dense in H. 

Proof. Let T E A(i), so that 7 = Vi for some VE G(h). Then 
VTV-lT = 7, so 7 E F. Thus, A(i) C F and since A(i) is dense in H by 
Theorem 4, F is dense in H. 1 
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