A Fundamental Region for Hecke's Modular Group

Ronald Evans
Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Communicated by P. T. Bateman

Received October 1, 1970; revised December 1, 1971

Hecke proved analytically that when $\lambda \geqslant 2$ or when $\lambda=2 \cos (\pi / q), q \in Z$, $q \geqslant 3$, then $B(\lambda)=\{r: \operatorname{Im} \tau>0,|\operatorname{Re} \tau|<\lambda / 2,|\tau|>1\}$ is a fundamental region for the group $G(\lambda)=\left\langle S_{\lambda}, T\right\rangle$, where $S_{\lambda}: \tau \rightarrow \tau+\lambda$ and $T: \tau \rightarrow-1 / \tau$. He also showed that $B(\lambda)$ fails to be a fundamental region for all other $\lambda>0$ by proving that $G(\lambda)$ is not discontinuous. We give an elementary proof of these facts and prove a related result concerning the distribution of $G(\lambda)$-equivalent points.

For each $\lambda>0$, let $G(\lambda)$ be the group generated by the transformations $S_{\lambda}: \tau \rightarrow \tau+\lambda$ and $T: \tau \rightarrow-1 / \tau$ defined on $H=\{\tau: \operatorname{Im} \tau>0\}$. Let $B(\lambda)=\{\tau \in H:|\operatorname{Re} \tau|<\lambda / 2,|\tau|>1\}$. Let Z denote the integers. Hecke [1, pp. 11-20; 2, pp. 599-616] proved analytically that $B(\lambda)$ is a fundamental region (as defined in [3, p. 22]) for $G(\lambda)$ when $\lambda \geqslant 2$ or when $\lambda=2 \cos (\pi / q)$ for some $q \in Z, q \geqslant 3$ (in the latter case we write $\lambda \in C$). We give an elementary proof of this fact. When $0<\lambda<2, \lambda \notin C$, Hecke [2, pp. 609, 613-614] proved that $G(\lambda)$ is not discontinuous (so that there can be no fundamental region for $G(\lambda)$). We present here a slightly simplified version of his proof and show, moreover, that for any $\tau \in H$, the set of all points $G(\lambda)$-equivalent to τ is dense in H.

Theorem 1. Each $\gamma \in H$ is $G(\lambda)$-equivalent to a point in $\overline{B(\lambda)}$, (the closure of $B(\lambda))$.

Proof. Define the following transformations on H :
$T_{1}:\left.\tau \rightarrow \tau| | \tau\right|^{2}$ (reflection in the unit circle),
$T_{2}: \tau \rightarrow-\bar{\tau}$ (reflection in the line $\operatorname{Re} \tau=0$),
$T_{3}: \tau \rightarrow-(\bar{\tau}+\lambda)$ (reflection in the line $\left.\operatorname{Re} \tau=-\lambda / 2\right)$.
Since $S_{\lambda}=T_{2} T_{3}$ and $T=T_{1} T_{2}$, it is easily seen that $G(\lambda)$ consists of the
words in $\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ of even length. Hence, it suffices to find $V \in\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ such that $V \gamma \in \bar{B}(\lambda)$, for if $V \notin G(\lambda)$, then $T_{2} V \in G(\lambda)$.

Define a sequence of points $\tau_{n}=x_{n}+i y_{n}$ inductively as follows: apply T_{2} and T_{3}, if necessary, to move γ horizontally to a point τ_{1} in the strip $E_{\lambda}=\{\tau \in H:-\lambda / 2 \leqslant \operatorname{Re} \tau \leqslant 0\}$. Given $\tau_{n}(n \geqslant 1)$, apply T_{2} and T_{3} to move $T_{1} \tau_{n}$ horizontally to a point $\tau_{n+1} \in E_{\lambda}$. We will assume that $\left|\tau_{n}\right|<1$ for each n, otherwise the theorem is proved. Thus, $y_{n+1}=$ $\left.y_{n}| | \tau_{n}\right|^{2}>y_{n}$. Let w be a cluster point of $\left\{\tau_{n}\right\}$. Note $\operatorname{Im} w>0$. If $|w|<1$, then $\left\{\tau_{n}\right\}$ has an infinite subsequence $\left\{\tau_{n_{k}}\right\}$ such that $\left|\tau_{n_{k}}\right| \leqslant c<1$, so that $y_{n_{k}} \geqslant y_{n_{1}} / c^{2(k-1)} \rightarrow \infty$ as $k \rightarrow \infty$, a contradiction. Hence, $|w|=1$. When $\lambda<2$, let v denote the point of intersection between the unit circle and the line $\operatorname{Re} \tau=-\lambda / 2$. We will assume that $\lambda<2$ and that $w=v$ is the unique cluster point of $\left\{\tau_{n}\right\}$, otherwise $T_{1} \tau_{n} \in B(\lambda)$ for some large n. If $\arg \tau_{n} \leqslant \arg v$ for some n, then $\operatorname{Im} \tau_{n+1}>\operatorname{Im} v$, contradicting the fact that $y_{n} \uparrow \operatorname{Im} v$. Hence, $\arg \tau_{n}>\arg v$ for each n. Now there exists an N such that for all $n \geqslant N, \tau_{n+1}=T_{3} T_{1} \tau_{n}$, so that $x_{n+1}=-\lambda-x_{n} /\left(x_{n}{ }^{2}+y_{n}{ }^{2}\right)$. Let $n \geqslant N$. Note that $x_{n}<0$, since $x_{n+1} \geqslant-\lambda / 2>-\lambda$. Letting $\pi \theta=\pi-\arg v$ (so that $\lambda=2 \cos \pi \theta$), we have

$$
\begin{aligned}
x_{n+1}-x_{n} & =\frac{1}{x_{n}}\left(-\lambda x_{n}-\frac{x_{n}^{2}}{x_{n}^{2}+y_{n}^{2}}-x_{n}^{2}\right) \\
& =-\frac{1}{x_{n}}\left(\lambda x_{n}+\cos ^{2}\left(\arg \tau_{n}\right)+x_{n}^{2}\right) \\
& >-\frac{1}{x_{n}}\left(\lambda x_{n}+\cos ^{2}(\arg v)+x_{n}^{2}\right) \\
& =-\frac{1}{x_{n}}\left(x_{n}+\cos \pi \theta\right)^{2} \geqslant 0
\end{aligned}
$$

Thus, $x_{n+1}>x_{n}$ for each $n \geqslant N$, which contradicts the fact that $x_{n} \rightarrow \operatorname{Re} v$.

Thus, $B(\lambda)$ is a fundamental region for $G(\lambda)$ if and only if no two distinct points of $B(\lambda)$ are $G(\lambda)$-equivalent. We now show this is the case when $\lambda \geqslant 2$ or $\lambda \in C$.

Theorem 2. When $\lambda \geqslant 2$, no two distinct points of $B(\lambda)$ are $G(\lambda)$ equivalent.

Proof. Choose $V \neq I$ (I is the identity) in $G(\lambda)$ and $\tau \in B(\lambda)$. We will show that $V \tau \notin B(\lambda)$. We can write V in the form $V=S_{\lambda}^{k_{r}} T S_{\lambda}^{k_{r-1}} T \cdots S_{\lambda}^{k_{2}} T S_{\lambda}^{k_{1}}$, where $r \geqslant 1$, each $k_{i} \in Z$, and $k_{i} \neq 0$ if $2 \leqslant i \leqslant r-1$. Let $\tau_{i}=$
$T S_{\lambda}^{k_{i}} T S_{\lambda}^{k_{i-1}} \cdots T S_{\lambda}^{k_{1}} \tau$. It is easily seen that $\left|\tau_{i}\right|<1$ for $1 \leqslant i \leqslant r-1$.

In order to handle the case $\lambda \in C$, we shall need two lemmas. Whenever $\lambda \in C$, we shall write $\lambda=2 \cos (\pi / q)$, where $q \in Z, q \geqslant 3$.

Lemma 1. When $\lambda \in C$, no two points of $B(\lambda)$ are equivalent under a nonidentity transformation in $\left\langle T_{1}, T_{3}\right\rangle$.

Proof. If the lemma is false, then there exist points $\tau, \tau^{\prime} \in B(\lambda)$ with, say, $\operatorname{Im} \tau^{\prime} \geqslant \operatorname{Im} \tau$ and a word $V \neq I$ in $\left\langle T_{1}, T_{3}\right\rangle$ such that $V \tau=\tau^{\prime}$. Note $V \neq T_{3}$, as $T_{3} \tau \notin B(\lambda)$. Hence, as T_{1} and T_{3} have order $2, V$ can have either the form $T_{3}{ }^{\alpha}\left(T_{1} T_{3}\right)^{n}$ or $T_{3}{ }^{\alpha}\left(T_{3} T_{1}\right)^{n}$, where $n \in Z, n \neq 0$, and $\alpha=0$ or 1. If V has the latter form, then $V=T_{3}{ }^{\alpha}\left(T_{1} T_{3}\right)^{-n}$ because $T_{3} T_{1}=\left(T_{1} T_{3}\right)^{-1}$. Thus, in any case V has the former form. Now for all $n \in Z,\left(T_{1} T_{3}\right)^{n}$ is the linear fractional transformation with matrix

$$
\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)=\frac{1}{\sin \pi \theta}\left(\begin{array}{ll}
\sin \pi \theta(1-n) & -\sin \pi \theta n \\
\sin \pi \theta n & \sin \pi \theta(n+1)
\end{array}\right)
$$

Since $\left(T_{1} T_{3}\right)^{q}=I$, we may write $V=T_{3}{ }^{x}\left(T_{1} T_{3}\right)^{n}$, where $\alpha=0$ or $1, n \in Z$, $1 \leqslant n \leqslant q-1$. Write $\tau=x+i y$. As $c_{n} d_{n} \geqslant 0$, we have

$$
\left|c_{n} \tau+d_{n}\right|^{2}=c_{n}^{2}|\tau|^{2}+d_{n}^{2}+2 c_{n} d_{n} x>c_{n}^{2}+d_{n}^{2}-\lambda c_{n} d_{n}=1
$$

so that

$$
\operatorname{Im} \tau^{\prime}=\operatorname{Im}\left(T_{1} T_{3}\right)^{n} \tau=\frac{y}{\left|c_{n} \tau+d_{n}\right|^{2}}<y=\operatorname{Im} \tau
$$

a contradiction.
Lemma 2. Let $\lambda \in C$, let $x+i y=\tau \in H$, and let $W \in\left\langle T_{1}, T_{3}\right\rangle, W \neq I$, $W \neq T_{1}$. If either
(i) $\operatorname{Re} \tau>0$
or
(ii) $\tau \in B(\lambda)$,
then $\operatorname{Re} W \tau<0$.
Proof. We can write W in the form $W=T_{1}{ }^{\alpha}\left(T_{1} T_{3}\right)^{n}$, where $\alpha=0$ or 1 , $n \in Z, 1 \leqslant n \leqslant q-1$. To show that $\operatorname{Re} W \tau<0$, it suffices to show that $\operatorname{Re}\left(T_{1} T_{3}\right)^{n} \tau<0$. We have (in the notation of the previous lemma)

$$
\operatorname{Re}\left(T_{1} T_{3}\right)^{n} \tau=\frac{\left(a_{n} x+b_{n}\right)\left(c_{n} x+d_{n}\right)+a_{n} c_{n} y^{2}}{\left|c_{n} \tau+d_{n}\right|^{2}}
$$

Note that $a_{n} \leqslant 0, b_{n} \leqslant 0, c_{n} \geqslant 0$, and $d_{n} \geqslant 0$. Hence, if (i) holds, $a_{n} c_{n} y^{2} \leqslant 0$ and $\left(a_{n} x+b_{n}\right)\left(c_{n} x+d_{n}\right)<0$, so $\operatorname{Re}\left(T_{1} T_{3}\right)^{n} \tau<0$. If (ii) holds, then

$$
\begin{array}{rl}
\operatorname{Re}\left(T_{1} T_{3}\right)^{n} \tau & =b_{n} d_{n}+a_{n} c_{n}|\tau|^{2}+\left(a_{n} d_{n} \pm b_{n} c_{n}\right) x \\
\left|c_{n} \tau+d_{n}\right|^{2} & x \\
& \leqslant \frac{b_{n} d_{n}+a_{n} c_{n}+\left(a_{n} d_{n}+b_{n} c_{n}\right)(-\lambda / 2)}{\left|c_{n} \tau+d_{n}\right|^{2}} \\
& =\frac{-\cos (\pi / q)}{\left|c_{n} \tau+d_{n}\right|^{2}}<0
\end{array}
$$

Theorem 3. If $\lambda \in C$, no two distinct points of $B(\lambda)$ are $G(\lambda)$-equivalent.
Proof. It suffices to show that no two points of $B(\lambda)$ are equivalent under a transformation $V \in\left\langle T_{1}, T_{2}, T_{3}\right\rangle$, where $V \neq I, V \neq T_{2}$. If the contrary is true, choose a word v for V in $\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ of minimal length L for which $V \neq T_{2}, V \neq I$, and there exists $\tau \in B(\lambda)$ such that $V \tau \in B(\lambda)$. By Lemma 1, such a word must contain T_{2}. No word for V of length L can begin or end with T_{2}. For if $V=T_{2} Y$, then $Y \neq T_{2}, Y \neq I$, and $Y \tau \in B(\lambda)$, which contradicts the minimality of L; similarly, if $V=Y T_{2}$, then $Y \neq T_{2}, \quad Y \neq I$, and $Y\left(T_{2} \tau\right) \in B(\lambda)$, a contradiction. Thus, $v=W_{1} T_{2} W_{2} T_{2} \cdots W_{k} T_{2} W_{k+1}(k \geqslant 1)$, where $I \neq W_{i} \in\left\langle T_{1}, T_{3}\right\rangle$ for each i. Moreover, for each $i, W_{i} \neq T_{1}$. For if W_{1} or W_{k+1} equals T_{1}, then since $T_{1} T_{2}=T_{2} T_{1}, V$ would equal a word of length L which begins or ends with T_{2}; if $W_{i}=T_{1}$ for some i such that $2 \leqslant i \leqslant k$, then since $T_{2} T_{1} T_{2}=T_{1}, V$ would equal a word of length smaller than L.

Let $\tau_{i}=T_{2} W_{i} T_{2} W_{i+1} \cdots T_{2} W_{k+1} \tau$. We will show by induction on i that $\operatorname{Re} \tau_{i}<0,(2 \leqslant i \leqslant k+1)$. Since $V \tau \in B(\lambda), \operatorname{Re} \tau_{2}=\operatorname{Re} W_{1}^{-1} V \tau<0$ by Lemma 2. Assume $\operatorname{Re} \tau_{m}<0$ for an m such that $2 \leqslant m \leqslant k$. Then $\operatorname{Re} T_{2} \tau_{m}>0$, so by Lemma 2, $\operatorname{Re} \tau_{m+1}=\operatorname{Re} W_{m}^{-1} T_{2} \tau_{m}<0$, completing the induction. As $\tau \in B(\lambda), \operatorname{Re} W_{k+1} \tau<0$ by Lemma 2. Hence, $\operatorname{Re} \tau_{k+1}=\operatorname{Re} T_{2} W_{k+1} \tau>0$, a contradiction.

We now investigate the distribution of $G(\lambda)$-equivalent points in H when $0<\lambda<2, \lambda \notin C$.

Lemma 3. Let

$$
\left(\begin{array}{ll}
a & b_{0}^{c} \\
c & d
\end{array}\right)
$$

be the matrix of the linear fractional transformation $W \in G(\lambda)$. Then W has a fixed point in H if and only if $|a+d|<2$.

Proof. $W \tau=\tau$ if and only if $\tau=\left\{a-d \pm \sqrt{(d+a)^{2}-4}\right\} / 2 c$.
Lemma 4. Suppose $W \in G(\lambda)$ has infinite order and W has a fixed point $\tau_{1} \in$ H. Let $t(\tau)=\left(\tau-\tau_{1}\right) /\left(\tau-\bar{\tau}_{1}\right)$, where $\bar{\tau}_{1}$ is the complex conjugate of τ_{1}. Then for each $\tau \in H-\left\{\tau_{1}\right\}$, the set $J_{\tau}=\left\{W^{n} \tau: n \in Z\right\}$ is dense on the circle $K_{\tau}=\{\sigma:|t(\sigma)|=|t(\tau)|\}$.

Proof. Let

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be the matrix of W. Note that $\rho=c \tau_{1}+d$ is the characteristic value of

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

corresponding to the characteristic vector (${ }_{1}^{\tau_{1}}$).
Since ρ and $\bar{\rho}$ are the roots of the characteristic equation

$$
x^{2}-(a+d) x+1=0
$$

we have $\rho \bar{\rho}=1$. Now for any $\tau, t(W \tau)=\left(W \tau-W \tau_{1}\right) /\left(W \tau-W \bar{\tau}_{1}\right)$ since τ_{1} and $\bar{\tau}_{1}$ are fixed by W. Thus,

$$
t(W \tau)=\frac{\tau-\tau_{1}}{(c \tau+d)\left(c \tau_{1}+d\right)} / \frac{\tau-\bar{\tau}_{1}}{(c \tau+d)\left(c \bar{\tau}_{1}+d\right)}=\frac{\bar{\rho}}{\rho} t(\tau)=\rho^{-2} t(\tau) .
$$

Thus, for all $n \in Z, t\left(W^{n} \tau\right)=\rho^{-2 n} t(\tau)$. Since τ_{1} is nonreal and W has infinite order,

$$
\binom{\tau_{1}}{1} \neq\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{n}\binom{\tau_{1}}{1}=\rho^{n}\binom{\tau_{1}}{1}, \quad \text { for each } n \geqslant 1 .
$$

Otherwise, writing

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{n}=\left(\begin{array}{ll}
a^{(n)} & b^{(n)} \\
c^{(n)} & d^{(n)}
\end{array}\right)
$$

we would have $\left(a^{(n)}-1\right) \tau_{1}=-b^{(n)}$ and $c^{(n)} \tau_{1}=1-d^{(n)}$, so that $a^{(n)}=d^{(n)}=1$ and $b^{(n)}=c^{(n)}=0$, a contradiction.

Therefore, ρ is not a root of unity, and, consequently, $\left\{t\left(W^{n} \tau\right): n \in Z\right\}$ is dense on the circle $\{z:|z|=|t(\tau)|\}$. Thus, J_{τ} is dense on K_{τ}.

Lemma 5. If $0<\lambda<2, \lambda \notin C$, then there exists $a W \in G(\lambda)$ such that W has infinite order and W has a fixed point in H.

Proof. Case 1. θ is irrational. Choose $W=T S_{\lambda}$ so that W has matrix

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)
$$

(in the notation of the proof of Lemma 1). By Lemma 3, W has a fixed point in H. Since θ is irrational, $c_{n} \neq 0$ for all $n \geqslant 1$. Thus W has infinite order.

Case 2. $\quad \theta=p / q,(p, q)=1,2 \leqslant p<q / 2$. Choose $W=T\left(T S_{\lambda}\right)^{k}$, where $k p \equiv 1(\bmod q)$. Note that W has matrix

$$
\left(\begin{array}{rr}
-c_{k} & -d_{k} \\
a_{k} & b_{k}
\end{array}\right)=\left(\begin{array}{rr}
-c_{k} & -d_{k} \\
a_{k} & -c_{k}
\end{array}\right)
$$

Since

$$
\left|c_{k}\right|=\left|\frac{\sin (\pi p k / q)}{\sin (\pi p / q)}\right|=\frac{\sin (\pi / q)}{\sin (\pi p / q)}<1
$$

W has a fixed point by Lemma 3.
To show that W has infinite order, we will show that

$$
\left(\begin{array}{rr}
-c_{k} & -d_{k} \\
a_{k} & -c_{k}
\end{array}\right)
$$

has a characteristic value ρ which is not a root of unity. Let $c_{k}{ }^{\prime}$ be any algebraic conjugate of c_{k}. Since ρ satisfies the characteristic equation $x^{2}+2 c_{k} x+1=0$, a root ρ^{\prime} of $x^{2}+2 c_{k}^{\prime} x+1=0$ is a conjugate of ρ. When $(j, 2 q)=1,(\sin (\pi p k j / q)) /(\sin (\pi p j / q))$ is a conjugate of c_{k}. If we let $c_{k}{ }^{\prime}=(\sin (\pi p k j / q)) /(\sin (\pi p j / q))$, where j is odd and $j p \equiv 1(\bmod q)$, then $\left|c_{k}{ }^{\prime}\right|=|(\sin (\pi k / q)) / \sin (\pi / q)| \geqslant 1$. Thus, ρ^{\prime} is real. Now suppose ρ is a root of unity. Then so is ρ^{\prime}, so $\rho^{\prime}= \pm 1$. Thus, $\rho= \pm 1$, which contradicts $\left|c_{k}\right|<1$. Thus, ρ is not a root of unity.
It follows from Lemmas 4 and 5 that $G(\lambda)$ is not discontinuous when $0<\lambda<2, \lambda \notin C$. We can prove a bit more.

Theorem 4. Let $A(\tau)$ be the set of points which are $G(\lambda)$-equivalent to τ. If $0<\lambda<2, \lambda \notin C$, then for each $\tau \in H, A(\tau)$ is dense in H.

Proof. By Lemma 5, we can find a $W \in G(\lambda)$ such that W has infinite order and W has a fixed point $\tau_{1} \in H$. Define $t(\tau)=\left(\tau-\tau_{1}\right) /\left(\tau-\bar{\tau}_{1}\right)$ as before. Assume there is a $\tau \in H$ for which $A(\tau)$ is not dense in H. Then there is an open disk $N \subset H-\left\{\tau_{1}\right\}$ such that $N \cap A(\tau)=\varnothing$. If $\sigma \in K_{\alpha} \cap A(\tau)$ for some $\alpha \in N$, then N would contain a point in J_{σ} by Lemma 4, a contra-
diction. Thus, $K_{\alpha} \cap A(\tau)=\varnothing$, for each $\alpha \in N$. We can, therefore, find e_{1} and e_{2} such that

$$
\left\{\sigma \in A(\tau): e_{1}<|t(\sigma)|<e_{2}\right\}=\varnothing .
$$

Let e_{3} be the largest number for which $\left\{\sigma \in A(\tau): e_{1}<|t(\sigma)|<e_{3}\right\}=\varnothing$. Note $e_{3}<1$, since $\left|t\left(S_{\lambda}^{m} \tau\right)\right| \rightarrow 1$, as $m \rightarrow \infty$. Define β to be the point with the largest real part satisfying $|t(\beta)|=e_{3}$. Note that β is the rightmost point on K_{β}. The circles K_{β} and $S_{\lambda}^{-1} K_{\beta+\lambda}$ intersect at β but they are not tangent because the center of $S_{\lambda}^{-1} K_{\beta+\lambda}$ is higher than the center of K_{β}. (The center of K_{8} is $\left(x_{1}, y_{1}\left[\left(2 /\left(1-e_{3}{ }^{2}\right)\right)-1\right]\right)$ and the center of $K_{\beta+\lambda}$ is $\left(x_{1}, y_{1}\left[\left(2 /\left(1-e_{4}^{2}\right)\right)-1\right]\right)$, where $\tau_{1}=x_{1}+i y_{1}$ and $e_{3}<e_{4}=$ $|t(\beta+\lambda)|<1)$. By definition of e_{3}, there are points of $A(\tau)$ arbitrarily close to K_{β}. Hence, there are circles $K_{\nu}(\nu \in A(\tau))$ in any small annulus containing K_{β}. Lemma 4, thus, shows that β is a cluster point of $A(\tau)$. Choose $\mu \in A(\tau)$ so close to β that K_{β} and $S_{\lambda}^{-1} K_{\mu+\lambda}$ intersect but are not tangent. Then there are points of $S_{\lambda}^{-1} J_{\mu+\lambda}$ in $\left\{\sigma: e_{1}<|t(\sigma)|<e_{3}\right\}$, a contradiction.

We conclude with some remarks concerning the distribution of $G(\lambda)$ fixed points in H. A $G(\lambda)$-fixed point is a point in H fixed by some nonidentity element of $G(\lambda)$. When $\lambda \geqslant 2$ or $\lambda \in C$, it is clear that $B(\lambda)$ contains no $G(\lambda)$-fixed points. (For suppose $V \tau=\tau$, where $V \in G(\lambda), \tau \in B(\lambda)$. As V is continuous at τ, V maps a neighborhood N of τ into $B(\lambda)$. As no two distinct points of $B(\lambda)$ are $G(\lambda)$-equivalent, V acts as the identity on N. By the identity theorem, $V=I$.)
The following corollary shows that the situation is quite different when $0<\lambda<2, \lambda \notin C$.

COrollary. If $0<\lambda<2, \lambda \notin C$, then the set F of $G(\lambda)$-fixed points is dense in H.

Proof. Let $\tau \in A(i)$, so that $\tau=V i$ for some $V \in G(\lambda)$. Then $V T V^{-1} \tau=\tau$, so $\tau \in F$. Thus, $A(i) \subset F$ and since $A(i)$ is dense in H by Theorem 4, Fis dense in H.

Acknowledgments

I wish to thank Professors P. T. Bateman, Bruce Berndt, and Joseph Lehner for their valuable ideas and suggestions.

References

1. E. Hecke, "Dirichlet Series, Modular Functions, and Quadratic Forms," Edwards Brothers, Inc., Ann Arbor, MI, 1938.
2. E. Hecke, "Mathematische Werke," Vanderhoeck \& Ruprecht, Göttingen, 1959.
3. J. Lehner, "A short course in automorphic functions," Holt, Rinehart and Winston, New York, 1966.
