A Fundamental Region for Hecke's Modular Group

RONALD EVANS

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Communicated by P. T. Bateman

Received October 1, 1970; revised December 1, 1971

Hecke proved analytically that when $\lambda \ge 2$ or when $\lambda = 2 \cos(\pi/q)$, $q \in Z$, $q \ge 3$, then $B(\lambda) = \{\tau: \operatorname{Im} \tau > 0, |\operatorname{Re} \tau| < \lambda/2, |\tau| > 1\}$ is a fundamental region for the group $G(\lambda) = \langle S_{\lambda}, T \rangle$, where $S_{\lambda}: \tau \to \tau + \lambda$ and $T: \tau \to -1/\tau$. He also showed that $B(\lambda)$ fails to be a fundamental region for all other $\lambda > 0$ by proving that $G(\lambda)$ is not discontinuous. We give an elementary proof of these facts and prove a related result concerning the distribution of $G(\lambda)$ -equivalent points.

For each $\lambda > 0$, let $G(\lambda)$ be the group generated by the transformations $S_{\lambda}: \tau \to \tau + \lambda$ and $T: \tau \to -1/\tau$ defined on $H = \{\tau: \operatorname{Im} \tau > 0\}$. Let $B(\lambda) = \{\tau \in H: | \operatorname{Re} \tau | < \lambda/2, |\tau| > 1\}$. Let Z denote the integers. Hecke [1, pp. 11–20; 2, pp. 599–616] proved analytically that $B(\lambda)$ is a fundamental region (as defined in [3, p. 22]) for $G(\lambda)$ when $\lambda \ge 2$ or when $\lambda = 2\cos(\pi/q)$ for some $q \in Z, q \ge 3$ (in the latter case we write $\lambda \in C$). We give an elementary proof of this fact. When $0 < \lambda < 2, \lambda \notin C$, Hecke [2, pp. 609, 613–614] proved that $G(\lambda)$ is not discontinuous (so that there can be no fundamental region for $G(\lambda)$). We present here a slightly simplified version of his proof and show, moreover, that for any $\tau \in H$, the set of all points $G(\lambda)$ -equivalent to τ is dense in H.

THEOREM 1. Each $\gamma \in H$ is $G(\lambda)$ -equivalent to a point in $\overline{B(\lambda)}$, (the closure of $B(\lambda)$).

Proof. Define the following transformations on *H*:

 $T_1: \tau \to \tau/|\tau|^2 \text{ (reflection in the unit circle),}$ $T_2: \tau \to -\bar{\tau} \text{ (reflection in the line Re } \tau = 0\text{),}$ $T_3: \tau \to -(\bar{\tau} + \lambda) \text{ (reflection in the line Re } \tau = -\lambda/2\text{).}$

Since $S_{\lambda} = T_2 T_3$ and $T = T_1 T_2$, it is easily seen that $G(\lambda)$ consists of the

Copyright () 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. words in $\langle T_1, T_2, T_3 \rangle$ of even length. Hence, it suffices to find $V \in \langle T_1, T_2, T_3 \rangle$ such that $V_{\gamma} \in \overline{B(\lambda)}$, for if $V \notin G(\lambda)$, then $T_2 V \in G(\lambda)$.

Define a sequence of points $\tau_n = x_n + iy_n$ inductively as follows: apply T_2 and T_3 , if necessary, to move γ horizontally to a point τ_1 in the strip $E_{\lambda} = \{\tau \in H: -\lambda/2 \leq \text{Re } \tau \leq 0\}$. Given $\tau_n \ (n \geq 1)$, apply T_2 and T_3 to move $T_1 \tau_n$ horizontally to a point $\tau_{n+1} \in E_{\lambda}$. We will assume that $|\tau_n| < 1$ for each *n*, otherwise the theorem is proved. Thus, $y_{n+1} =$ $y_n/|\tau_n|^2 > y_n$. Let w be a cluster point of $\{\tau_n\}$. Note Im w > 0. If |w| < 1, then $\{\tau_n\}$ has an infinite subsequence $\{\tau_{n_k}\}$ such that $|\tau_{n_k}| \leq c < 1$, so that $y_{n_k} \ge y_{n_1}/c^{2(k-1)} \to \infty$ as $k \to \infty$, a contradiction. Hence, |w| = 1. When $\lambda < 2$, let v denote the point of intersection between the unit circle and the line Re $\tau = -\lambda/2$. We will assume that $\lambda < 2$ and that w = v is the unique cluster point of $\{\tau_n\}$, otherwise $T_1 \tau_n \in B(\lambda)$ for some large *n*. If arg $\tau_n \leq \arg v$ for some *n*, then Im $\tau_{n+1} > \text{Im } v$, contradicting the fact that $y_n \uparrow \text{Im } v$. Hence, $\arg \tau_n > \arg v$ for each *n*. Now there exists an *N* such that for all $n \ge N$, $\tau_{n+1} = T_3 T_1 \tau_n$, so that $x_{n+1} = -\lambda - x_n/(x_n^2 + y_n^2)$. Let $n \ge N$. Note that $x_n < 0$, since $x_{n+1} \ge -\lambda/2 > -\lambda$. Letting $\pi \theta = \pi - \arg v$ (so that $\lambda = 2 \cos \pi \theta$), we have

$$\begin{aligned} x_{n+1} - x_n &= \frac{1}{x_n} \left(-\lambda x_n - \frac{x_n^2}{x_n^2 + y_n^2} - x_n^2 \right) \\ &= -\frac{1}{x_n} \left(\lambda x_n + \cos^2 \left(\arg \tau_n \right) + x_n^2 \right) \\ &> -\frac{1}{x_n} \left(\lambda x_n + \cos^2 \left(\arg v \right) + x_n^2 \right) \\ &= -\frac{1}{x_n} \left(x_n + \cos \pi \theta \right)^2 \ge 0. \end{aligned}$$

Thus, $x_{n+1} > x_n$ for each $n \ge N$, which contradicts the fact that $x_n \rightarrow \text{Re } v$.

Thus, $B(\lambda)$ is a fundamental region for $G(\lambda)$ if and only if no two distinct points of $B(\lambda)$ are $G(\lambda)$ -equivalent. We now show this is the case when $\lambda \ge 2$ or $\lambda \in C$.

THEOREM 2. When $\lambda \ge 2$, no two distinct points of $B(\lambda)$ are $G(\lambda)$ -equivalent.

Proof. Choose $V \neq I$ (*I* is the identity) in $G(\lambda)$ and $\tau \in B(\lambda)$. We will show that $V\tau \notin B(\lambda)$. We can write V in the form $V = S_{\lambda}^{k_r} T S_{\lambda}^{k_{r-1}} T \cdots S_{\lambda}^{k_2} T S_{\lambda}^{k_1}$, where $r \geq 1$, each $k_i \in Z$, and $k_i \neq 0$ if $2 \leq i \leq r-1$. Let $\tau_i =$

 $TS_{\lambda}^{k_i}TS_{\lambda}^{k_{i-1}}\cdots TS_{\lambda}^{k_1}\tau$. It is easily seen that $|\tau_i| < 1$ for $1 \leq i \leq r-1$. Thus, $V\tau = S_{\lambda}^{k_r}\tau_{r-1} \notin B(\lambda)$.

In order to handle the case $\lambda \in C$, we shall need two lemmas. Whenever $\lambda \in C$, we shall write $\lambda = 2 \cos(\pi/q)$, where $q \in Z$, $q \ge 3$.

LEMMA 1. When $\lambda \in C$, no two points of $B(\lambda)$ are equivalent under a nonidentity transformation in $\langle T_1, T_3 \rangle$.

Proof. If the lemma is false, then there exist points τ , $\tau' \in B(\lambda)$ with, say, Im $\tau' \ge \text{Im } \tau$ and a word $V \ne I$ in $\langle T_1, T_3 \rangle$ such that $V\tau = \tau'$. Note $V \ne T_3$, as $T_3\tau \notin B(\lambda)$. Hence, as T_1 and T_3 have order 2, V can have either the form $T_3^{\alpha}(T_1T_3)^n$ or $T_3^{\alpha}(T_3T_1)^n$, where $n \in Z$, $n \ne 0$, and $\alpha = 0$ or 1. If V has the latter form, then $V = T_3^{\alpha}(T_1T_3)^{-n}$ because $T_3T_1 = (T_1T_3)^{-1}$. Thus, in any case V has the former form. Now for all $n \in Z$, $(T_1T_3)^n$ is the linear fractional transformation with matrix

$$\begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} = \frac{1}{\sin \pi \theta} \begin{pmatrix} \sin \pi \theta (1-n) & -\sin \pi \theta n \\ \sin \pi \theta n & \sin \pi \theta (n+1) \end{pmatrix}$$

Since $(T_1T_3)^q = I$, we may write $V = T_3^{\alpha}(T_1T_3)^n$, where $\alpha = 0$ or $1, n \in \mathbb{Z}$, $1 \leq n \leq q-1$. Write $\tau = x + iy$. As $c_n d_n \geq 0$, we have

$$|c_n \tau + d_n|^2 = c_n^2 |\tau|^2 + d_n^2 + 2c_n d_n x > c_n^2 + d_n^2 - \lambda c_n d_n = 1,$$

so that

$$\operatorname{Im} \tau' = \operatorname{Im}(T_1 T_3)^n \tau = \frac{y}{|c_n \tau + d_n|^2} < y = \operatorname{Im} \tau,$$

a contradiction.

LEMMA 2. Let $\lambda \in C$, let $x + iy = \tau \in H$, and let $W \in \langle T_1, T_3 \rangle$, $W \neq I$, $W \neq T_1$. If either

(i) Re $\tau > 0$

or

(ii) $\tau \in B(\lambda)$,

then Re $W\tau < 0$.

Proof. We can write W in the form $W = T_1^{\alpha}(T_1T_3)^n$, where $\alpha = 0$ or 1, $n \in \mathbb{Z}$, $1 \leq n \leq q-1$. To show that Re $W\tau < 0$, it suffices to show that Re $(T_1T_3)^n \tau < 0$. We have (in the notation of the previous lemma)

$$\operatorname{Re}(T_{1}T_{3})^{n}\tau = \frac{(a_{n}x + b_{n})(c_{n}x + d_{n}) + a_{n}c_{n}y^{2}}{|c_{n}\tau + d_{n}|^{2}}$$

Note that $a_n \leq 0$, $b_n \leq 0$, $c_n \geq 0$, and $d_n \geq 0$. Hence, if (i) holds, $a_nc_n y^2 \leq 0$ and $(a_nx + b_n)(c_nx + d_n) < 0$, so $\operatorname{Re}(T_1T_3)^n \tau < 0$. If (ii) holds, then

$$\operatorname{Re}(T_{1}T_{3})^{n} \tau = \frac{b_{n}d_{n} + a_{n}c_{n} |\tau|^{2} + (a_{n}d_{n} + b_{n}c_{n})x}{|c_{n}\tau + d_{n}|^{2}}$$

$$\leq \frac{b_{n}d_{n} + a_{n}c_{n} + (a_{n}d_{n} + b_{n}c_{n})(-\lambda/2)}{|c_{n}\tau + d_{n}|^{2}}$$

$$= \frac{-\cos(\pi/q)}{|c_{n}\tau + d_{n}|^{2}} < 0.$$

THEOREM 3. If $\lambda \in C$, no two distinct points of $B(\lambda)$ are $G(\lambda)$ -equivalent.

Proof. It suffices to show that no two points of $B(\lambda)$ are equivalent under a transformation $V \in \langle T_1, T_2, T_3 \rangle$, where $V \neq I$, $V \neq T_2$. If the contrary is true, choose a word v for V in $\langle T_1, T_2, T_3 \rangle$ of minimal length Lfor which $V \neq T_2$, $V \neq I$, and there exists $\tau \in B(\lambda)$ such that $V\tau \in B(\lambda)$. By Lemma 1, such a word must contain T_2 . No word for V of length Lcan begin or end with T_2 . For if $V = T_2Y$, then $Y \neq T_2$, $Y \neq I$, and $Y\tau \in B(\lambda)$, which contradicts the minimality of L; similarly, if $V = YT_2$, then $Y \neq T_2$, $Y \neq I$, and $Y(T_2\tau) \in B(\lambda)$, a contradiction. Thus, $v = W_1T_2W_2T_2 \cdots W_kT_2W_{k+1}$ ($k \ge 1$), where $I \neq W_i \in \langle T_1, T_3 \rangle$ for each *i*. Moreover, for each *i*, $W_i \neq T_1$. For if W_1 or W_{k+1} equals T_1 , then since $T_1T_2 = T_2T_1$, V would equal a word of length L which begins or ends with T_2 ; if $W_i = T_1$ for some *i* such that $2 \le i \le k$, then since $T_2T_1T_2 = T_1$, V would equal a word of length smaller than L.

Let $\tau_i = T_2 W_i T_2 W_{i+1} \cdots T_2 W_{k+1} \tau$. We will show by induction on *i* that Re $\tau_i < 0$, $(2 \le i \le k+1)$. Since $V \tau \in B(\lambda)$, Re $\tau_2 = \text{Re } W_1^{-1} V \tau < 0$ by Lemma 2. Assume Re $\tau_m < 0$ for an *m* such that $2 \le m \le k$. Then Re $T_2 \tau_m > 0$, so by Lemma 2, Re $\tau_{m+1} = \text{Re } W_m^{-1} T_2 \tau_m < 0$, completing the induction. As $\tau \in B(\lambda)$, Re $W_{k+1} \tau < 0$ by Lemma 2. Hence, Re $\tau_{k+1} = \text{Re } T_2 W_{k+1} \tau > 0$, a contradiction.

We now investigate the distribution of $G(\lambda)$ -equivalent points in H when $0 < \lambda < 2, \lambda \notin C$.

LEMMA 3. Let

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

be the matrix of the linear fractional transformation $W \in G(\lambda)$. Then W has a fixed point in H if and only if |a + d| < 2.

L

EVANS

Proof. $W\tau = \tau$ if and only if $\tau = \{a - d \pm \sqrt{(d+a)^2 - 4}\}/2c$.

LEMMA 4. Suppose $W \in G(\lambda)$ has infinite order and W has a fixed point $\tau_1 \in H$. Let $t(\tau) = (\tau - \tau_1)/(\tau - \overline{\tau}_1)$, where $\overline{\tau}_1$ is the complex conjugate of τ_1 . Then for each $\tau \in H - \{\tau_1\}$, the set $J_{\tau} = \{W^n \tau : n \in Z\}$ is dense on the circle $K_{\tau} = \{\sigma : |t(\sigma)| = |t(\tau)|\}$.

Proof. Let

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

be the matrix of W. Note that $\rho = c\tau_1 + d$ is the characteristic value of

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

corresponding to the characteristic vector $\binom{\tau_1}{1}$.

Since ρ and $\bar{\rho}$ are the roots of the characteristic equation

$$x^2 - (a+d)x + 1 = 0$$
,

we have $\rho \bar{\rho} = 1$. Now for any τ , $t(W\tau) = (W\tau - W\tau_1)/(W\tau - W\bar{\tau}_1)$ since τ_1 and $\bar{\tau}_1$ are fixed by W. Thus,

$$t(W\tau) = \frac{\tau - \tau_1}{(c\tau + d)(c\tau_1 + d)} \Big/ \frac{\tau - \overline{\tau}_1}{(c\tau + d)(c\overline{\tau}_1 + d)} = \frac{\overline{\rho}}{\rho} t(\tau) = \rho^{-2}t(\tau).$$

Thus, for all $n \in \mathbb{Z}$, $t(W^n \tau) = \rho^{-2n} t(\tau)$. Since τ_1 is nonreal and W has infinite order,

 $\begin{pmatrix} \tau_1 \\ 1 \end{pmatrix} \neq \begin{pmatrix} a & b \\ c & d \end{pmatrix}^n \begin{pmatrix} \tau_1 \\ 1 \end{pmatrix} = \rho^n \begin{pmatrix} \tau_1 \\ 1 \end{pmatrix}$, for each $n \ge 1$.

Otherwise, writing

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^n = \begin{pmatrix} a^{(n)} & b^{(n)} \\ c^{(n)} & d^{(n)} \end{pmatrix},$$

we would have $(a^{(n)} - 1) \tau_1 = -b^{(n)}$ and $c^{(n)}\tau_1 = 1 - d^{(n)}$, so that $a^{(n)} = d^{(n)} = 1$ and $b^{(n)} = c^{(n)} = 0$, a contradiction.

Therefore, ρ is not a root of unity, and, consequently, $\{t(W^n\tau): n \in Z\}$ is dense on the circle $\{z: |z| = |t(\tau)|\}$. Thus, J_{τ} is dense on K_{τ} .

LEMMA 5. If $0 < \lambda < 2$, $\lambda \notin C$, then there exists a $W \in G(\lambda)$ such that W has infinite order and W has a fixed point in H.

Proof. Case 1. θ is irrational. Choose $W = TS_{\lambda}$ so that W has matrix

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$

(in the notation of the proof of Lemma 1). By Lemma 3, W has a fixed point in H. Since θ is irrational, $c_n \neq 0$ for all $n \ge 1$. Thus W has infinite order.

Case 2. $\theta = p/q$, (p,q) = 1, $2 \le p < q/2$. Choose $W = T(TS_{\lambda})^k$, where $kp \equiv 1 \pmod{q}$. Note that W has matrix

$$\begin{pmatrix} -c_k & -d_k \\ a_k & b_k \end{pmatrix} = \begin{pmatrix} -c_k & -d_k \\ a_k & -c_k \end{pmatrix}.$$

Since

$$|c_k| = \left|\frac{\sin(\pi pk/q)}{\sin(\pi p/q)}\right| = \frac{\sin(\pi/q)}{\sin(\pi p/q)} < 1,$$

W has a fixed point by Lemma 3.

To show that W has infinite order, we will show that

$$\begin{pmatrix} -c_k & -d_k \\ a_k & -c_k \end{pmatrix}$$

has a characteristic value ρ which is not a root of unity. Let c_k' be any algebraic conjugate of c_k . Since ρ satisfies the characteristic equation $x^2 + 2c_kx + 1 = 0$, a root ρ' of $x^2 + 2c_k'x + 1 = 0$ is a conjugate of ρ . When (j, 2q) = 1, $(\sin(\pi pkj/q))/(\sin(\pi pj/q))$ is a conjugate of c_k . If we let $c_k' = (\sin(\pi pkj/q))/(\sin(\pi pj/q))$, where j is odd and $jp \equiv 1 \pmod{q}$, then $|c_k'| = |(\sin(\pi k/q))/\sin(\pi/q)| \ge 1$. Thus, ρ' is real. Now suppose ρ is a root of unity. Then so is ρ' , so $\rho' = \pm 1$. Thus, $\rho = \pm 1$, which contradicts $|c_k| < 1$. Thus, ρ is not a root of unity.

It follows from Lemmas 4 and 5 that $G(\lambda)$ is not discontinuous when $0 < \lambda < 2, \lambda \notin C$. We can prove a bit more.

THEOREM 4. Let $A(\tau)$ be the set of points which are $G(\lambda)$ -equivalent to τ . If $0 < \lambda < 2$, $\lambda \notin C$, then for each $\tau \in H$, $A(\tau)$ is dense in H.

Proof. By Lemma 5, we can find a $W \in G(\lambda)$ such that W has infinite order and W has a fixed point $\tau_1 \in H$. Define $t(\tau) = (\tau - \tau_1)/(\tau - \overline{\tau_1})$ as before. Assume there is a $\tau \in H$ for which $A(\tau)$ is not dense in H. Then there is an open disk $N \subset H - \{\tau_1\}$ such that $N \cap A(\tau) = \emptyset$. If $\sigma \in K_{\alpha} \cap A(\tau)$ for some $\alpha \in N$, then N would contain a point in J_{σ} by Lemma 4, a contra-

EVANS

diction. Thus, $K_{\alpha} \cap A(\tau) = \emptyset$, for each $\alpha \in N$. We can, therefore, find e_1 and e_2 such that

$$\{\sigma \in A(\tau): e_1 < |t(\sigma)| < e_2\} = \emptyset$$

Let e_3 be the largest number for which $\{\sigma \in A(\tau): e_1 < |t(\sigma)| < e_3\} = \emptyset$. Note $e_3 < 1$, since $|t(S_{\lambda}^m \tau)| \rightarrow 1$, as $m \rightarrow \infty$. Define β to be the point with the largest real part satisfying $|t(\beta)| = e_3$. Note that β is the rightmost point on K_{β} . The circles K_{β} and $S_{\lambda}^{-1}K_{\beta+\lambda}$ intersect at β but they are not tangent because the center of $S_{\lambda}^{-1}K_{\beta+\lambda}$ is higher than the center of K_{β} . (The center of K_{β} is $(x_1, y_1[(2/(1 - e_3^2)) - 1])$ and the center of $K_{\beta+\lambda}$ is $(x_1, y_1[(2/(1 - e_4^2)) - 1])$, where $\tau_1 = x_1 + iy_1$ and $e_3 < e_4 = |t(\beta + \lambda)| < 1$). By definition of e_3 , there are points of $A(\tau)$ arbitrarily close to K_{β} . Hence, there are circles $K_{\nu}(\nu \in A(\tau))$ in any small annulus containing K_{β} . Lemma 4, thus, shows that β is a cluster point of $A(\tau)$. Choose $\mu \in A(\tau)$ so close to β that K_{β} and $S_{\lambda}^{-1}K_{\mu+\lambda}$ intersect but are not tangent. Then there are points of $S_{\lambda}^{-1}J_{\mu+\lambda}$ in $\{\sigma: e_1 < |t(\sigma)| < e_3\}$, a contradiction.

We conclude with some remarks concerning the distribution of $G(\lambda)$ -fixed points in H. A $G(\lambda)$ -fixed point is a point in H fixed by some nonidentity element of $G(\lambda)$. When $\lambda \ge 2$ or $\lambda \in C$, it is clear that $B(\lambda)$ contains no $G(\lambda)$ -fixed points. (For suppose $V\tau = \tau$, where $V \in G(\lambda)$, $\tau \in B(\lambda)$. As Vis continuous at τ , V maps a neighborhood N of τ into $B(\lambda)$. As no two distinct points of $B(\lambda)$ are $G(\lambda)$ -equivalent, V acts as the identity on N. By the identity theorem, V = I.)

The following corollary shows that the situation is quite different when $0 < \lambda < 2, \lambda \notin C$.

COROLLARY. If $0 < \lambda < 2$, $\lambda \notin C$, then the set F of $G(\lambda)$ -fixed points is dense in H.

Proof. Let $\tau \in A(i)$, so that $\tau = Vi$ for some $V \in G(\lambda)$. Then $VTV^{-1}\tau = \tau$, so $\tau \in F$. Thus, $A(i) \subset F$ and since A(i) is dense in H by Theorem 4, F is dense in H.

ACKNOWLEDGMENTS

I wish to thank Professors P. T. Bateman, Bruce Berndt, and Joseph Lehner for their valuable ideas and suggestions.

A FUNDAMENTAL REGION

References

- 1. E. HECKE, "Dirichlet Series, Modular Functions, and Quadratic Forms," Edwards Brothers, Inc., Ann Arbor, MI, 1938.
- E. HECKE, "Mathematische Werke," Vanderhoeck & Ruprecht, Göttingen, 1959.
 J. LEHNER, "A short course in automorphic functions," Holt, Rinehart and Winston, New York, 1966.