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GAUSS SUMS AND KLOOSTERMAN SUMS OVER
RESIDUE RINGS OF ALGEBRAIC INTEGERS

RONALD EVANS

Abstract. Let O denote the ring of integers of an algebraic number field of
degree m which is totally and tamely ramified at the prime p. Write ζq =
exp(2πi/q), where q = pr. We evaluate the twisted Kloosterman sum∑

α∈(O/qO)∗
χ(N(α))ζ

T (α)+z/N(α)
q ,

where T and N denote trace and norm, and where χ is a Dirichlet character
(mod q). This extends results of Salié for m = 1 and of Yangbo Ye for prime
m dividing p− 1. Our method is based upon our evaluation of the Gauss sum∑

α∈(O/qO)∗
χ(N(α))ζ

T (α)
q ,

which extends results of Mauclaire for m = 1.

1. Introduction

Let E be a field of degree m over Q, and let OE denote the ring of integers in
E. Suppose that p is a prime and P ⊂ OE is a prime ideal such that

pOE = P
m, p 6 | m,(1.1)

that is, p is totally and tamely ramified in E. For

q = pr, r ≥ 1,(1.2)

consider the finite quotient rings

Rq = Z/qZ, Oq = OE/qOE ,(1.3)

which have cardinalities q and qm, respectively. For α ∈ OE viewed as an element
of Oq, write N(α) and T (α) to denote the norm and trace of α from Oq to Rq. For
any positive integer n, set

ζn = exp(2πi/n).(1.4)

For Dirichlet characters χ, η (mod q) and z ∈ R∗q , define the Gauss sum

G(χ) = Gm(χ) =
∑
α∈O∗q

χ(N(α))ζT (α)
q(1.5)

and the (twisted) Kloosterman sum

K(η, z) = Km(η, z) =
∑
α∈O∗q

η(N(α))ζT (α)+z/N(α)
q .(1.6)
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In the case that η is the trivial character, write η = 1 and set

K(z) = K(1, z).

The sums in (1.5) - (1.6) are well-defined, since the summands would be unchanged
if a multiple of q were added to α.

Mauclaire [9], [10], [2, Theorem 1.6.4, p. 40], Odoni [12], [2, Theorem 1.6.2,
p. 33], and Funakura [6], [2, Theorem 1.6.3, p. 37] explicitly evaluated the Gauss
sums G1(χ) for all r ≥ 2. In §2 (Theorem 2.2), we extend Mauclaire’s results by
evaluating the Gauss sums Gm(χ) for all m.

Salié [13] evaluated the Kloosterman sums K1(1, z) for all r ≥ 2. Ye [16] evalu-
ated the Kloosterman sums Km(1, z) in terms of a twisted hyper-Kloosterman sum
over R∗q , in the case that m is prime, m|(p − 1), and E/Q is cyclic; see (3.1). In
§3 (Theorem 3.2), we apply Theorem 2.2 to extend Ye’s result in the case r ≥ 2 by
evaluating Km(η, z) for all m (where m need not be a prime nor a divisor of p− 1).
Our evaluations are in terms of twisted hyper-Kloosterman sums over R∗q which in
turn have been explicitly evaluated in [5]. In Theorem 3.3, we extend Ye’s result
in the case r = 1 by evaluating Km(1, z) for all (not necessarily prime) m dividing
p− 1.

In contrast with Ye’s determination, we do not require results from local class
field theory. Our proof requires only relatively basic results from local and global
algebraic number theory.

Ye [18] has pointed out that the results of [16] can be generalized to cyclic
extensions E of composite degree m over Q, by applying repeated liftings of prime
degree as in Arthur and Clozel [1, Eq. (6.7), p. 60]. For work related to [16] where
the prime p is unramified in E, see Ye [17]. We note that in both [16] and [17], E
is assumed to be cyclic over Q, whereas in this paper, there is no such restriction.

In §4 (Theorem 4.1), we give a general product formula for the Gauss sums
Gm(χ), which reduces in the case m = r = 1 to the famous Davenport-Hasse
product formula [3], [2, Theorem 11.3.5, p. 355] for Gauss sums (mod p) given in
(3.16).

2. Evaluation of Gauss sums Gm(χ)

In the case m = 1, the Gauss sum Gm(χ) over O∗q reduces to the familiar Gauss
sum G1(χ) over R∗q defined by

G1(χ) =
∑
a∈R∗q

χ(a)ζaq .(2.1)

No explicit evaluation of G1(χ) is known for general χ in the case r = 1 (i.e., q = p),
but for r ≥ 2, G1(χ) can be evaluated as follows. We have

G1(χ) = 0 if χ is nonprimitive, r ≥ 2(2.2)
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(see [2, Eqs. (1.6.4)–(1.6.5)]). If r ≥ 2 and χ is primitive, then

G1(χ) =



√
q ζq, if r is even,

√
q ζqζ

1−p
8 , if p > 2 and r ≥ 3 is odd,

√
q ζqζ8, if p = 2 and r ≥ 5 is odd,

√
q ζqζ

−χ(−1)
8 , if p = 2 and r = 3,

(2.3)

provided that ν(χ) = 1, where ν = ν(χ) is defined for r ≥ 2 by

χ(1 + ps) = ζ−νps , for even r = 2s ≥ 2,(2.4)

χ(5) = (−1)ν , for q = 8 (i.e., p = 2, r = 3),(2.5)

and

χ(1 + ps +
1
2
p2s) = ζ−νps+1 , for odd r = 2s+ 1 ≥ 3, q 6= 8.(2.6)

(In (2.6) and in the sequel, 1
2 (mod p) is interpreted as (p + 1)/2 (mod p) when

p > 2.)
The evaluation of G1(χ) in (2.3) was proved by Mauclaire [9], [10]. For a short-

ened proof, see [2, Theorem 1.6.4, p. 40] (where “inner sum on y” should be
corrected to read “inner sum on x” in [2, p. 41]).

For r ≥ 2, the assertion that χ is primitive is equivalent to the assertion that p
does not divide ν(χ). When r ≥ 2 and ν(χ) = 1, the (primitive) character χ is said
to be normalized. When r ≥ 2 and χ is primitive but not necessarily normalized,
we can evaluate G1(χ) in terms of a normalized Gauss sum in (2.3), as follows.
First write

χ = ξν ,(2.7)

where ξ is a normalized character (mod q), and ν = ν(χ) is chosen relatively prime
to q(p− 1). Then

G1(χ) = G1(ξν) = χ(ν)σν (G1(ξ)),(2.8)

where σν ∈ Gal(Q(ζq(p−1))/Q) is defined by σν(ζq(p−1)) = ζνq(p−1). Since G1(ξ) is
evaluated in (2.3), we see that (2.8) yields an evaluation of G1(χ) for any primitive
character χ, when r ≥ 2.

In Theorem 2.2 below, we extend the evaluations of G1(χ) given above by eval-
uating the Gauss sums Gm(χ) for all m. We begin with a lemma which gives a
useful representation of the elements of Oq. While its proof is p-adic, the lemma
allows us to prove our main results in the language of global rather than local rings.

Lemma 2.1. There exists τ ∈ OE of degree m over Q such that

τm ≡ pu (mod qOE) for some integer u 6≡ 0 (mod p),(2.9)

TrE/Q(τ i) ≡ 0 (mod q) (1 ≤ i ≤ m− 1),(2.10)
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and

Oq =

{
m−1∑
i=0

αiτ
i : αi ∈ Rq

}
.(2.11)

Moreover, the m conjugates of τ over Q have the form τζim + qβi, 1 ≤ i ≤ m,
where the βi are algebraic integers.

Proof. Choose any ω ∈ OE with P‖ω, i.e., ω ∈ P − P2. Then the irreducible
polynomial of ω over Q is p-Eisensteinian of degree m, and E = Q(ω). We also
have [11, Theorem 5.5, p. 217] EP = Qp(ω) and [EP : Qp] = m, where EP is the
P-adic completion of E, and Qp denotes the p-adic rationals. Let Zp denote the
p-adic integers. By [8, Ex. 13-14, pp. 74, 140] (cf. [15, pp. 324–325]), there exists
an element π ∈ EP such that

EP = Qp(π), OEP
= Zp(π),(2.12)

πm = pµ, for some µ ∈ Z∗p,(2.13)

πOEP
= POEP

,(2.14)

and

π − ω ∈ P2OEP
.(2.15)

Since Xm − pµ is the irreducible polynomial of π over Qp, the m conjugates of π
over Qp are πδj (0 ≤ j ≤ m − 1), where δ is a primitive m-th root of unity in a
field extension of Qp. Thus

TrEP/Qp(πi) = 0, 1 ≤ i ≤ m− 1,(2.16)

where Tr denotes the trace. By (2.12)–(2.13), every α ∈ OE can be π-adically
represented in the form

α =
m−1∑
i=0

aiπ
i , ai ∈ Zp.(2.17)

We can find τ ∈ OE such that

τ ≡ π(mod qOEP
),(2.18)

by reducing (mod q) an appropriate linear combination of ω, ω2, . . . , ωm−1 over Zp.
Then τ has degree m over Q, by the same argument we used to show that ω has
degree m over Q. By (2.13) and (2.18), we see that (2.9) holds for some integer u
with u ≡ µ (mod qZp). By (2.16), (2.18) and the fact that

TrEP/Qp(τ i) = TrE/Q(τ i)

[11, Corollary, p. 266], we see that (2.10) holds. Equality (2.11) follows easily
from (2.17) - (2.18). The last assertion of the lemma results from applying the m
different Qp-embeddings of EP to both sides of (2.18).

We now evaluate the Gauss sums G(χ) = Gm(χ) over O∗q in terms of the Gauss
sums G1(χ) over R∗q discussed at the beginning of this section.
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Theorem 2.2. If r = 1, then

G(χ) = pm−1χm(m)G1(χm).(2.19)

If r ≥ 2 and χ is nonprimitive, then G(χ) = 0. If r ≥ 2 and χ is primitive, then,
with ν(χ) defined by (2.4)− (2.6),

G(χ) =

G1(χ)mp(m−1)/2
(
p
m

)r
, if 2 6 | m,

G1(χ)mp(m−1)/2ζ
(1−p)(1−m)
8

(
−Dp1−m

p

)r+1 (
mν(χ)
p

)
, if 2|m,

(2.20)

where D is the discriminant of the number field E, and where G1(χ) is explicitly
given by (2.8).

Remark. If 2|m, then p > 2 by (1.1). Moreover, pm−1‖D by [11, Theorem 4.8, p.
166]. Hence the Legendre symbols in (2.20) make sense. For a formulation of (2.20)
in the case 2|m in which ν(χ) does not appear, see (2.45).

Proof. For α ∈ Oq, write

α =
m−1∑
i=0

αiτ
i, αi ∈ Rq,(2.21)

as in (2.11). First suppose that r = 1, so that q = p. Recall the definitions of T
and N below (1.3). By Lemma 2.1, T (α) = mα0 and N(α) = αm0 , since q = p.
Thus

G(χ) =
∑

α0,...,αm−1∈Rp

χ(αm0 )ζmα0
p = pm−1

∑
a∈Rp

χm(a)ζmap = pm−1χm(m)G1(χm),

which proves (2.19).
Suppose now that r ≥ 2. If χ is nonprimitive, then G(χ) = 0 by an argument

analogous to that proving (2.2). Next assume that χ is primitive. If m = 1, then
(2.20) follows from the definition (2.1) of G1(χ). Hence assume that m > 1.

We first prove (2.20) when χ is normalized. There are three cases.
Case 1: ν(χ) = 1, r = 2s, s ≥ 1.

The elements α ∈ O∗q may be written

α = z + zwps (z ∈ O∗ps , w ∈ Ops),
so

G(χ) =
∑
z∈O∗ps

χ(N(z))ζT (z)
q

∑
w∈Ops

χ(N(1 + wps))ζT (zw)
ps .

Since

N(1 + wps) = 1 + T (w)ps ≡ (1 + ps)T (w) (mod q),

it follows from the normalization (2.4) that

G(χ) =
∑
z

χ(N(z))ζT (z)
q

∑
w

ζ
T (w(z−1))
ps .

Using Lemma 2.1, one sees that the inner sum
∑
w

vanishes unless z ≡ 1 (mod τps−1),

in which case ∑
w

= Card(Ops) = psm = (
√
q)m.
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Thus, writing z = 1 + xps−1 with

x :=
m−1∑
i=1

xiτ
i ∈ Op (x1, . . . , xm−1 ∈ Rp),

we have

G(χ) = (
√
qζq)m

∑
x1,...,xm−1∈Rp

χ(N(1 + xps−1)).(2.22)

Write N(1 + xps−1) as a product of m conjugates and expand. One sees, using
Lemma 2.1, that

N(1 + xps−1) = 1− p2s−1

{
mu

2

m−1∑
i=1

xixm−i + f(x1, . . . , xm−1)

}
,(2.23)

where f(x1, . . . , xm−1) is a Z-linear combination of monomials xi1 . . . xin with
3 ≤ n ≤ m, i1 + · · · + in = m. If m = 2, f is interpreted as 0. (Note that each
coefficient in f is divisible by ps−1, so the term f could have been omitted from
(2.23) were it not for the pesky case s = 1.) Since

N(1 + xps−1) = (1 + ps)
−ps−1

{
mu
2

m−1∑
i=1

xixm−i+f(x1,...,xm−1)

}
,

the normalization (2.4) gives

χ(N(1 + xps−1)) = ζ

mu
2

m−1∑
i=1

xixm−i+f(x1,...,xm−1)

p .

Therefore, by (2.22) and (2.3),

G1(χ)−mG(χ) =
∑

x1,...,xm−1∈Rp

ζ

mu
2

m−1∑
i=1

xixm−i+f(x1,...,xm−1)

p .(2.24)

Now, xm−1 does not actually appear in the polynomial f(x1, . . . , xm−1) and so
unless x1 = 0, the sum on xm−1 in (2.24) vanishes when m > 2. Therefore we
may set x1 = 0 in the summands of (2.24) when m > 2. Further, xm−2 does not
appear in the polynomial f(0, x2, . . . , xm−1), and so unless x2 = 0, the sum on
xm−2 vanishes when m > 4. Continuing in this way, we see that one may set

x1 = x2 = · · · = x[(m−1)/2] = 0

in the summands of (2.24). With this substitution, all terms of the polynomial f
vanish, and so (2.24) becomes

G1(χ)−mG(χ) =


p(m−1)/2, if 2 6 | m,

p(m−2)/2
p−1∑
y=0

ζ
muy2/2
p , if 2|m,(2.25)

where we’ve written y for the variable xm/2. This proves (2.20) for odd m. Assume
now that 2|m. Then

p−1∑
y=0

ζmuy
2/2

p =
√
p

(
mu

p

)
ζ

(1−p)(1−m)
8

(
−1
p

)m/2
(2.26)
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(see [2, Theorem 1.5.2, p. 26]). In view of (2.25) - (2.26), it remains to prove that(
u

p

)
=
(
−1
p

)m/2(−Dp1−m

p

)
.(2.27)

By Lemma 2.1,

NE/Q(τ) ≡ −pu (mod q),

so by (2.18), N := NEP/Qp(π) satifies(
u

p

)
=
(
−N/p
p

)
.

By (2.15),

NE/Q(ω)/p ≡ N/p (mod pZp),

and so (
u

p

)
=
(
−N/p
p

)
=
(−(NE/Q(ω)/p)m−1

p

)
,(2.28)

where the last equality uses the fact that m is even. Let g(x) ∈ Z[x] denote the
(p-Eisensteinian) irreducible polynomial of ω over Q, discussed near the beginning
of the proof of Lemma 2.1. Since

g′(ω) ≡ mωm−1 (mod pOE)

and m is even, (2.28) yields(
u

p

)
=
(−NE/Q(g′(ω))p1−m

p

)
.(2.29)

By a well-known formula for the discriminant of the basis 1, ω, . . . , ωm−1 for E [11,
Prop. 2.4, p. 53], the “numerator” on the right side of (2.29) may be replaced by
(−1)(m+2)/2Dp1−m. This proves (2.27) and completes the proof of (2.20) in Case
1.

Case 2: ν(χ) = 1, r = 2s+ 1, s ≥ 1, q 6= 8.
In this case, s > 1 when p = 2. The elements α ∈ O∗q may be written

α = z + zwps
(
z ∈ O∗ps , w ∈ Ops+1

)
,

so

G(χ) =
∑
z∈O∗ps

χ(N(z))ζT (z)
q

∑
w∈Ops+1

χ(N(1 + wps))ζT (zw)
ps+1 .

Observe that

N(1 + wps) = 1 + psT (w) +
1
2
p2s(T (w)2 − T (w2)),

so since s > 1 when p = 2,

N(1 + wps) = (1 + ps +
1
2
p2s)T (w−psw2/2).

It thus follows from the normalization (2.6) that

G(χ) =
∑
z∈O∗ps

χ(N(z))ζT (z)
q S(z),(2.30)
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where

S(z) =
∑

w∈Ops+1

ζ
T (zw+psw2/2−w)
ps+1 .

Writing

w = x+ yps (x ∈ Ops , y ∈ Op),
we have

S(z) =
∑
x

ζ
T (x(z−1)+x2ps/2)
ps+1

∑
y

ζT (y(z−1))
p .

The inner sum
∑
y

vanishes unless z ≡ 1 (mod τ), in which case
∑
y

= pm. Thus set

z = 1 +
m−1∑
i=1

ziτ
i, zi ∈ Rps .(2.31)

Writing

x = a+ bp (a ∈ Op, b ∈ Ops−1),

we have

S(z) = pm
∑
a

ζT (a2/2)
p ζ

T (a(z−1))
ps+1 U(z),(2.32)

where

U(z) =
∑

b∈Ops−1

ζ
T (b(z−1))
ps .

Writing

b =
m−1∑
i=0

biτ
i, bi ∈ Rps−1 ,

we have, by (2.31) and Lemma 2.1,

U(z) =
∑

b0,...,bm−1

ζ
mpu

m−1∑
i=1

zibm−i

ps =
∑

b0,...,bm−1

ζ
mu

m−1∑
i=1

zibm−i

ps−1 .

Therefore U(z) vanishes unless ps−1 divides each of z1, z2, . . . , zm−1, in which case
U(z) = pm(s−1). Thus, with

z = 1 + ps−1
m−1∑
i=1

qiτ
i, qi ∈ Rp,

(2.32) becomes

S(z) = psm
∑
a∈Op

ζT (a2/2)
p ζ

T (a
m−1∑
i=1

qiτ
i)

p2 .

Writing

a =
m−1∑
i=0

aiτ
i, ai ∈ Rp,
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we obtain

S(z) = psm
∑

a0,...,am−1

ζ
ma2

0/2+mu
m−1∑
i=1

am−iqi

p .

Thus S(z) vanishes unless q1 = · · · = qm−1 = 0, i.e., S(z) vanishes unless z = 1.
Since

S(1) = psm+(m−1)
∑
d∈Rp

ζmd
2/2

p ,

(2.30) yields

G(χ) = ζmq p
m(s+1/2)pm/2−1

∑
d∈Rp

ζmd
2/2

p

= (ζq
√
q)mpm/2−1

∑
d∈Rp

ζmd
2/2

p .
(2.33)

By (2.3),

(
√
qζq)m =

{
G1(χ)mζ−m(1−p)

8 , if p > 2,
G1(χ)mζ−m8 , if p = 2.

(2.34)

By [2, Theorem 1.5.2, p. 26],∑
d∈Rp

ζmd
2/2

p =

{√
p
(
m
p

)
ζ1−p
8 , if p > 2,

1 + im =
√
p
(
p
m

)
ζm8 , if p = 2.

(2.35)

When p and m are odd, the law of quadratic reciprocity gives( p
m

)
=
(
m

p

)
ζ

(1−p)(1−m)
8 .(2.36)

Combining (2.33) - (2.36), we complete the proof of (2.20) in Case 2.
Case 3: ν(χ) = 1, q = 8.

The elements α ∈ O∗8 can be written

α = a+ 2ab (a ∈ O∗2 , b ∈ O4),

so

G(χ) =
∑
a∈O∗2

χ(N(a))ζT (a)
8

∑
b∈O4

χ(N(1 + 2b))ζT (ab)
4 .(2.37)

Observe that

N(1 + 2b) = 1 + 2T (b) + 2(T (b)2 − T (b2)).(2.38)

Write

a = 1 +
m−1∑
i=1

aiτ
i, ai ∈ R2,

and

b =
m−1∑
i=0

biτ
i, bi ∈ R4.
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We have T (b) = mb0, and, since m is odd, T (b)2 = m2b20 = b20. Also,

T (b2) = T (b20) + T (2u
m−1∑
i=1

bibm−i).

Since m is odd,
∑
bibm−i is even, so

2T (b2) = 2T (b20) = 2mb20.

Thus (2.38) becomes

N(1 + 2b) = 1 + 2mb0 + 2b20 − 2mb20.(2.39)

Now,

T (ab) = mb0 + 2mu
m−1∑
i=1

aibm−i.(2.40)

By (2.39) - (2.40), we see that (2.37) becomes

G(χ) =
∑
a∈O∗2

χ(N(a))ζT (a)
8

∑
b0∈R4

χ(1 + 2mb0 + 2b20(1 −m))ζmb04

×
∑

b1,...,bm−1∈R4

(−1)
m−1∑
i=1

aibm−i
.

(2.41)

The inner sum on b1, . . . , bm−1 vanishes unless a1, . . . , am−1 are all even, in which
case a = 1 and this inner sum equals 4m−1. Thus (2.41) becomes

G(χ) = ζm8 4m−1
∑
b0∈R4

χ(1 + 2mb0 + 2b20(1 −m))ζmb04

= ζm8 4m−1
{

1 + χ(3)ζm4 + χ(5)ζ2m
4 + χ(7)ζ3m

4

}
.

Since χ(5) = −1 by (2.5),

G(χ) = ζm8 4m−1 {1− χ(−1)ζm4 + 1− χ(−1)ζm4 }
= ζm8 22m−1 {1− χ(−1)ζm4 }

=
(√

8ζ1−χ(−1)
8

)m
2(m−1)/2

(
2
m

)
= G1(χ)m2(m−1)/2

(
2
m

)
,

where the last equality follows from (2.3). This proves (2.20) in Case 3, which
completes the proof of (2.20) for normalized χ.

We now drop the assumption that χ is normalized, and consider the general
situation where χ is given by (2.7). For brevity, we rewrite (2.20) in the normalized
case as

G(ξ) = G1(ξ)mA(m),(2.42)

where

A(m) =


(
p
m

)r
p(m−1)/2, if 2 6 | m,

ζ
(1−p)(1−m)
8

(
m
p

)(
−Dp1−m

p

)r+1

p(m−1)/2, if 2|m.
(2.43)
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Applying the automorphism σν to both sides of (2.42), we have, by (2.7) and (2.8),

G(χ) = G1(χ)mσν(A(m)).

To prove (2.20), it remains to show that

σν(A(m)) =

{
A(m), if 2 6 | m,(
ν
p

)
A(m), if 2|m.

(2.44)

If 2 6 | m, (2.44) follows because A(m) ∈ Z. Now suppose that 2|m (so that p > 2).
Then A(m) = n

√
pi(p−1)2/4 for some n ∈ Z. Now (2.44) follows since

√
pi(p−1)2/4 =

p−1∑
x=0

ζx
2

p

(see [2, Theorem 1.2.4, p. 15]) and

σν

(
p−1∑
x=0

ζx
2

p

)
=
(
ν

p

) p−1∑
x=0

ζx
2

p .

We remark that in the case 2|m, (2.20) can also be written

G(χ) = G1(χ)m−1G1(χφ)p(m−1)/2ζ
(1−p)(1−m)
8

(
−Dp1−m

p

)r+1(
m

p

)
, if r ≥ 2,

(2.45)

where φ is the Legendre symbol, viz., φ(x) =
(
x
p

)
. To see this, write χ = ξν as

in (2.7). In view of (2.4) - (2.6), ν(ξφ) = 1, so G1(ξφ) = G1(ξ) by (2.3); then,
applying σν to both sides of this equality, we obtain, by (2.8),

G1(χφ) =
(
ν(χ)
p

)
G1(χ), if r ≥ 2.(2.46)

3. Evaluation of Kloosterman sums K(η, z)

In the case that E/Q is cyclic, p is an odd prime, and m is a prime dividing
(p− 1), Ye [16, Theorem 1] gave essentially the following evaluation of the Kloost-
erman sum K(z) (defined below (1.6)):

K(z) = p(m−1)/2

(
m

p

)(
−Dp1−m

p

)(m+1)(r+1)

ζ
(1−p)(1−m)
8 H(z), z ∈ R∗q ,(3.1)

where H(z) is the twisted hyper-Kloosterman sum defined by

H(z) =
∑

x1,...,xm∈R∗q

ψ(x2x
2
3 · · ·xm−1

m )ζx1+···+xm+z/(x1···xm)
q(3.2)

for any character ψ (mod p) of order m. (Note that H does not depend on the
choice of ψ.) Our formulation (3.1) does not quite agree with the statement in [16,
Theorem 1]. This is because when m = 2, the factor η(p) in [16, Theorem 1, p.

1159] should be corrected to read η(p)a+1, which turns out to equal
(
−D/p
p

)r+1

in
our notation.
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For z ∈ R∗q and any characters A,B (mod q), define another twisted hyper-
Kloosterman sum J(A,B, z) by

J(A,B, z) =
∑

y1,...,ym∈R∗q

A(y1)B(y1 · · · ym)ζy1+···+ym+z/(y1···ym)
q .(3.3)

In (3.11) below, we give a formula for H(z) in terms of the sum J(A,B, z) which
is valid for r ≥ 2. The sums H(z) and J(A,B, z) are special cases of the general
twisted hyper-Kloosterman sum

K(A1, . . . , Am, z) :=
∑

x1,...,xm∈R∗q

A1(x1) · · ·Am(xm)ζx1+···+xm+z/(x1···xm)
q ,

which has been evaluated for r ≥ 2 by Evans [5]. In the case r = 1, the sum
K(A1, . . . , Am, z) (as well as its analogue over general finite fields) was estimated
by Katz [7, pp. 48–49]. When the characters A1, . . . , Am are all trivial, the sum
K(A1, . . . , Am, z) reduces to the familiar hyper-Kloosterman sum J(1, 1, z), evalu-
ated for r ≥ 2 by Smith [14]. (Some errors in Smith’s formulations [14, Theorem 5]
are corrected in [5].)

Using the Davenport-Hasse product formula (3.14), one can evaluate a sum re-
lated to H(z) in the case r = 1, namely∑

x2,...,xm∈R∗p

ψ(x2x
2
3 · · ·xm−1

m )ζx2+···+xm+z/(x2···xm)
p ;

see Duke [4], Katz [7, p. 85] for evaluations of this sum and its analogue over finite
fields.

The following lemma expresses the Kloosterman sums K(η, z), J(A,B, z), and
H(z) in terms of Gauss sums G(χ); cf. Katz [7, p. 47].

Lemma 3.1. Let z ∈ R∗q and let A,B, η be characters (mod q). Then

K(η, z) =
1

ϕ(q)

∑
χ

χ(z)G1(χ)G(χη)(3.4)

(where χ runs through the ϕ(q) characters (mod q)) and

J(A,B, z) =
1

ϕ(q)

∑
χ

χ(z)G1(χ)G1(χAB)G1(χB)m−1.(3.5)

Also, if ψ is a character of order m (in which case m|(p− 1)), then

H(z) =
1

ϕ(q)

∑
χ

χ(z)G1(χ)
m−1∏
j=0

G1(χψj).(3.6)

Proof. For c ∈ R∗q ,

1
ϕ(q)

∑
χ

χ(c) =

{
1, if c = 1,
0, if c 6= 1.
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Hence,
1

ϕ(q)

∑
χ

χ(z)G1(χ)G(χη)

=
1

ϕ(q)

∑
χ

χ(z)
∑
y∈R∗q

χ(y)ζyq
∑
α∈O∗q

χ(N(α))η(N(α))ζT (α)
q

=
∑
α∈O∗q

η(N(α))ζT (α)+z/N(α)
q = K(η, z).

This proves (3.4). The proofs of (3.5) and (3.6) are completely analogous.

Theorem 3.2 below extends Ye’s evaluation (3.1) of K(1, z) for r ≥ 2 by showing
that for any odd prime p, (3.1) holds for all (not necessarily prime) values of m
dividing p− 1. More generally, for r ≥ 2 and any prime p ≥ 2, Theorem 3.2 gives
an evaluation of K(η, z) for all m (not necessarily prime or a divisor of p− 1), in
terms of the sum J defined in (3.3). For evaluations of J , see [14], [5].

The case r = 1 will be considered in Theorem 3.3.

Theorem 3.2. Let r ≥ 2 and z ∈ R∗q. Let η be any character (mod q) and let φ

denote the Legendre symbol, viz., φ(x) =
(
x
p

)
. Then

K(η, z) = p(m−1)/2
( p
m

)r
J(1, η, z), if 2 6 | m,(3.7)

and

K(η, z) = p(m−1)/2

(
m

p

)(
−Dp1−m

p

)r+1

ζ
(1−p)(1−m)
8 J(φ, η, z), if 2|m,(3.8)

where J(A,B, z) is defined by (3.3). Moreover, for every odd prime p and every m
dividing (p− 1), (3.1) holds.

Proof. If m is odd, then by (3.4) and (2.20),

K(η, z) = p(m−1)/2
( p
m

)r 1
ϕ(q)

∑
χ

χ(z)G1(χ)G1(χη)m

= p(m−1)/2
( p
m

)r
J(1, η, z),

where the last equality follows from (3.5) with A = 1, B = η. This proves (3.7).
If m is even, then by (3.4) and (2.45),

K(η, z) = p(m−1)/2

(
−Dp1−m

p

)r+1(
m

p

)
ζ

(1−p)(1−m)
8

1
ϕ(q)

×
∑
χ

χ(z)G1(χ)G1(χηφ)G1(χη)m−1.

By (3.5) with A = φ,B = η, this proves (3.8).
Next let p be an odd prime ≡ 1 (mod m). It remains to prove (3.1).
Let ψ be a character (mod p) of order m and write χ = ξν as in (2.7). In view of

(2.4) - (2.6), ν(ξψi) = 1 for all i, so that by (2.3), G1(ξψi) = G1(ξ) for all i. Thus
m−1∏
i=0

G1(ξψi) = G1(ξ)m.(3.9)
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Since ν = ν(χ) is relatively prime to p − 1, it follows that ν is relatively prime to
m. Hence, applying σν to both sides of (3.9), we obtain, by (2.8),

m−1∏
i=0

G1(χψi) =
(
ν

p

)m−1

G1(χ)m.

Thus, by (2.46),

m−1∏
i=0

G1(χψi) =

{
G1(χ)m, if 2 6 | m,
G1(χ)m−1G1(χφ), if 2|m.

(3.10)

Putting (3.10) in (3.6) and then using (3.5), we see that for r ≥ 2,

H(z) =

{
J(1, 1, z), if 2 6 | m,
J(φ, 1, z), if 2|m.

(3.11)

Set η = 1 in (3.7) - (3.8) and make the substitution (3.11). Then using (2.36) for
odd m and noting that

(
p
m

)
= 1 (since p ≡ 1 (mod m)), we obtain (3.1).

For the remainder of this section, let r = 1. Then

K(η, z) =
∑
α∈O∗p

η(N(α))ζT (α)+z/N(α)
p .

By (2.11), we can write

α = a+ a1τ + · · ·+ am−1τ
m−1 (a ∈ R∗p, ai ∈ Rp).

Then N(α) = am and T (α) = ma, so that

K(η, z) = pm−1

p−1∑
a=1

ηm(a)ζma+z/am

p , when r = 1.(3.12)

In Theorem 3.3 below, we extend Ye’s result (3.1) for r = 1 by showing that for
any odd prime p, (3.1) holds for all m dividing p− 1.

We will need the product formula of Davenport-Hasse [2, Theorem 11.3.5, p.
355] for the Gauss sums

γ(χ) :=
p−1∑
a=1

χ(a)ζap ,(3.13)

namely,

χm(m)γ(χm) =
m−1∏
j=0

γ(χψj)/
m−1∏
j=1

γ(ψj),(3.14)

where ψ is a character (mod p) of order m (so that m|(p − 1)). Note that γ(χ) is
the Gauss sum G1(χ) in the case r = 1. It is not difficult to show that for p > 2,

m−1∏
j=1

γ(ψj) = p(m−1)/2

(
m

p

)
ζ

(1−p)(m−1)
8 ;(3.15)
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see [2, p. 352]. Substituting (3.15) into (3.14), we obtain the following version of
the Davenport-Hasse formula, when p > 2, m|(p− 1):

χm(m)γ(χm)p(m−1)/2

(
m

p

)
ζ

(1−p)(m−1)
8 =

m−1∏
j=0

γ(χψj).(3.16)

Theorem 3.3. Let r = 1 and z ∈ R∗p, where p is an odd prime. Then (3.1) holds
for every m dividing (p− 1).

Proof. Let ψ be a character (mod p) of order m. Since by (2.19),

G(χ) = pm−1χm(m)γ(χm),

if follows from (3.16) that

G(χ) = p(m−1)/2

(
m

p

)
ζ

(1−p)(1−m)
8

m−1∏
j=0

γ(χψj).(3.17)

Substituting (3.17) into (3.4) with η = 1, we obtain

K(z) = p(m−1)/2

(
m

p

)
ζ

(1−p)(1−m)
8 H(z),(3.18)

by (3.6). This completes the proof, as (3.18) is the same as (3.1) in the case
r = 1.

4. A product formula for Gauss sums G(χ)

In Theorem 4.1 below, we give a product formula for the Gauss sums G(χ), which
in the case m = r = 1 reduces to the Davenport-Hasse product formula (3.16).

Theorem 4.1. Let p be an odd prime and let ψ be a character (mod p) of order `
(so that `|(p− 1)). Let χ be any character (mod q). Then if r ≥ 2,

χ`m(`)G(χ`)p(`−1)(rm+m−1)/2C(χ) =
`−1∏
j=0

G(χψj),(4.1)

where C(χ) ∈ {±1,±i} is defined by

C(χ) :=



(
ν(χ)
p

)`−1

, if 2 6 | m, 2|r,

ζ
(1−p)(`−1)
8

(
`
p

)(
m
p

)`−1 (
ν(χ)
p

)(`−1)(m−1)

, if 2 6 | r,

ζ
(1−p)(1−m)(`−1)
8

(
`
p

)(
m
p

)`−1 (−Dp1−m

p

)`−1 (
ν(χ)
p

)`−1

, if 2|m, 2|r,

(4.2)

with ν(χ) defined by (2.4) and (2.6). If in the case r = 1, we define the (previously
undefined) expression ν(χ) by setting ν(χ) = 1, then (4.1) also holds when r = 1,
provided that (m, `) = 1.

Proof. We first consider the case r ≥ 2. If χ is nonprimitive, then both sides of
(4.1) vanish by Theorem 2.2. Assume therefore that χ is primitive.

First suppose that χ is normalized, i.e., ν(χ) = 1. In this case χψj is normalized,
i.e., ν(χψj) = 1, for each j. Hence by (2.20) and (2.3),

G(χ) = G(χψj), for all j.(4.3)
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Choose b relatively prime to q(p − 1) such that b ≡ ` (mod q), and define c by
bc ≡ 1 (mod q(p− 1)). We claim that∑

α∈O∗q

χb(N(α))ζT (αb)
q =

∑
α∈O∗q

χ`(N(α))ζT (α`)
q .(4.4)

To verify (4.4), apply σc to both sides to obtain G(χ) on the left and G(χc`) on
the right; then note that ν(χ) = ν(χc`) = 1, so that G(χ) = G(χc`) by (2.20) and
(2.3).

We can rewrite (4.4) as

σbG(χ) = χ`m(`)G(χ`).(4.5)

In view of (4.3) and (4.5), the proposed equality (4.1) is equivalent to

σb(G(χ))p(`−1)(rm+m−1)/2C(χ) = G(χ)`.(4.6)

By (2.42) and by (2.44) with ν = b, the left side of (4.6) equals

σb(G1(χ)m)
(
`

p

)m+1

A(m)p(`−1)(rm+m−1)/2C(χ),

while the right side of (4.6) equals

G1(χ)m`A(m)`.

Thus (4.6) (and hence (4.1)) is equivalent to

C(χ) = A(m)`−1

(
`

p

)m+1

p(1−`)(rm+m−1)/2G1(χ)m`/σb(G1(χ)m).(4.7)

Substitute the value of G1(χ) given by (2.3) into (4.7) to see, after a tedious cal-
culation, that (4.7) is equivalent to (4.2) when ν(χ) = 1. This completes the proof
of (4.1) for r ≥ 2 when ν(χ) = 1. To prove (4.1) for r ≥ 2 and general ν(χ), first
write down (4.1) with ξ in place of χ (in the notation of (2.7)). Then, applying σν
to both sides, we obtain (4.1). This completes the proof of the theorem in the case
r ≥ 2.

Now let r = 1 and assume that (m, `) = 1. It remains to prove

χ`m(`)G(χ`)p(`−1)(m−1/2)C =
`−1∏
j=0

G(χψj),(4.8)

where

C = ζ
(1−p)(`−1)
8

(
`

p

)(
m

p

)`−1

.(4.9)

Since, by (2.19),

G(χ) = χm(m)pm−1γ(χm)

for every character χ (mod p), we have in particular,

G(χψj) = χm(m)ψ(m)mjpm−1γ(χmψmj)(4.10)

for all j, and

χ`m(`)G(χ`) = χ`m(m`)pm−1γ(χm`).(4.11)
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Because (m, `) = 1, it follows that ψmj runs through the same characters as ψj

does when j runs through 0, 1, 2, . . . , `− 1. Thus, by (4.10),
`−1∏
j=0

G(χψj) = χm`(m)p`(m−1)

(
m

p

)`−1 `−1∏
j=0

γ(χmψj).(4.12)

By (3.16) with m = `,
`−1∏
j=0

γ(χmψj) = χm`(`)p(`−1)/2γ(χm`)
(
`

p

)
ζ

(1−p)(`−1)
8 .(4.13)

Multiplying (4.13) by (4.12) and then dividing the resulting equality by (4.11), we
obtain (4.8).

References

[1] J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the
Trace Formula, Annals of Math. Studies, No. 120, Princeton University Press, Princeton,
1989. MR 90m:22041

[2] B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, Wiley-Interscience,
N.Y., 1998. MR 99d:11092

[3] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyk-

lischen Fällen, J. Reine Angew. Math. 172(1934), 151-182.
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