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I. Introduction 

Suppose that )~ is a real, primitive character  modulo  k, where k > 1 is odd. Since the 
k - I  

quadratic Gauss sum G(Z)= ~ z(n)e 2~"/k has the values [15, p. 256] 
n = l  

~ / ~ ,  if)~ is even, (1.1) 
G(Z) = [i ~/k, if Z is odd ,  

if follows that 

k -  1 ( k -  1 )/2 

~(n) cos (2rtn/k) = 2 ~ z(n) cos (2ten~k) = Vk ,  if Z is even, 
n = l  n = l  

and 

k -  1 ( k -  1)/2 

)~(n) sin (2nn/k) = 2 Y' )~(n) sin (2un/k) = l /~ ,  if X is odd.  
n = l  n = [  

Lehmer  [ t2 ]  has made the following interesting conjectures for the signs of  
"half  Gauss sums":  

( k -  1)/2 

;((2) ~ z(n)cos(2rtn/k)>O, if Z is odd ,  (1,2) 
t l = I  

and 

( k -  1)/2 

Z(2) ~ z(n)sin(2~zn/k)<O, if Z is even. (1.3) 
n = l  

Lehmer  also has formulated some conjectures on the signs of half  Gauss sums like 
those above but  with 2nnr/k in place of  27zn/k, for certain integers r. Fo r  example, 
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for p = 1 (mod 4), she has conjectured that 

( p -  1)/2 [ n  \ . 
,~1 [p)S,n(4nn/p)>O, 

w ere  enotes t o' e en re symUol 

The primary purpose of this paper is to prove some general theorems from 
which the conjectures of Lehmer follow as corollaries. In Sect. 2, we establish some 
representations for trigonometric character sums. These formulas are employed in 
Sect. 3 to determine the signs of half Gauss sums. We conclude this paper by 
showing how some of the theorems of Sect. 2 can be reformulated to yield some 
classical identities for trigonometric character sums. 

2 .  R e p r e s e n t a t i o n  T h e o r e m s  

Throughout the sequel, Z is a primitive character (mod k) with k > 1, and ~ is a real 
number. Define 

k - 1  
G(~, Z)= ~ z(n)e 2~i~"/k. 

n = l  

Thus, if 7 is an integer relatively prime to k, then G(~, Z) is a Gauss sum (rood k). 
Note that G(1, Z) = G(Z). 

T h e o r e m  1. I f  ~ is not an integer, then 

G(a,Z)- l -e2" '=  ~. 1 X_(-- 1)/" (2.1) 
2hi G(Z) ~, z(j) - =  j+ce l j = l  

Proof. Since Z is primitive, z(n)=G(z)G(n,z)/k when n is an integer [1, p. 171]. 
Thus, 

G(Z) k~l 
G(~, Z) = ~ .~o G(n, z)e 2ni~n/k 

G(Z) k~, ki' 
_ _  ~(m)e2.i(.-,nl./k 

k n=O m = l  

G(z) k-1 l 1--e 2~i~ 
- k ,,=,Y" ~(m)[l_e2=,=_,,)/kj 

(1 - e2=~=)G(z ) k~ l 
- L.. ~(rn){ 1 - i cot (n (m-  ~)/k)} 

2k m=* 

(I - e2~'~)G(z ) k~, 
- ~.~ ~,(m) cot (n (m-  a)/k), (2.2) 

2ik ,, = 1 
Since 

c o t ( n x ) = l i m  1 ~ 1 
N ~  ~ .  LN~<-~ ' =_ 
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when x is not an integer, we deduce that 

G(e,)0= lim (1-e2"i~)G(z) ~ k@l 2(m) 

k , , + ~ - ,  ~(j) 
= lim ( 1 -  e2~i~)G(z) ~ : - - - ,  

N ~  2hi s= -kN+ 1J - ~  

from which the theorem now follows. QED 
Theorem 1, in a slightly different form, was established by Hamburger [10-1, by 

a different method. For a more general result and some related remarks, see [6, 
pp. 171-173,1. 

As usual, let L(s,)0= ~ z(n)n -~, Res>0 ,  denote a Dirichlet L-function. The 
n = l  

following result is well known; see, for example, [2; 5, Example 2] and [8, (6.24),1. 

Corollary 2. Let r be a natural number. Then 

k - 1  

Z z(n) n'= -r!k'G()O ~ {1 +;~(-  1 ) ( -  1~} 
n = l  j = l  

LO, 2) 
(r-- j+ 1)!(2hi) J" 

Proof Using Leibniz's rule, differentiate both sides of(2.1) r times with respect to ~. 
Upon letting c~ tend to 0, we deduce the desired result. QED 

If ~ is not an integer, define 

= xj) and st , l=jVj___l R(~, Z) j_~l j2  ~2 2" 

Thus, the series in (2.1) equals 2~R(~,2) or 2S(~,2) according as Z is even or odd. 

Corollary 3. I f  c~ is not an integer, then 

k - 1  X(n) COS (2hem/k) = I 
, x-~_-zSa= /1- )- sin (2ne)G()0R(~, ~), 

| _  (1 - cos (2na))G(z)S(~, 2), 
k ~ t  

if Z is even, 

if X is odd, 

and 

k-1 {~  ~- (1 - cos (2ncO)G()OR(e, Z), 
,=~1 x(n) sin (2n~n/k) = n 
= 1. sin (2n~)G(z)S(~, Z), 

7gl 

if Z is even, 

if Z is odd. 

Proof Since the sums on the left 
1 

{G(~, ;~)- G ( -  a, D}, respectively, 

Theorem 1. QED 

sides above are ½{G(~,z)+G(-~,Z)} and 

the corollary follows immediately from 
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Corollary 4. I f  a is not an integer and Z is real, then 

] - ~ - { s i n  (2zcc0 + i (1 -  cos (27t~))}R(c~, Z), if z i s e v e n ,  

G(~, Z) = . , ~  (2.3) 
/ - ~  { l_cos(2r t~)_  isin(2rt~)}S(~,Z), if  Z is odd .  

Proof.. The result follows easily from Theorem 1 and (1.1). QED 

If fl is not an odd integer, we define 

z(J) ~, Jz(]') 
T(fl, Z)= j ~  j z _ f l  and U(fl, Z)-- j 2 _ _ / ~ 2  ' 

' =  j = l  
j odd j odd 

The series R, S, T, and U are connected as shown in the following two lemmas. In 
the proofs, 

N 

denotes lim 
j = - - o o  N ~oo j = - N  

Lemma 5. Let k be odd and assume that fl is not an odd integer. Then 

( + )  __ 4~(2)fl 
R k fl,X. - k+ f l  T(fl,)O, if)~ is even,  

and 

s[k+  ) I ~ - - - ,  z = 2~¢(2)U(fl, Z), i f z  is odd. 

- 22(2) ~, X(/'-k) 
k + f l  j - k - f l  j =  - o o  

j even 

Proof. First, suppose that Z is even. Then 

( _ k ~ )  1 ~ z(J) 2 ~ ( 2 ) ~  z(J) 
R ')~ - k + f l  j - ( k + f l ) / 2 = k + f l  j - k - f l  j=-oo j= -m 

j even 

2~(2) ~ X(J) 
- -  = k + f l  j_-~_~ j - f l  

j odd 

4fl~(2) T¢" " 

The proof of the second part of Lemma 5 follows along the same lines. QED 

Lemma 6. Let k be even and assume that ct is not an integer. Then 

2a 2oe 
R(a + k/2, X) = - 2a +~  R(a, Z) = - 2~ +-----k T(~, Z), if  )~ is even,  

and 

S(a + k/2, Z) = - S(a, Z) = - U(a, Z), if  X is odd. 
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Proof Note  that k/2 is even, for otherwise the conductor  of X would divide k/2, 
which contradicts the fact that Z is primitive. Moreover,  z ( J - k / 2 ) =  -z(J) .  For  if 
)~(j- k/2) = z(J) for some odd integer j, then 

1 = z~J)z(J') = z(J)z(J - k/2) = z(J- l j _  k/Z) = Z(1 - k/2), 

which again contradicts the primitivity of Z. 
First, suppose that Z is even. Then 

1 ~ z~J) 1 ~ z ( j -k /2)  
R(c~ + k /2 ,  Z) = 2~ + k j = - ~ o  j -  a - k / 2  = 2~ + k i=  - ~ J -  ~ -  k/2 

1 ~ Z(t) 2a 
-- /-" j----~ = -- 2~ +-----k R(a, Z)- 2 a + k  j= _~ 

The proof  of the second part  of  Lemma 6 is analogous. Q E D  

Theorem 7. Let k be odd and assume that fl is not an odd integer. Then 

k-1 12flZ(2)sin(~fl)G(z)T(fl, Z) , i f z i s e v e n ,  
( - 1)'z(n) cos (rcfin/k) = 

/ 9  
n ~ l  /~//Z(2) (1 + cos (Tcfl))G(z)U(fl, ~), if Z is odd, 

and 

k-I  [ -  -2-fiX(2)(1 +cos(ufl))G(z)T(fl,~), if Z is eve,,, 

~ l ( _  l ).z(n) sin (ufln/k)= { u 
n= 2 

[ ~ Z ( 2 ) s i n  (rc~)GOOU(fl, Z), if Z is odd. 

Proof In Corollary 3, replace a by (k + fl)/2. Applying Lemma 5, we complete the 
proof. Q E D  

T h e o r e m  8. Let k be even and assume that o~ is not an integer. Then 

l a if  X even k- 1 . ~- sln" (2~)G(z)R(o~, Z),- is , 
( -  l) )(n) cos (2roan/k) = 

and 

k- 1 [ a  (1 -- COS (2x.))G()0R(a, ~), 

= [ ~  sin (2rca)G(z)S(~, ~), 

if Z is even, 

if Z is odd. 

Proof In Corollary 3, replace a by c~ + k/2 and then apply Lemma 6 to complete 
the proof. Q E D  
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3. The Signs of Half Gauss Sums 

Theorem 12 and Corollaries t5 and i7 below were conjectured by Lehmer. Our goal 
in this section is to prove these and some generalizations. 

Lemma 9. Let  Z be real and assume that 0 < ~ < 1. Then 

R(~,Z) > l_ct  z 4 

In particular, R(e, 1.) and S(~, Z) are positive. 

Proof  First, 

R(cq Z) > 1_~2 j 2 - -  0~2 
j = 2  

1 ~ 1 1 3 
> 1--~ ~ -  )2-~]-= 1-~2 4 j = 2  

Secondly, 

xu)+ 2 
./=1 --J- j=l/(J 2-a2) 

>L(1,X)+~z2( 1 ~ 1 ) 
1 __-~2 j = 2 j(j2 __ 1) 

=L(I 'x)+~2 l-c~ 2 

since it is well known that L(1,X)>0 [7, p. 267]. QED 

Let  X be real and assume that 0 < ~ < 1. Then 

i f  % is even and c¢ < ½, 

i f  % is even and ~ -  ± 

otherwise,  

i f  X is odd and o~ > ½, 

i f  X is odd and o~ = ½, 

Theorem 10. 

k-1 [<0, 
z(n) cos (2~=n/k) ~ = O, 

n= i [ >0, 

and 

k-1 [ > 0 ,  

x(n) sin (2n~n/k) ~ = O, 

t <0, 
n = l  

otherwise.  

Proof  Taking the real and imaginary parts on both sides of (2.3) in Corollary 4 
and using Lemma 9, we immediately deduce the two results above, 
respectively. QED 
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Clearly, analogues of Theorem 10 can be readily established for the sums in 
Theorems 7 and 8. 

The next lemma expresses half Gauss sums in terms of the sums in Theorem 10. 

Lemma 11. Let X be real, k odd, and r a natural number. Then 

J~ kf~=llz(m)cos(nrm/k), (k- 1)/z Z(2) /f Z(-- 1)=(-- 1) ", 
~" g(n)cos(2urn/k)= I k-1 

1 /~g(2) ~ ( -  1)mz(m) cos (term~k), if" Z(-  1) = ( -  1) '+ '  , 
t .  m = l  

and 

(k-t)/z ½)~(2) )~(m)sm(rclm/k), /f )~(-- 1)=(--  1) "+ 1 
x(n) sin (2nrn/k)= 

"=' (| ½; ( (2 )~  ( -  l)'~z(m) sin (urm/k), if Z ( -  1)= ( -  1)'. 

Proof We have 

( k -  I )/2 
Z(2) ~ z(n)e 2~'n/k= 

k k 

n=l m=l m=l 
m even m odd 

k 

= Z(-  1 ) ( -  1)' ~ z(m)e - ' i"/k . 
m = l  
m odd 

Now twice the first sum above is equal to the second sum plus the fourth sum 
above. The lemma now follows by considering the various cases. QED 

Theorem 12. Let )~ be real and k odd. Then 

( k -  1)/2 

•(2) ~ )f(n) cos (2zm/k) > O, if g is odd, 
n = l  

and 

( k -  1)/2 

X(2) ~ z(n)sin(2gn/k)<O, if X is even. 
n = l  

Proof Apply Lemma t l  with r =  1 and then Theorem 10 with :t= 1/2. The 
theorem now follows. QED 

Theorem 12 establishes the conjectures (1.2) and (1.3) of Lehmer. The special 
case of Theorem 12 when k is prime is proposed in [13]. 

Theorem 13. Let k be odd, and let 3( be real and even. Assume that r is odd and > 1. 
Suppose that z(n)= 1 for t <n<(r -1 ) / 2  but that z((r+ t)/2)4= 1. Then 

( k -  1)t2 

X(2) ~ x(n) sin (2zorn~k) > 0 .  
n = l  
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Proof. Using successively Lemma 11 and Corollary 3, we find that 

(k-  I)/2 k -  t 

X(2) ~ x(n) sin (2~rrn/k) = ½ ~ x(m) sin (r~rm/k) 
n = l  m = l  

= - r2~k- R(r/2, X). 

It remains to show that R(r/2, X)< 0. Now, 

oo Z(J) 
- ¼R(r/2, Z)= s ET, 7 -  (2j) 2 

= (,-~i)/2 r 2 1 + z((r + 1)/2) + ~ Z(J) 
s=, -(2J) 2 r 2 - ( r +  1) 2 j=(,+ a)/2 r2-(2J) 2 

~- 1)/2 t ~ 1 
E r 2 -+- - j = l  - ( 2 J )  2 r 2 a=~,+3)12 -(2J) 2 

- i= * r2 - (2J) 2 + 2r + 1 

1 1 
- 2-7gr2+2-7--~>0. QED 

Corollary 14. Let p be a prime with p - 5  (mod 8). Then 

~" sin (6~n/p) < O. 
n = l  

Corollary 15. Let  p be a prime with p=_ 17(mod24). Then 

fp- I):'2 (p) 
y' sin (lOz~n/p) > O . 

n = l  

Theorem 16. Let  k be odd, and let X be real and even. Suppose that r is positive and 
even. Assume that z (n)= 1 for  all odd natural numbers n < r. Then 

(k - 1112 
;((n) sin ( 2r~rn/k) > O . 

n = l  

Proof. By applying Lemma 11 and Theorem 7, we find that 

(k-  1)/2 1 k~.l 
){(n)sin(2nrn/k)= Z ( 2 )  (-1)m)~(m)sin(rcrm/k) 

n = l  m = l  

_ r ( r , x ) .  
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It remains to show that T(r, Z)< O. Now, 

_ T(r ,z)= ~ z(J) 
j = a r 2  _ j 2  

jodd  

, - 1  1 z(J) 
= Y + r 2 _ j 2  

j = l  j = r + l  
jodd  jodd 

1 
r 2  j ~ = 0 .  QED 

j = l  - -  
j odd 

Corollary 17. Let p be a prime with p -  1 (mod 4). Then 
( p -  1 ) / 2 / n \  

.~=1 lP) sin(4nn/p)>O" 

Corollary 18. For primes p-- 1 (mod 12), we have 
( p -  1)/2 f n  \ 

n~__l f13) sin(81"Cl~/p)>O" 

Corollary 19. For primes p--1 or 49 (rood 60), we have 
,v-,}/2 ~ )  

sin (127rn/p) > O. 
11=1 

4. Identifies for Trigonometric Character Sums 

Most of the theorems in Sect. 2 involve the infinite series R(cq Z) and S(ct, Z). By 
using (2.1) and (2.2), we can express R(~,Z) and S(~,X) as finite trigonometric 
character sums : 

7~ k - 1  

R(c~'Z)= 2-~=~1 z(m) c°t(~z(m-~)/k)' if Z is even, (4.1) 

and 

7~ k - 1  

S(ct'Z) = 2-k~=~l z(m) c°t(~(m-cO/k)' if Z is odd,  (4.2) 

where ~t is not an integer. These identities can be reformulated. If Z is even, then 

'E . ) k~_l z(m) . 
R(~, X) = - ~-~ sm (2zrct/k . , -  1 cos (2nm/k)- cos (2~/k)  ' (4.3) 

if X is odd, then 

k- 1 z(m) sin (2rein~k) 
S(~, Z) = -- ~-~ ~=~1 cos (2nm/k)- cos (2n~/k)" (4.4) 

We proceed to prove only (4.3), as the proof of (4.4) is analogous. 
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Suppose that Z is even. In view of (4.1), it suffices to show that 

k - I  k - 1  . . . . . . . . .  w ~(m) sin (2n~/k) 
- Z z mj = c o s  (4.S) 

m=l 

Choosing A = g(m + ct)/k and B = n(m-ct)/k in the easily proved identity 

2 sin (A - B) 
cot A - cot B = 

cos (A + B ) -  cos (A - B)' 

we see that the sum of the m-th and (k-m)-th terms on each side of (4.5) are equal. 
This proves (4.5) and thus (4.3). 

In [16], Schemmel proved a version of Corollary 3 in which R(e, Z) and S(c¢, )0 
are replaced by the right sides of (4.3) and (4.4), respectively. We shall indicate 
additional identities which can be obtained from (4.1)-(4.4) and results in Sect. 2. 

Making use of (4.1) and (4.2) in the proof of Corollary 2, we can express 
k - 1  k - I  

~, z(n)n" as a linear combination of the sums ~ ~(m)cotJ(Ttm/k), 1 <y<r. For 
n = l  m = l  

such identities in a more general setting, see [4, Sect. 4]. The cases r = 1, 2 yield the 
well-known identities 

k - - I  

k-~.t x(n)n = iG(z)2 ~ ~(m) cot (rtm/k), (4.6) 
n = l  r a = l  

when ~ is odd, and 

k -  1 G(X) k -  
x(n)n2= - ~, ~(m)cscZ(rtm/k), (4.7) 

,=1 2 ,~=1 

when Z is even. Lebesgue [11] first established (4.6). For references to other proofs, 
see [9, Chap. 6] and [6, p. 156]. See also a paper of Lerch [14] for a thorough 
discussion of identities like (4.6) and (4.7). 

Let k be odd and )C be odd. From (4.2) and Corollary 3 with ~ = k/2, we find 
that 

( k -  1)/2 k -  i - a  
2X(2) Z z(n)= Z zfn)( - 1)"= iG(z) k Z ~,(ra) tan (zm/k). 

n = l  n = l  k m = l  

Again, let k be odd. From (4.3), (4.4), and Corollary 3 with 0t = k/4, we deduce 
that 

(k-- 1)/2 k -  t iG(z) k -  1 

Z(4) .=~ z(n) = ( -  1) (k+ t)/2 .=~Y' z(n)(-  1) ( '-  ~)/~ - -~- 5 . -  2(m) tan (2gin/k), 

nodd 

when X is odd, and 

( -  1)(~- 1)/2X(4) {1 ~ Z(")-  ~ )~(n)} 
~n<k/4 k/4 <n<k/2 

k - t  ~1 
z(n)(_l)t._l)r2 G(Z) k = = ~(m) sec (2rtm/k), 

,=i  2k ,~=1 
nodd 

when X is even. 
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F i n a l l y ,  w e  m e n t i o n  t h a t  b y  e x p r e s s i n g  cos"  (27c~n/k) as  a l i n e a r  c o m b i n a t i o n  o f  

t h e  t e r m s  cos  (27rcqn/k), 0 <j  < r, w e  c a n  a p p l y  C o r o l l a r y  3 to  o b t a i n  i d e n t i t i e s  f o r  
k - 1  

t h e  s u m s  ~.  x(n) cos  r (2~en/k) f o r  a n y  n a t u r a l  n u m b e r  r. I n  p a r t i c u l a r ,  t h e  e l e g a n t  
n : l  

i d e n t i t i e s  in  [3,  p. 34 ]  c a n  b e  p r o v e d  i n  t h i s  way .  
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