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HERMITE CHARACTER SUMS

RONALD J. EVANS

Analogues over finite fields are presented for the major formulas in
the theory of classical Hermite functions.

1. Introduction. Character sum analogues over finite fields of the
most important transformation and summation formulas for 2Fι and 3F2

hypergeometric series have recently been formulated by Greene [11],
[11 A]. The power of this theory is demonstrated, for example, by the
evaluation it yields [12] of the double sum of Legendre symbols

x,y(moάp)

This evaluation proves a conjecture in [9, p. 370] and solves the problem
of finding explicitly the number of rational points (mod/?) on the surface
z2 = (x2 + l)(y2 + ΐ)(x2 + y2), a problem some algebraic geometers
had worked on without success.

Character sum analogues of the important formulas for orthogonal
polynomials are potentially as useful as those for hypergeometric series, so
a systematic study should be made. Indeed, many character sums studied
in the literature are analogues of special functions, e.g., the generalized
Kloosterman sum (see (2.5), Theorem 2.6, and, say, [10], [21A, p. 253]).

In this paper, the focus is on analogues of Hermite polynomials,
namely Hermite character sums HN(x) defined in (2.1). Each of the
theorems in §4 is an analogue over finite fields of a classical formula
stated just above it. The classical formulas are stated without conditions
of validity; such conditions are often unrelated to the unpredictable
conditions of validity for the finite field formulas.

It is not always possible to give proofs of the finite field formulas
which parallel classical proofs. This is because no satisfactory analogues
of limits, first derivatives, logarithms, and three term recurrence relations
are known. It would be of great importance to find a unified approach
which simultaneously explains formulas for orthogonal polynomials and
the analogues over finite fields. Perhaps this will be accomplished by
connecting the polynomials with Lie groups having counterparts over
finite fields.
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Theorems 4.24 and 4.36 are particularly elegant and interesting.
Surprisingly, the former holds with absolutely no restrictions on the
characters A, B, and C.

In §3, multivariable Hermite sums are defined and a biorthogonality
relation is proved. In §5, an analogue of the associated Hermite poly-
nomial [1] is briefly discussed, and an example is given to show how finite
field analysis may be used to construct explicit formulas for classical
special functions. The mysterious fact that such a technique generally
works reflects the beauty and unity of mathematics.

For some recent work related to finite field analogues of classical
formulas for special functions, see references [7]-[9], [11]-[16], [19], and
[21]. This subject of course dates back a long time. As early as 1837,
Jacobi [18, p. 257] had been aware of a finite field analogue of the Gauss
multiplication formula for the gamma function [25, p. 26]. Jacobi did not
have available the tools needed to prove his formula, and over a century
went by before a proof was provided by Davenport and Hasse [5]. No
elementary proof is known, but see [3, §8], [13].

2. Definitions, notation, and preliminary results. Let q be a positive

integral power of an odd prime p. The finite field of q elements is denoted
by GF{q). The capital letters A, 2?, C, M, N are reserved for multiplica-
tive characters on GF(q), but 1 and φ will denote the trivial and quadratic
characters, respectively. Write Σx to denote the sum over all x e GF(q),
and write Σ^ to denote the sum over all q — 1 characters N on GF(q).
For x G GF(q\ Tr(jc) denotes the trace of x from GF(q) to GF(p), and
ξx denotes exp(27r/Tr(;c)//?). If x e GF(q), let 3c be the multiplicative
inverse of x when x Φ 0 and let 3c = 0 when x = 0. The expression ζx/1

means Γ 5 , not exp(2τπ Ίr(x)/2p). Define N by NN = 1.
Analogous to the gamma function

a

is the Gauss sum

and analogous to the beta function

is the Jacobi sum

J(M,N) = £A/(x)JV(l - x).
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For some basic properties of these sums, see [17, Ch. 8]; e.g., for A Φ 1,
MN Φ 1, G(A)G(A) = qA(-l), J(M,N) = G(M)G(N)/G(MN).

We wish to define character sum analogues of Hermite functions
Hn(x), Laguerre functions La

n(x), Legendre functions Pn(x), and Bessel
functions Jn(x), Kn(x), motivated by the familiar integral representations

H"{x) = τ ( h ή C e~"2~2uXu~" T I 2 0 '
(u + \)"+au-"e-«* % [20, p. 77],

Pn{*) = J- / c(l - 2xu + u2y1/2u-"^ [20, p. 45],

Kn(χ) = \ f M-»e-'(«+«-1)/2 *!L [20, (5.10.25)].

Thus for x e GF(q), define the Hermite character sum

the Laguerre character sum

u

the Legendre character sum

(2.3) PN(x) = ^" 1 Σ^(«)Φ( 1 - 2 x u + "2)>
u

and the Bessel character sums

(2.4) JN(x) = q

(2.5) KN(x) =

(Note that KN(x) is a generalized Kloosterman sum.) Confluent hyperge-
ometric character sums ^(A,B; x) and Φ(A,B) x) (cf. [20, (9.11.6),
(9.11.1)]) can be defined as multiples of L^{x), as follows:

(2.6)

(2.7) J(A,BA)
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Define an operator DN = D% on the set of complex functions F on
GF(q) by

(2.8) DNF(x) = -±— ΣN(t)F(x-t).
CJ)

Thus D£ is the analogue of the nth derivative with respect to x (cf.
Cauchy's integral formula for / ( n )(x)). We next prove four theorems
involving DN. The first gives an analogue of composition of derivative
operators.

THEOREM 2.1. For a function F: GF(q) -» C,

(2.9)

(2.10) DND"F(x) = F(x) - q^ΣH*) forNΦl,
t

and

(2.11) DNDM = DNM forNMΦl.

Proof. By (2.8), one easily proves (2.9). Now,

L:= G(N)G(M)DNDMF(x) = ΣM(s)N(t)F(x - t - s)

= ΣM(s)N(t-s)F(x-t)
S,t

= Σ ΣM(s)N(t - s)F(x -t) + N(-1)F(X)ΣMN(S)
tΦO s s

= J{M,N)Y,MN{t)F(x - t) + N(-l)F(x)ΣMN{s).
t S

If M = N Φ 1, then J(M,N)= -N(-l) and G(iV)G(M) = N(-Ϊ)q,
so

= N(-l)ίqF(x)-ΣF(t)

and (2.10) follows. If M Φ N, then J(M, N) = G(M)G(N)/G(MN), so
by (2.8), L = G{M)G{N)DNMF{x) and (2.11) follows.

The next theorem gives an analogue of Leibniz's rule.
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THEOREM 2.2. IfE: GF(q) -> C and F: GF(q) -> C, then

D»(E(x)F(x)) =

Proof. By (2.8), the right side above equals

I - ±—=- Σ M(s)MN(t)E(x-s)F(x-t)

M (q- l)G(N) s,tΦ0

= 7^=7 Σ N(t)E(x-s)F(x-t)-τ-~-ΣM(t/s)

~ t)F(x - 0 - DN(E(x)F(x)).G(N)7

The next theorem gives an analogue of n-ΐold integration by parts.

THEOREM 2.3. Let E: GF(q) -> C andF: GF{q) -> C. Then

ΣE{x)DNF{x) = N{-ϊ)ΣF{x)DNE{x).
X X

Proof. By (2.8),

G{N)ΣE{x)DNF(x) = ΣE(u)ΣN(t)F(u - t)

- t)N(-t) = G(N)N(-l)ΣF(x)DNE(x).
X t X

The next theorem is the analogue of the Taylor expansion.

THEOREM 2.4. Let F: GF(q) -» C and fix a e GF{q). For x Φ a,

N(a-x).
= a

Moreover, this expansion is unique in the sense that if

0 =
N

for all x, then R(N) = 0 for all N.
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Proof. For x Φ a,

Σ
N

tΦO q l N

To prove the statement on uniqueness, multiply both sides of the equality
0 = ΣNR(N)N(a - x) by M(a - x) and then sum over x.

The next theorem gives an analogue of Fourier inversion. We omit the
easy proof.

THEOREM 2.5. Let F: GF(q) -> C. Then F(x) = ΣaQ(a)ξax, where
Q(a) = q~ιΣuF(u)ξ~au. Moreover, this expansion is unique in the sense
that ifO = Σa R(a)ζax for all x, then R(a) = 0 for all a.

The next theorem is the analogue of

Kι/2(x) = fξe-χ [20,(5.8.5)].

It evaluates Salie's sum over GF(q); see Mordell [23], [24].

THEOREM 2.6. For all x,

Proof. By the uniqueness assertion in Theorem 2.5, it suffices to show
that for all a,

(2.12) Q(a):= q-ι

The left side of (2.12) equals
2βV2- Σ

t x j
t+t=2a

and the right side of (2.12) equals

-a) + G(φ)φ(-1 - a)}
(2 14) 4

' φ(2α + 2) + φ ( 2 α - 2).
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If φ(a2 — 1) = - 1 , then the expressions in (2.13) and (2.14) vanish;

if φ(a2 — 1) = 0, these expressions equal φ{a). Finally, assume that

φ(a2 - 1) = 1. It remains to show that φ(a + ia2 - 1) = φ(2a + 2).

This follows because

la + lίa^X _ I g Ξ T

The next theorem generalizes Theorem 2.6; it is the analogue of

[20, (5.10.24)].

THEOREM 2.7. t/π/ew TV = 1 andx = 0,

- DΓ-.

Proof. The result is clear for x = 0, so assume x Φ 0. By (2.5),

Replace / by tx/(2u) to get

KN(x)G(Nφ)=
t

Now replace u by ι// to get

/, u

= ΣNφ(t)S(x,t),

where

If / + 1 = 0, S(x, 0 = G(φ). If φ(ί + 1) = - 1 , then replacement of
by ux2/(4t -f 4) yields

S(x, t) = φ(t -f l)Σφ(u)Γ(ί+l) + uχ2/4 = -S(x, t),
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so S(x, t) = 0. If φ(t + 1) = 1, then replacement of u by ux/(2]/t + 1)

yields

S(x,t) =

by Theorem 2.6. Thus, with w2 = t + 1, N(x/2)KN(x)G(Nφ) =

G(φ)ΣvvΛ^φ(w2 - l)£*w, as desired.

Finally, we record the following well-known special case of the

Hasse-Davenport multiplication formula mentioned in the Introduction:

(2.15) G(A2)G(φ) = A(4)G{A)G{Aφ).

3. Multivariable Hermite sums. The following theorem is the ana-

logue of Taylor's theorem in several variables. We omit the proof, as it is

similar to that of Theorem 2.4. We shall write a for the vector ( α l 9 . . . , ar)

e GF(^) rand N for the vector of characters (Nv..., Nr).

THEOREM 3.1. Let F: GF(q)r -> C and fix a e GF(q)r. Ifui Φ at for

each /, 1 < i < r,

F(u) = (? - I)"' K 1 D*F(*) flGiNJNAa, - u,).
N u = a ί = = 1

Moreover, this expansion is unique in the sense that if for all u,

N *' = 1

thenR(N) = 0 for all N.

Fix a symmetric r X r matrix D over GF(q) with nonzero determi-

nant d G GF(q). Given a row vector x, let xr denote its transpose. For the

rest of this section, let w and u be vectors with wiui Φ 0, 1 < / < r. In

view of Theorem 3.1 with a = 0, we can define multivariable Hermite

character sums GN(x) and HM(x) by

(3 1) y((x- D'1}*)'D(x- D-^-x'Dx)/2

N ι = ι

and

ί3 2) M(x-wyD(x-w)-x'Z)x)/2

= (q-lΓrΣHM(x)f\G{MI)M,(-wl).
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The following theorem is the analogue of the biorthogonality property

of Hermite polynomials [6, p. 286, (1)].

THEOREM 3.2.

L(N,M):=

i—l G [ M • I

10, otherwise.

Proof. Multiplying the equalities in (3.1) and (3.2), we obtain

(q ~ IΓ 2 ' Σ L{^^)f\G(Mi)G(Ni)Mi{''Wi)Ni{--ui)
M,N i = l

_ Wu'D^Hi + w'DviO/Zy Wx'Dx-2x'(u

x

_ y(u'D^i + w' Dw)/2Γ v((x-w-D~1u

_ v(u'D^u +

Since g is odd, there exists an invertible matrix Q over GF(q) such

that Q*DQ is diagonal [4, p. 253, Theorem 15]. Thus, replacing x by Qx,

we find that

r w ' u Σr' D x / 2 = r

by Theorem 3.1. Comparing coefficients of Y\r

i=ιMi( — wiui), we easily

obtain the result.

4. Hermite sums. In this section, we catalogue the theorems (in

somewhat arbitrary order) corresponding to what we believe to be the

most important classical formulas for Hermite functions. In many cases, it

is more difficult to construct an elegant analogue (and find general
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conditions of validity) than it is to give proofs. If for example one had
made the reasonable guess that the analogue of the binomial coefficient in
(4.29) is

qG(N)/((q - 1)G(B)G(NB))

(instead of G(B)G(BN)/((q - l)G(N)), used in Theorem 4.29), unnec-
essary complications would have resulted.

Corresponding to the Rodriguez formula

(4.1) Hn{*) = {-l)neχ2£-ne-*2 [6, p. 193, (7)],

we have

THEOREM4.1. HN{x) = N{-\)ζ~χ2DNζχ2.

Proof. By (2.8) and (2.1),

Corresponding to

(4.2) j~Hn(x) = (-2ΓΓw_~ fH«-m(x) [6, p. 119, (15)],

we have

THEOREM 4.2.

M M(-2)G(MN)
ϋ HN{X) - ~Q(ψ\ HNM\X)

Proof.

G{N)DMHN{x) = ̂ Q-ΣM{t)HN{x - t)
V N G(M) , N

G(M) ty

= M(-2)G(MN)HNM(x).
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Corresponding to

(4.3) -£^e-χ2Hn(x) = (-l)me-χ2Hn+m(x) [6, p. 119, (16)],

we have

THEOREM 4.3. IfMN Φ 1, then

DMζχ2HN{x) = M{-\)ζχ2HMN{x).

Proof. Since MN Φ 1, DMDN = DMN by Theorem 2.1. Thus, by
Theorem 4.1,

DMζχlHN{x) = N{-\)DMDNζχl

= N(-l)DMNζχ2 = N(-l)ζχ2MN(-l)HMN(x).

Corresponding to

(4.4) #„(*) = 1 [6, p. 193, (8)],

we have

THEOREM 4.4. HN(x) = 1 - Γχ2G(Φ) when N = 1.

Proof. By Theorem 2.1, D 1 ^ 2 = ζχl - G(φ), so the result follows
from Theorem 4.1. Alternatively, put iV = 1 in (2.1).

Corresponding to

(4.5) Hn(-x) = ( - l ) X ( x ) [6, p. 193, (14)],

we have

THEOREM4.5. HN(-x) = N(-l)HN(x).

Proof. Replace u by - u in (2.1).
Corresponding to

(4.6) H2m(0) = {-\)m(2m)\/m\ [6, p. 193, (15)],

we have

THEOREM 4.6.

{0, ifN is not a square

G{M) +_G(Mφ) ^ .fN = M2_
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Proof. G(N)HN(0) = ΣuN(u)ξu\ which vanishes when N is not a
square. If N = M2, then

G(N)HN(0) = ΣM(u2)ζ»2 = Σ^(«) f "{1 + Φ(«)}

Corresponding to the generating function formula

(4.7) e2"-1 = £ ^ Γ 1 [6, P 194, (19)],

we have

THEOREM4.7. Forz Φ 0, ζz2~2xz = ΣNN(-z)G(N)HN(x)/(q - 1).

Proof. By (2.1), the right side above equals

^ u ) r 2 + 2 u x = Σ r 2 + 2 u x = Γ 2 ~ 2 z x .

Corresponding to the polynomial expansion

we have

THEOREM 4.8. For c ^ 0,

G{N){q-

. By Theorem 2.4 with α = 0,

(4.8a) HN(x) = 4

By Theorem 4.2,

DD
Λ H (x)\ - A(-2)G(AN)

(x)\
G(N)

Thus, by Theorem 4.6,

ί
θ, if NA is not a square

Replacing A by ^ M 2 in (4.8a), we obtain the desired result.
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Corresponding to the integral representation

e* Γ(4.9) Hn(x) = (~ 2*1 e* Γ e2itx~t2tndt [20, (4.11.4)],

we have

THEOREM 4.9. IfN Φ 1, then

H N ( X ) = ί

L : =

1 Σ W^)r-(u-<
utΦ0 V f ;

Replace ί by 2ίw to obtain

The condition u Φ 0 may be dropped since N Φ 1. Replace w by u + x
to obtain

t

as desired.

COROLLARY 4.10. IfN Φl, then

where the bar on the left denotes complex conjugation.

Proof. By Theorem 4.9, the right side above equals

YN(u)t:2ux~u2 = N(~^> YN(u)t:~u2-2ux =
G(N) ^^^^ G(N) ^ [ }
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Corresponding to

(4.11) f ° e~χ2+axHn(x) = 4^aneal/A [20, p. 74],
" ' - 0 0

we have

THEOREM 4.11. Unless both a = 0 andN = 1,

Σϊχ2-2axHN{x) = G(φ)N(2a)Γa2

X

Proof.

X,t

t

and the result follows.

Corresponding to the integral equation

(4.12) Hn(x) = - ^ Γ e>χr-r2^Hn(y)dy [20,(4.12.3)],
i ]/2π •'-00

we have

THEOREM 4.12. IfN Φ 1, then

HN(x) =

Proof. By Theorem 4.9, the right side above equals

φ(2)G(φ)

t

again by Theorem 4.9.
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Corresponding to

(4.13) H2n(x) = (-4)"n\L^2(x2) [6, p. 193, (2)],

we have

THEOREM 4.13. Ifx Φ 0 and N Φ φ, then

Proof. By Theorem 4.8,

ΣN2M2(2x)G(M)G(M2N2).
(q- 1)G{NZ) M

Replace M by NM to obtain

(4.13a) HN,(x) = 1 - 1

w - 2 , ΣM2(2x)G(MN)G(M2).

By Theorem 2.4, for z Φ 0,

M

M 4~ L

Thus, by the definition (2.2) of LA

Ή,

qLA

N(z) = Σ^rΞτ-ΣM(t)ΣNA(l + u)N(u)Γtu

M

= Σ ^\G{M)ΣMN{U)NA{\ + u)
M 4 l u

- 1
 M

Therefore, with A = φ and z = x2,

(4,3b)

- 1)
Comparing (4.13a) and (4.13b), we see that it remains to show that

M(4)G(MN)G(M2) N(-4)M(-1)G(M)J(MN, Nφ)

G(N2) ~ G(N)



372 RONALD J. EVANS

If M = φ, then since N Φ φ, we have /(MTV, Nφ) = -Nφ( -1), so (4.13c)
follows from (2.15) with A = N. If M Φ φ, then J{MN,Nφ) =
G(MN)G(Nφ)/G(Mφ), and again (4.13c) follows from (2.15).

Corresponding to

(4.14) # - i / 2 U ) = ez

(which is stated incorrectly in both [6, p. 119, (20)] and [20, p. 298, #6]),
we have

THEOREM 4.14. Let x Φ 0 and let N be quartic, so that N4 = 1. Then

Proof. By Theorem 4.13 and the definition of L%,

G(N)

Thus, by Theorem 2.7,

M( \ _ ϊ~χ2/2 G(N)N{x2/4) lχ^\
φKX) G(N) G(φ) N\ 2 )'

as desired.
Corresponding to

(4.15) f ° e-w2wnHn{xw) dw = fanlPn(x) [6, p. 195, (29)],
J — oo

we have

THEOREM 4.15. Let N Φ 1. Then

(Note that the last sum vanishes if φ(x2 — 1) = — 1.)
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Proof. By (2.3),

G(N)ΣΓ2N(w)HN(xw) = ΣN(»Πu2(1-χ2)ΣN(»>)£(w+ux)2

w u w

= Σ ζ"2<ι-χ2>Σ*f(»>)$ίwu+ux)2 = Σκ(»>)ΣS"2(1+w2+2wx)

UΦO W W U

+ w2 + 2wx)G(φ) + q Σ N(w)
w

w2 4-1 = — 2wx

Corresponding to the addition theorem
n

(4.16) Hn(ax + by) = Σ (m)amb"~mHm(x)Hn_

[6, p. 196, (40)],

we have

THEOREM 4.16. // a9 byx,y(Ξ GF{q) with a2 + b2 = 1 and ab Φ 0,
then

M (q- l)G(N)

Proof. Let w Φ 0. By Theorem 4.7,

f - 2 ^ — T T Γ ΐ HM\
M "

and

Multiply to obtain

(4.16a) ξ*>2 + w°χ

= (<?- I ) " ' Σ M(a

Also, by Theorem 4.7,

(4.16b) ς»2



374 RONALD J. EVANS

The result now follows from Theorem 2.4 upon comparing the coefficients
of N(w) in (4.16a) and (4.16b).

Corresponding to (cf. (4.15))

(4.17) f e-'%Md*
- oo

we have

THEOREM 4.17. Let a Φ 0,1. Then

0, ifN is not a square

Άa-»Ha^ - if

G{M
(fl φ(α)(M(l -
M )

Proof. Let x = α"1. Then

w u

and the result easily follows.

A generalization of the formula

Γ e-χ2Hn(x)2cos{xy]f2)dx = e^2/

which is incorrectly stated in [6, p.195, (33)], is

(4.18) Γ e-*2-2'*>Hn{x)Hm{x)dx
J - oo

[20, p. 75],

Mφ(l - a-

ifN = M= M2

which is stated incorrectly in [22, (4.166)]. Corresponding to (4.18), we
have (cf. Theorem 4.11)

THEOREM 4.18. Let N Φ I, aΦ 0. Then

L:=
G{M)
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Proof. By Theorems 2.3 and 4.1,

Thus,

^ 7

G(N)

= .-A.- . ΣN(t)MW1-2"-2a'Σ!;Λl+2xi''+')

G(N)G(M) ,,,

G{N)G{M)t K) y

Since N Φ I, the term with 5 = — a may be excluded. Replace / by

— t/(a + s) to get

Since α

and the result follows by the definition of LA

N(x).

Corresponding to the orthogonality relation

(4.19) Γ e~χ2Hm{x)Hn(x) dx

0, ύmΦn

"n\^, if m = n [20, (4.13.1), (4.13.4)],

we have

THEOREM 4.19.

0, ifM Φ N

ΣV2HM(x)HN{x) = N{-2)G(φ){q - I) =

G(N)
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Proof. By (4.18a) with a = 0,

and the result follows.

Corresponding to the Gauss transform formula

(4.20) (2ττuy1/2 Γ Hn(υ)exp(-(x- vf/2u)dv
J ~oo

(2x)\ if M = 1/2

i f 0 < W < l / 2 [ 6 , p . l 9 5 , ( 3 0 ) , ( 3 1 ) L

we have

THEOREM 4.20. Let N Φ 1, u Φ 0, and assume 1 - 2u = a2 €

( , (

Prao/.

φ(2u)

G(ΛθG(φ)f
where we have replaced v by s + x. Now,

Therefore,

If <3 = 0, clearly L = ΛΓ(2x). Suppose a Φ 0. Then

ί = 77=τ Σ^(w)Γ' 2 + 2 λ W / α = JV(fl)
G(N) w

Corresponding to

(4.21) Hn{x)H_n_x(x) = e*

[6, p. 120, (7)],
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we have

THEOREM 4.21. Let N Φ 1 and x Φ 0. Then

q U

Proof.

L:= HN(x)HN(x)qN(-l) = HN(x)HN(x)G(N)G(N)

Since JV ¥= 1, we obtain, upon replacing t by tu,

= r ϊ2(?(Φ)ΣMθΦ(ί2 + i) r 2 ' v V ( ' 2 + 1 )

It remains to show that

(4.21a) ΣKNφ(u2)^" = φ(2)G(φ)ΣNφ(t)φ(t
u t

By (2.5),

SO

u t

Since the rightmost sum on u equals

(4.21a) follows.
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Corresponding to

(4.22)

jn + 3/2

\ f
-n) Jo

rvi \ f}/πT(-n) Jo

[6, p. 120, (9)],

we have

THEOREM4.22. IfNΦlandxΦO, then

HN{x)HN{x)

Proof. This follows from Theorem 4.21 and Corollary 4.10.

Corresponding to (cf. (4.15))

we have

THEOREM 4.23. IfN Φ M,

( 0, // MN is not a square,

= 7^=7 Σ

G{N) ,,WΦ0

= ~}=7 Σ MN(-w)Γ2ΣM(t)N(l - t)

and the result follows.
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By [27, p. 564, (14)], [26, Problem 87], we have

(4.24) Γ e-*2Ha(x)Hh(x)Hc(x)dx
J — oo

~ (-« - a)\(-n - b)\{-n - c)\ '

when « = — (a + b + c)/2 is an integer and a, b, c are positive integers.
Corresponding to (4.24) is (cf. Theorem 4.19)

THEOREM 4.24.

0, if ABC is not a square

^——(N(-2)G{ΛN)G(BN)G{CN)
G(A)G(B)G(C)

+ Nφ{-2)G(ANφ)G(BNφ)G(CNφ)), if~ABC= N2.

Proof. Successively applying Theorems 4.1, 2.3, 2.2, and 4.2, we have

L = ΣHA(x)HB(x)C(-l)Dψ2 = ΣV2DcHA{x)HB{x)

c ) D H - { x ) D " {x)5 (,-ι)c(c)
y G(M)G(MC) y 2C(-2)G(MA)G(CMB)

M {q - l)G(C) x G{A)G(B)

By Theorem 4.19, L = 0 if ABC is not a square, while if ABC = N2, only
M = ACN and M = ACNφ contribute to the sum; these contributions
are easily seen to be respectively the two required terms in Theorem 4.24.

Corresponding to Mehler's formula

(4.25) ( l - , ' ) -

H = 0

we have

THEOREM 4.25. Let

HMH.Wu/2)- | 6 , M 9 4 , ( 2 2 ) | ,

r(x9y,z) = (G(Φ)f~χ 2> ifx = yzandz = ± 1
lO, otherwise.
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Then

N H λ

= φ(z2 - l ) f ( 2 ^ - ^ - v V ( i - 2 ) _ φ ( _ 1 ) r * * - , * + r(x9y9z).

(The first term on the right is interpreted as 0 when z2 = 1.)

Proof. The result is clear for z = 0, so assume z Φ 0. Then

1 l f Σ ^ < ) Γ 2 + < 2 +

N)

-\

/ V

The restrictions s Φ 0, t Φ 0 can now be dropped, so

ΦJ v-x2-y2 | ±

If z 2 = 1 and x = yz, then

L = - φ ( -

as desired. If z2 = 1 and x # ĵ z, then

L = - φ ( -
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as desired. Finally, suppose z2 Φ 1. Then

L = _ ψ ( _

as desired.

381

then

COROLLARY 4

HN(x)HN(y)

.26. IfN Φ 1, α/i</

(N(-2x/y),

,y)-\N(2) + N(-2)

F(x,y)G(φ)ζ-χ2

ifx = ±y Φ 0

otherwise,

G(N)

G(N)^t

Proof. By Theorems 4.25 and 2.4,

^ ( x ) ^ ( ^ ) Ϊ V ( 2 )

= ̂ { Φ ( I -
2 - D

T
G(N) t

and the result follows since

,y, -t) = F(x,y)G(φ)ξ-*\

Under certain conditions [20, p. 71, Theorem 2], a function /(x) has
an expansion of the form

(4.27) f(χ) = f enHn(x),
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where

2"n\]/π •'-

Corresponding to (4.27), we have

e-*2f(x)Hn(x)dx.

THEOREM 4.27. Let F: GF(q) -» C. Then

F(u) = Z^eNHN(u) + q~ιζ~u

N

where

G{N)N(-2)

Λ;

Proof. By Theorem 4.25 with 7 = 1,

Corresponding to

(4.28) Hh(x)Hc(x)= Σ 2 ^

[6, p. 195, (37)],

we have

THEOREM 4.28. Let

10, if BC is not a square
8 ' \ W(2)G(W) + φW(2)G(Wφ)9 ifBC = W2.

Then

H^X)H^X) ~ ^Jjϊ) G(B)G(C)(q -

X ΣM(-2)G(M)G(MB)G(MC)HBcm(x).
M
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Proof. By Theorem 4.27 with F(x) = HB(x)Hc(x)9

(4.28a) HB(x)Hc(x) = 2

where

( 4 ' 2 8 b ) *A G W ^ - l )

When ABC is a square, then as in Theorem 4.24, let iV2 = A BC, and put
M = NBC, so that A = BCM2. Then by (4.28b) and Theorem 4.24,

ΣeAHA(x)
A

1

G(B)G(C)(q - 1)

It is easily checked that

ΣM(-2)G(M)G(MB)G(MC)HBcW2(x).

so the result follows from (4.28a).
The formula

(4.29) Hn(x + a)= f [n

k){la)kHH_k{x)

is stated in [25, p. 252, Ex. 1] and, in slightly different form, in [25, p. 253,
Ex. 8]. Miller [22, p. 106] states (4.29) incorrectly. Corresponding to (4.29),
we have

THEOREM 4.29. Let a Φ 0. Then

HN(X + a) = ^

Proof. The right side above equals

(q-l)G(N) B

~ G(N) i 9 - !G(N)

1
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LEMMA 4.30. Let z Φ 0. Then {cf. Theorem 4.19)

L := ΣV2HM{t)HN{t + z) = G{MN)G{φ)N{2z)M{-z)/G{N).
t

Proof.

G(M)G(N)L= Σ M(s)N(u)ξ'2+s2+2st+u2+2u(!+2)

S,t,U

— G{φ) 2̂  M{s)N(u)ζ2uz~2us

= G(φ) Σ M(s)MN(u)ζ2uz-2s

= G(φ)M(-2)G(M)NM(2z)G(MN),

as desired.

Corresponding to (cf. (4.3) and (4.7))

( 4 . 3 1 ) e2-' 2Hm{x ~z)=Σ H"+m^)z" [25, p . 197, ( 1 ) ] ,

we have

THEOREM 4.31. Let z Φ 0. Then

, yG(N)N(-z)

Proof. Define eN as in Theorem 4.27. By Lemma 4.30, eN =
NM(-z)G(MN)/(q - 1). It is easily proved (cf. Theorem 4.11) that

ΣΓz2-2tΉM(t) = qM{z)/G{M).
t

Thus the result follows from Theorem 4.27.

COROLLARY 4.32. Let z Φ 0. Then

y^H (Λ-M(-ZΪGM , V G{A)G{A1M)A1M{z)
G(M) ^ (q-l)G(A2)

Proof. In Theorem 4.31, set x = 0, replace z by -z , and apply
Theorem 4.6.
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LEMMA 4.33. Let a Φ 0, ± 1 . Then {cf. Lemma 4.30, Theorem 4.19)

0, if MN is not a square

ifMN = A= A2

Proof.

G{N)G(M)

G{M)

and the result easily follows.

Corresponding to

(of which the special case a = ^[ϊ is given in [25, p. 253, Ex. 7]), we have

(cf. Theorem 4.20)

THEOREM 4.34. Let a Φ 0, ± 1. Then

a2 - 1).

Proof. By Theorem 4.27 with F(x) = HN(x/a),

Applying Lemma 4.33 and replacing M by NA1, we obtain the result.

Corresponding to the formula

L»m-(2a)Hm(x)U



386 RONALD J. EVANS

a version of which is incorrectly stated in [22, (4.76)], we have (cf.
Theorems 4.29 and 4.31)

THEOREM 4.35. For at Φ 0 and N Φ 1,

F(t):= ζ'2 + 2xΉN{x + t + at)

G(N)

Proof. By (2.8),

G(X)D,AF(t)\,-o = ΣA{u)ζ«2-^HN{x -u-aΰ)

U) - Σ A(UD)N(Ό + uv)ζv2+2vχ-2aA

U) + ΣAN(V)AN(U)N(I + u)ζvl+2υχ-2au^(Σ
G(N) \ u

U) + HAN(x)G(AN)ΣAN(u)N(l + uJ^(Σ
G{N)\ u

Now, since N Φ 1 and a Φ 0,

u)ζ~2au = Σ AN(v)N(l + u)ζu(v-2a)

v) + G(N)ΣAN(v)N(v - 2a)ζ2a~v

V

v) + ζ2aG(N)A(-2a)ΣAN(v)N(v + l)ζ2av

V

ϋ) + ζ2aG{N)A{-2a)qLΪN{2a).
V

Thus,

G(I)Dt

AF(t)\,.o = ̂ - ΣΛN(u)(l - HAN{x))
G{N) u

+ HAN(x)A(-2a)qLA

τ

N(2a).
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Therefore, by Theorem 2.4,

(q- l)G(N) A

The result now follows with use of Theorem 4.4.
Let Gn(x) denote the Hermite function of the second kind defined in

[2, (2.44)]. In view of [20, (9.13.8) and (1.2.3)], it is reasonable to consider
φ( — l)HN(x) as the finite field analogue of Gn(x).

Corresponding to (cf. (4.24))

(4.36) Γ Gm+l+2k + 1(x)Hm(x)Hι(x)e-2χ2dx

k\
we have

THEOREM 4.36. Let A, B, C, and ABC be nontrivial. Then

O, if ABC is not a square,

q-ιφ{-l)N{2)G{AN)G(BN)G{CN)

+ q-ιφ(-l)Nφ(2)G{ANφ)G{BNφ)G{CNφ), ifABC = N2

L ^

Proof. We have

G(φ)φ(2)

G(A)G(B)G(C) Γ,,t7,

G(φ)φ(2) _ y
G(A)G(B)G(C) r£,

Clearly L = 0 if ABC is not a square, so assume that ABC = N2. Then,
since N 2 Φ 1,

+ Nφ(2)G(Nφ)Z(Nφ)),
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where

(4.36b) Z(N) = ΣB(s)C(r)N(l + r2 + s2 - 2™ - 2r - 2s).

By [7, (20) and (27)],

Nφ(-l)G(N2)G(B)G(C)j{BNφ,CNφ,Nφ)

where
M2,M3)'.= Σ Mι(x)M2{y)M,{z).

It is well-known [17, p. 100] that

(4.36d) J{MX, M2, M3) = G(M1)G(M2)G(M3)G(M1M2M3)/q

when M3 Φ 1. By (4.36c) and (4.36d),

(4.36e)

( ) =

and Z(Nφ) is found by replacing JV by Nφ in (4.36e). Thus, from (4.36a)
and (2.15), the result follows.

5. Associated Hermite sums. Let Hn(x; c) denote the associated
Hermite polynomial defined in [1, p. 16]. In view of the generating
function formulas (4.7) and

( .

m = 0 V c / m + l

'2 ί u^e^-^du [1, (4.14)],

it is reasonable to define the finite field analogue HM{x\ C) of Hm{x\ c),
for a nontrivial character C, by

HM(x; C) = HMC(x

Thus,

HM(x; C) = HMC(x)Hc(x) = HMC(x)Hc(x)C(2)^q/(G(φ)G(C)),

where the last equality follows from Corollary 4.10. In view of Theorem
4.19, the character sums HM(x; C) clearly satisfy an orthogonality
relation with weight function ξχ2/ Hc(xf (cf. [1, (4.7)]).

To obtain the analogue of the polynomial representation of Hm(x; c)
in powers of x (see [1, (2.8) and §5]), one must, according to Theorem 2.4,
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compute DNHM(x\ C) at x = 0. This may be accomplished by applying
Theorems 4.28, 4.3, and 4.6. We omit the details.

We close with an example to show how finite field analysis might be
used to conjecture explicit formulas for special functions, which then may
be proved by complex analytic methods.

Suppose it is desired to find a formula for Hm(x; c) as a Iine4ar
combination of Hermite polynomials. By Theorem 4.27, we have essen-
tially

m > y (q-DG(C)

xΣHA(x)G(A)A(-2)Σt2'2HA(t)Hc(t)HMC(t),
A t

where the asterisk signifies that a few isolated terms have been ignored.
Using Theorem 4.36 to evaluate the inner sum on t, we have

HM(x,C) =

XBCN2(-2)N(2)G(BCN)G(BN)G(CN),

where B = MC. Replace N by NB to obtain

H»\X'C> q(q-l)G(C)

XΣHMΨ(X)G(N2M)N(2)G(NC)G(N)G(MN).

N

From this one might conjecture that

which is in agreement with [1, (4.18)].

Acknowledgment. The author is grateful to Richard Askey for several
helpful suggestions.
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