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CHARACTER SUM ANALOGUES OF CONSTANT 
TERM IDENTITIES FOR ROOT SYSTEMS 

BY 

RONALD J. EVANS t 

ABSTRACT 

Certain identities connected with root systems provide explicit constant terms in 
Laurent series expansions of multivariable functions. Character sum analogues 
of these identities are given. 

I. Introduction and notation 

We use the following notation. Let p be an odd prime, and consider the finite 

field GF (q), where q is a power of p. The symbol X~ denotes summation over all 

x E GF(q). Throughout, A, B, C denote arbitrary characters on GF(q), 1 

denotes the trivial character, and th is the quadratic character on GF(q). The 

multiplicative inverse of a nonzero element x E GF(q) is written ~. Define the 

Gauss sum over GF(q) by 

G(A ) = ~ A ( x ) ~  T~'~, 
x 

where Tr is the trace map from GF(q) to GF(p) and ff = exp(27ri/p). Define the 

Jacobi sum over GF(q) by 

J(A,B)= ~A(x)B(1-x). 
x 

Each of the five nontrivial identities below gives the constant term (ab- 

breviated C.T.) of a Laurent series in variables x l , . . . , x ,  expanded about the 

origin. We write x~ = x, x2 = y  in the case n = 2, and we let a, b, c, a ~ , . . . , a ,  

denote positive integer contants. 
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(1) 

(2) 

(3) 

(4) 

C.T. l-[ ( 1 -  -' " =  xixj ), ( a , + . . . + a , ) !  
i~=r~7~, a l ! a 2 ! . . . a . !  ' 

" =]-~(a +b +jc)!(jc +c)!, 
C . T . L ] ( 1 - x , )  " ( 1 - x : l ) b  L~i~ ( 1 - x , x / ' )  ~ ~=~ (a+]c)I(b+jc)!c! 

C.T. (1 - x) a (1 - x-~)" (1 - y)b (1 - y-,)b (1 -- xy) ~ (1 - x - '  y-l)c 

= (a +b +c)I(2a)!(2b)I(2c)! 
a!b!c!(a +b)!(a +c)!(b + c ) ! '  

C.T.(1 - x)"(1 - x-l)~ (1 - y)~ - y- ' )~ 

• (1 - xy-')b (1 - x-ly)b (1 - xy)C (1 - x - l y - ' )  c 

(2a + b + c )I(2a )I(2b )!(2c )! 
(a +b +c)!(a +b)!(a +c)IaIbtcI '  

n 

C.T.I- I (1 - x,) ~ (1 - x ; ' ) "  (1 - x~) ~ (1 - xF2y �9 
i=1 

(5) I-~ (1 - x, xi) b (1 - xF'x;l) ~ (1 - x,x;') b (1 - xjxT') b 
l<i<j<=n 

,-1FI (2a + 2c + 2jb )!(2c + 2jb )!(jb + b )! 
l l ( a  + 2 c  + ( n  + j  - 1)b)!(a +c +jb)!(c +jb)!b!" i = 0  

Formulas  (1)-(5) are given in [5] by (1.1), (4.13), (4.14), (4.16), and (3.11), 

respectively. They comprise the set of formulas in the last column of the table in 

[5, appendix D]. Each of (1)-(5) is connected with a particular root system; 

details may be found in [4], [5]. 

In this paper we discuss character sum analogues of (1)-(5). They are obtained 

very roughly as follows. The factors n t on the right are replaced by Gauss sums 

G(N), where N is a character on GF(q).  The factors on the left such as (1 - z)" 

are replaced by N ( 1 -  z),  and "C .T . "  is replaced by a summation q - " E  over 

x l , "  . ,x , ,  with each x~ running through the nonzero elements  of GF(q) .  

Formula  (1) is the well known "Dyson  conjecture" .  A character sum analogue 

for n = 3 is proved in [2, (5)]. It is 

(6) ~.y,,O ~ A C ( ~ - - ~ ) B C ( I + ~ x ) A B ( y - x ) = D ( A ' B ' C ) + D ( A q b ' B ~ b ' C c k ) '  

with 

(7) D(A,B,  C):  = q 2 B ( -  1) G(ABC) 
G ( A ) G ( B ) G ( C ) '  
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provided that A 2, B 2, C 2, AB, AC, and BC are nontrivial. No such analogues of 

(1) have been proved or even conjectured for n > 3. 

Formula (2) follows from Selberg's multivariable extension of Cauchy's beta 

integral formula. A character sum analogue of (2) for n = 2 is proved in [2, (4)]. 

It is 

(8) 

with 

(9) 

A(xy)B((1  - x)(1 - y)) C2(x -- y) = R ( A , B , C ) +  R(A,B,C&),  
x , y  

R (A, B, C): : G (C 2) G (A)  G (A C) G (B) G (BC) 
G(C) G(ABC)  G ( A B C  2) ' 

provided that A B C  2 and (ABC) 2 are nontrivial. The special case of (8) where 

A = B = C 2 = & has been applied in graph theory [3]. Analogues of (2) for all 

n > 2 are given conjecturally in [2, (29)]. They are indirect in the sense that the 

character sums do not spring directly from the Laurent series in (2) but rather 

from that series after a change of variables (x~ , . . . , x ,  are replaced by the 

elementary symmetric functions in new variables X j , . . - , X , ) .  No "direct"  

analogues of (2) for n > 2 appear to be known. For example, for n = 3, no 

evaluation in terms of Gauss sums has been proposed for the sum 

(10) O = ~ A ( x y z ) B ( ( 1 - x ) ( 1 - y ) ( 1 - z ) ) C 2 ( ( x - y ) ( x - z ) ( y - z ) ) .  
x , y , z  

In the special case 1 ~ A = B = ~2, however, the sum O can be evaluated; see 

the Appendix. 

The main purpose of this paper is to prove character sum analogues of (3) and 

(4), in Theorems 1 and 2. We also give in Theorem 3 a character sum analogue of 

(5) in the case n = 1. No such direct analogue of (5) has been proved or 

conjectured for n > 1, but the conjectures in [2,(29)] may be viewed as indirect 

analogues. 

2.  C h a r a c t e r  s u m  a n a l o g u e s  

We begin with an analogue of (3). 

THEOREM 1. If A B  ~ I and C 2 ~1 ,  then 

S :  = ~ A ( ( 1  - t ) (1  - } - ) )B( (1  - u ) ( 1  - 5 ) )  C ( ( 1  - t u ) ( l  - t-t2)) 
t,u:~O 

= F(A, B, C) + ch ( - l) F(A&, Bc~, C&), 
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where 

F(A, B, C) = G(ABC) G(A 2) G(B 2) G( C 2) G(A C) G(BC) G(AB ) 
qG(A)G(B)G(C)  

PROOF. Set 

X = 

SO 

u t - t  u - 1  

1 - u t '  Y = l - u t '  

x l + y  
t = - -  U---- y '  l + x "  

With this change of variables, we have 

(11) S = A B C ( - 1 ) ~ A C ( x y ) B C ( ( I + x ) ( I + y ) ) A 2 B 2 C 2 ( y - x ) .  
x,y 

By (8) and (11), since AB and C 2 are nontrivial, 

S = A B C ( -  1){R(AC, BC, ABC&)+ R(AC, BC, ABC)}. 

It remains to show that 

(12) F(A, B, C) = A B e (  - 1) R ( ft. (~, BC', ABC~b ). 

By the definition (9), the right side of 02)  equals 

ABC( - 1) G(A 2 8 2 C 2) G( fi, C)G(B& )G( BC) G(A& ) 
G(ABCd~ ) G( C4Q G(AB ) 

= ~b(~ 1 ) G ( A ~ ) G ( ~ ) G ( f i ~ ) G ( A 2 B 2 C 2  ) 
G(ABCd~) {G(A&)G(B&)G(C&)}. 

It is well known [1, theorems 2 and 3] that for any character E, 

(13) G(E) G(Ed~ ) = E ' ( 4 )  G(E 2) O(c~ ). 

Thus the right side of (12) equals 

1) a t X ch~  t f t ~  e X Y~ ~ ABC(4)G (ABC) [ O ( A 2)G (B 2)G ( C2)G 3( 4) ) ~ 
~b(q~-- ~ , - - ~ , ~ , - - ~ z  O(~b) (ABC(4)G(A)G(B)G(C)J 

= F(ABC). 

REMARK. If C 2= 1, a direct argument shows that 

S = J(fi,, A 2)j(/~, B 2) _ j (~/~,  A 2 B:).  
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We can similarly evaluate S if A 2 = 1 or  B 2 = 1, since, as is easily seen f rom the 

definition, S is symmetr ic  in A,  B, C. Now suppose that A 2, B 2, and C 2 are 

nontrivial. Then  not all of AB, BC, A C  can be trivial, and by symmetry ,  it may  

be supposed that A B #  1. Then  T h e o r e m  1 can be applied to evaluate S. 

We next prove an analogue of (4). 

THEOREM 2. If A2 # 1 and A 2 BC # 1, then 

T:  = ~ A ((1 - x)(1 - e)(1 - y)(1 - 3~)) B ((1 - x37)(1 - y2) )C((1  - xy)(1 - ~ ) )  
x,y#O 

= H(A,B, C)+ d~(- 1)H(A~b,B&, C)+ & ( -  1)H(Ath, B, Cch) 
+ H(A, B&, Cr 

where 

H(A,B,C) = A ( -  1)G(A 2)G(B2)G( C2)G(A 2BC)G(ABC)G(.~B )G(,4C) 
qG(A)G(B)G(C)  

SO 

PROOF. Set 

x + l  y + l  
r =  s =  - - 1 '  x - ] '  y 

r + l  s + l  
r - l '  Y s - 1  

With this change of  variables, we have 

T = A 2 B C ( - 4 ) ~  ABC((r 2-  1)(s 2 -  1))B2(s - r)C2(s + r). 
r,s 

Now set v = rs + 1, u = (r + s )/2. T h e n  

T = A 2 B C ( - 4 )  ~ ABC(v2-4u2)B(4(u2+ 1 - v))C(4u2){1 + & ( u 2 +  1 - v)} 
u , v  

= S(A,B, C) + S(A, B4,, C4D, 

where  

S(A, B, C) = B C ( -  1 )a2e  2 C2(4) ~ ,4BC(v 2-  4uZ)C(u2)Br 2 + 1 - v). 
u,  v 

Observe  that S (A, B, C)  = W(A, B, C) + & ( - 1) W(Ad#, B, C$), where 
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(14) W(A,B,C)=BC(-1)A2B2C2(4)~.ABC(v2-4u)C&(u)Bdp(u + l - v ) .  
u, v 

It remains to prove that W(A,B, C) = H(A, B, C). 
By (14) and [2, (19)], since A 2 and A2BC are nontrivial,  

W(A,B, C) = B C ( -  1)A ~ B: C2(4)R (C6,B,~,ABC6 ) 

= BC( - 1)A 2 B 2 C 2 (4) G(fi~B 2 ~2) G(C&) G(AB) G(B4)) G(fi, C) 
G ( fi, BC) G(,449 ) G( fi, ~ BC) 

= A~b~- 1) A2B2C 2 (4) G(A 2 BC) G(AB) G(,4C) 

G ( fit ~ B~ C ~) 
x G(.ABC4)) G(Ark)G(Brk)G(Crk). 

Applying (13) as in the proof  of T h e o r e m  1, we see that W(A,B,C)= 
H(A,B,C).  

REMARK. If A 2 = 1 or A 2 BC = 1, it is not hard to evaluate T ;  see the remark  

at the end of [2, w 

We next  prove an analogue of (5) for n = 1. 

TREOREM 3. If AC 2 /1 ,  then 

Y: = ~ A ((1 - x)(1 - 2))  C((1 - x2)(1 - ~2)) 
x ~ 0  

= M ( A , C ) +  , l , ( -  1)M(A, C4,), 

PROOF. 

where 

where 

M(A,C)= qG(A2C2)G(C2) 
G(AC) G(C) G(AC2)" 

Y = A C( - 1)~,,  A ((x + ~) - 2) C((x + ~)2 _ 4) 

= A C ( -  1)~ A ( u  -2)C(u 2 -4){1 + 4,(u 2 -4)}  
u 

= L(A, C) + q)(- 1)L(A,  C6), 

L(A, C) = A C ( -  1 ) ~  AC4)(u - 2)C~b(u + 2 ) .  
u 
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Obse rve  that  

L(A, C)  = (/)( - 1) ~ AC49(4 - u)C~b(u) = ~b(- 1)AC2(4)J(ACek, C49). 
u 

Since AC 2 / 1, 

L (A, C)  = (h( - 1)AC2(4)  G(ACqb) G(Cqb)/G(AC2). 

Apply ing  (13), we have L(A, C)= M(A, C) and the result  follows. 

REMARK. If AC 2= 1, then 

Y = q)( - 1)J(04),  C r  + J (O,  C),  

SO 

y = ( C ( - 1 ) ( q - 3 ) ,  if CZ=l, 

[. - 2 C ( - 1 ) ,  i f C  2 ~ 1 .  

A charac te r  sum cor responding  to the left side of (5) for  n = 2 is 

Y = x~y~ ~ A ((1 - x)(1  - s  - y)(1  - )7)) C((1 - xZ)(1 - ~z)(1 - y 2)(1 - ~z)). 

B((1 - xy)(1  - ~)7) (1 - x)7) (1 - ~y)) .  

The re  is no known fo rmula  for  V in te rms  of Gauss  sums.  H o w e v e r ,  if C 2 = 1, 

then  V can be easily eva lua ted  by applying T h e o r e m  2 (with B = C)  toge ther  

with Theorerf i  3. 

A p p e n d i x  

W e  eva lua te  the sum O in (10) in the special  case 1 ~ A = B = ~2. In this 

case, 

0 = ~ A(xyz (1 -x ) (1 -y ) (1 - z ) ) ,4 ( (x  - y ) ( x - z ) ( y  - z ) )  
x,y,z 

= ~ A ( ( ~  - 1)()7 - 1 ) ( f  - 1 ) ) A ( ( ~  - )7 ) (~  - :?)()7 - ~)) 
x,y,z~O 

= ~, A ( ( x - 1 ) ( y - 1 ) ( z - 1 ) ) , ' ~ ( ( x - y ) ( x - z ) ( y - z ) )  
x,y,z~O 

= ~ A ( x y z ) , 4 ( ( x - y ) ( x - z ) ( y - z ) )  
x,y,z.~-- I 
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= ~ ,  A ( x y z ) A ( ( x  - y)(x  - z ) ( y  - z ) )  
x,y,z 

- 3 ~  A ( - x y ) A ( ( x  - y ) ( x  + 1)(y + 1)). 
x , y  

Replacing x,y by xz,  y z  in the first sum just above, we see that 

O = ~ o Q I - 3 0 1  = (q -4 )O1 ,  

where 

By (8), 

Thus 

QI = ~ A ( x y ) / / , ( ( 1 - x ) ( 1 - y ) ( x  - y)). 
x, y 

q2 C ( -  1 ) G ( C  3) + q2 C 4 , ( -  1 ) G ( C  ~ ok) 
Q1 = G3(C) G3(Oh) 

f G___(_~ ~b(- 1) G(C3~b) 
Q=(q-4)q2C(-1)~G3(C) + G3(Cc~) }" 

EXAMPLE. If q = p = a 2 + b 2 with b even, then 

O = ~ $ ( x y z ( 1 - x ) ( 1 - y ) ( 1 - z ) ( x - y ) ( x  - z ) ( y - z ) ) = 2 ( p - 4 ) ( a  2-  b:). 
x,y ,z  
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