DETERMINATIONS OF JACOBSTHAL SUMS

Ronald J. Evans

The sign ambiguities are resolved in evaluations of Jacobsthal sums $\sum_{m=1}^{p}\left(m\left(m^{k}+a\right) / p\right)$ for $k=2,3,4,6,10$, and 12 , where $(/ p)$ denotes the Legendre symbol.

1. Introduction. For a positive even integer $e=2 n$, a prime $p=e f$ +1 , and an integer a prime to p, define the Jacobsthal sum of order e by

$$
\varphi_{n}(a)=\sum_{m=1}^{p}\left(\frac{m\left(m^{n}+a\right)}{p}\right)
$$

where ($/ p$) denotes the Legendre symbol. In [1, §4], the values of Jacobsthal sums $\varphi_{n}(a)$ of orders $e=4,6,8,12,20,24$ are given up to some sign ambiguities. The purpose of this paper is to show how the precise values of $\varphi_{n}(a)$ can be found.

In §3, we give congruence conditions $(\bmod p)$ which determine the correct choices of \pm signs. The computational complexity of these determinations for large p is much less than that of computing $\varphi_{n}(a)$ directly from the definition.

In §4, we describe a method for determining the correct choices of \pm signs by congruence conditions $(\bmod a)$, when a is prime. If a is small compared with p, then the determinations in $\S 4(\bmod a)$ turn out to be computationally simpler than those in $\S 3(\bmod p)$.

The cases $e=4,6$ and $e=8$ have already been treated by Hudson and Williams in [2] and [3], respectively. We employ different techniques based on Jacobi sums which work for all values $e=4,6,8,12,20,24$. Each of these values of e is considered in $\S 3$, but in $\S 4$, only the case $e=12$ is treated, for brevity.

It will be convenient to introduce the notation $F_{e}(a)$ for the sum

$$
\begin{equation*}
F_{e}(a)=\sum_{m=1}^{p}\left(\frac{m\left(m^{e / 2}-a\right)}{p}\right)=\varphi_{n}(-a) \tag{1}
\end{equation*}
$$

An evaluation of $F_{e}(a)$ immediately yields one for $\varphi_{n}(a)$, since [4, (7)]

$$
F_{e}(a)=\varphi_{n}(-a)=\varphi_{n}(a)(-1)^{f n+f}
$$

In the sequel, attention will be focused on $F_{e}(a)$.
2. Notation and Jacobi sums. For a character $\lambda(\bmod p)$, define the Jacobi sums

$$
J(\lambda)=\sum_{m=1}^{p} \lambda(m) \lambda(1-m), \quad K(\lambda)=\lambda(4) J(\lambda)
$$

Write $p=e f+1$. For each value of $e=4,6,8,12,20$, 24, fix a character $\chi=\chi_{e}(\bmod p)$ of order e. Let P be the prime ideal divisor of p in $\mathbf{Z}[\exp (2 \pi i / e)]$ chosen such that

$$
\begin{equation*}
\chi(\alpha) \equiv \alpha^{(p-1) / e}=\alpha^{f} \quad(\bmod P) \tag{2}
\end{equation*}
$$

for all $\alpha \in \mathbf{Z}[\exp (2 \pi i / e)]$. It is easily seen that

$$
\begin{equation*}
K(\chi) \equiv 0 \quad(\bmod P) \tag{3}
\end{equation*}
$$

In [1, §3] one finds the following evaluations of Jacobi sums $K(\chi)$ of orders $e=4,6,8,12,20,24$ in terms of parameters in quadratic partitions of p.
(4) $K\left(\chi_{4}\right)=a_{4}+i b_{4}, \quad$ where $p=a_{4}^{2}+b_{4}^{2}, a_{4} \equiv-(2 / p)(\bmod 4)$;

$$
\begin{align*}
\left(\frac{-1}{p}\right) K\left(\chi_{6}\right)= & K\left(\chi_{6}^{2}\right)=a_{3}+i b_{3} \sqrt{3} \tag{5}\\
& \text { where } p=a_{3}^{2}+3 b_{3}^{2}, a_{3} \equiv-1 \quad(\bmod 3)
\end{align*}
$$

(6) $K\left(\chi_{8}\right)=a_{8}+i b_{8} \sqrt{2}, \quad$ where $p=a_{8}^{2}+2 b_{8}^{2}, a_{8} \equiv-1 \quad(\bmod 4)$;

$$
K\left(\chi_{12}\right)= \begin{cases}-a_{4}-i b_{4}, & \text { if } 3 \mid a_{4} \tag{7}\\ a_{4}+i b_{4}, & \text { if } 3 \nmid a_{4},\end{cases}
$$

where

$$
\begin{gather*}
K\left(\chi_{12}^{3}\right)=a_{4}+i b_{4} \text { as in }(4) ; \\
K\left(\chi_{24}\right)=a_{24}+i b_{24} \sqrt{6}, \quad \text { where } p=a_{24}^{2}+6 b_{24}^{2}, \tag{8}\\
a_{24} \equiv a_{8}(\bmod 3), \quad \text { with } K\left(\chi_{24}^{3}\right)=a_{8}+i b_{8} \sqrt{2} \quad \text { as in }(6) ; \\
K\left(\chi_{20}\right)= \begin{cases}a_{20}+i b_{20} \sqrt{5}, & \text { if } 5 \nmid a_{4}, \\
i a_{20}-b_{20} \sqrt{5}, & \text { if } 5 \mid a_{4},\end{cases} \tag{9}
\end{gather*}
$$

where

$$
p=a_{20}^{2}+5 b_{20}^{2} \quad \text { and } \quad a_{20} \equiv \begin{cases}a_{4}(\bmod 5), & \text { if } 5 \nmid a_{4} \\ b_{4}(\bmod 5), & \text { if } 5 \mid a_{4}\end{cases}
$$

with $K\left(\chi_{20}^{5}\right)=a_{4}+i b_{4}$ as in (4).
3. Congruence conditions $(\bmod p)$. This section is to be read in conjunction with $[1, \S 4]$. We consider only those values of a for which the evaluations of $F_{e}(a)$ in $[1, \S 4]$ have sign ambiguities, and we resolve these ambiguities with congruence conditions $(\bmod p)$, for $e=4,6,8,12,20$, 24.

Case 1. $e=4,(a / p)=-1$.
The proof in [1, Theorem 4.4] shows that

$$
\begin{equation*}
F_{4}(a)=2 \operatorname{Re}(\bar{\chi}(a) K(\chi))=-2 b_{4} i \chi(a)= \pm 2 b_{4} \tag{10}
\end{equation*}
$$

To determine the correct sign, it remains to find $F_{4}(a)(\bmod p)$. By (3) and (4), $-i b_{4} \equiv a_{4}(\bmod P)$. Thus by (10) and (2), $F_{4}(a) \equiv 2 a_{4} a^{f}(\bmod P)$, so

$$
\begin{equation*}
F_{4}(a) \equiv 2 a_{4} a^{f} \quad(\bmod p) \tag{11}
\end{equation*}
$$

Remark. While it takes the computer $O(p)$ operations to compute $F_{4}(a)$ directly from the definition (1), it requires at most $O(\sqrt{p})$ operations to compute $F_{4}(a)$ from (10) and (11), since $a^{f}(\bmod p)$ can be computed in $O(\log p)$ steps.

Case 2. $e=6, a$ is noncubic $(\bmod p)$.
Write $\lambda=\chi_{6}^{2}$. Note that $\lambda(a)=(-1 \pm i \sqrt{3}) / 2$. The proof in [1, Theorem 4.2] shows that

$$
\begin{align*}
F_{6}(a) & =-1+2 \operatorname{Re}(\bar{\lambda}(a) K(\lambda)) \tag{12}\\
& =-1-a_{3}+2 b_{3} \sqrt{3} \operatorname{Im} \lambda(a)=-1-a_{3} \pm 3 b_{3}
\end{align*}
$$

It remains to determine $F_{6}(a)(\bmod p)$. By (3) and (5), $a_{3} \equiv-i b_{3} \sqrt{3}$ $(\bmod P)$, so by (12) and (2),

$$
F_{6}(a) \equiv a_{3}\left(a^{2 f}-a^{4 f}\right)-1-a_{3} \equiv 2 a_{3} a^{2 f}-1 \quad(\bmod p)
$$

Case 3. $e=8,(a / p)=-1$.
From the proof in [1, Theorem 4.6],

$$
\begin{align*}
F_{8}(a) & =-2 \operatorname{Re}\left(K(\chi)\left(\chi(a)+\chi^{3}(a)\right)\right) \tag{13}\\
& =-2 i b_{8} \sqrt{2}\left(\chi(a)+\chi^{3}(a)\right)= \pm 4 b_{8}
\end{align*}
$$

Thus,

$$
F_{8}(a) \equiv 2 a_{8}\left(a^{f}+a^{3 f}\right) \quad(\bmod p)
$$

Case 4. $e=12,(a / p)=-1$.
Subcase 4A. $3 \mid a_{4}, a$ is cubic $(\bmod p)$.
By [1, (4.3)],

$$
\begin{equation*}
F_{12}(a)=6 \operatorname{Re}\left(\chi(a)\left(a_{4}+i b_{4}\right)\right)=6 \chi(a) i b_{4}= \pm 6 b_{4} . \tag{14}
\end{equation*}
$$

By (3) and (7), $a_{4} \equiv-i b_{4}(\bmod P)$, so

$$
F_{12}(a) \equiv-6 a_{4} a^{f} \quad(\bmod p)
$$

Subcase 4B. $3 \nmid a_{4}$.
By [1, (4.5)],

$$
\begin{align*}
& F_{12}(a)=2 b_{4} / \operatorname{Im} \chi(a) \tag{15}\\
& \quad=4 i b_{4} /\left(\chi(a)+\chi^{5}(a)\right)= \begin{cases} \pm 4 b_{4}, & \text { if } a \text { is noncubic }(\bmod p) \\
\pm 2 b_{4}, & \text { if } a \text { is cubic }(\bmod p)\end{cases}
\end{align*}
$$

Thus,

$$
F_{12}(a) \equiv-4 a_{4} /\left(a^{f}+a^{5 f}\right) \quad(\bmod p)
$$

Case 5. $e=24,(a / p)=-1$.
This case is slightly different than those above in that two congruence conditions are required to determine $F_{24}(a)$. From the proof in [1, Theorem 4.10],

$$
F_{24}(a)=A_{24}+B_{24}
$$

where

$$
\begin{aligned}
A_{24} & =-2 \operatorname{Re}\left(\left(a_{8}+i b_{8} \sqrt{2}\right)\left(\chi^{3}(a)+\chi^{9}(a)\right)\right) \\
& =-2 i b_{8} \sqrt{2}\left(\chi^{3}(a)+\chi^{9}(a)\right)= \pm 4 b_{8}
\end{aligned}
$$

and

$$
\begin{aligned}
B_{24} & =-2 \operatorname{Re}\left(\left(a_{24}+i b_{24} \sqrt{6}\right)\left(\chi(a)+\chi^{5}(a)+\chi^{7}(a)+\chi^{11}(a)\right)\right) \\
& =-2 i b_{24} \sqrt{6}\left(\chi(a)+\chi^{5}(a)+\chi^{7}(a)+\chi^{11}(a)\right) \\
& = \begin{cases} \pm 12 b_{24}, & \text { if } a \text { is noncubic }(\bmod p) \\
0, & \text { if } a \text { is cubic }(\bmod p) .\end{cases}
\end{aligned}
$$

It remains to determine A_{24} and $B_{24}(\bmod p)$. Since $a_{8} \equiv-i b_{8} \sqrt{2}$ and $a_{24} \equiv-i b_{24} \sqrt{6}(\bmod P)$, we have

$$
A_{24} \equiv 2 a_{8}\left(a^{3 f}+a^{9 f}\right) \quad(\bmod p)
$$

and

$$
B_{24} \equiv 2 a_{24}\left(a^{f}+a^{5 f}+a^{7 f}+a^{11 f}\right) \quad(\bmod p)
$$

Case 6. $e=20$.
This case is similar to Case 5, so we omit some details. From the proof in [1, Theorem 4.13],

$$
F_{20}(a)=A_{20}+B_{20},
$$

where

$$
A_{20}=2 \operatorname{Re}\left\{\chi^{5}(a)\left(a_{4}-i b_{4}\right)\right\}
$$

and

$$
B_{20}=\left\{\begin{array}{l}
2 \operatorname{Re}\left\{\left(\chi(a)-\chi^{3}(a)-\chi^{7}(a)+\chi^{9}(a)\right)\left(-i a_{20}-b_{20} \sqrt{5}\right)\right\}, \\
2 \operatorname{Re}\left\{\left(\chi(a)+\chi^{3}(a)+\chi^{7}(a)+\chi^{9}(a)\right)\left(a_{20}-i b_{20} \sqrt{5}\right)\right\}, \\
\text { if } 5 \mid a_{4} \\
\text { if } 5 \nmid a_{4}
\end{array}\right.
$$

It remains to determine A_{20} and B_{20} in each of the subcases below.

Subcase 6A. $5 \mid a_{4},(a / p)=1$, a nonquintic $(\bmod p)$.
Here $A_{20}= \pm 2 a_{4}$ and $B_{20}= \pm 10 b_{20}$, with

$$
\begin{equation*}
A_{20} \equiv 2 a_{4} a^{5 f} \quad(\bmod p) \tag{16}
\end{equation*}
$$

- and

$$
\begin{equation*}
B_{20} \equiv 2\left(a^{f}-a^{3 f}-a^{7 f}+a^{9 f}\right) a_{4} a_{20} / b_{4} \quad(\bmod p) \tag{17}
\end{equation*}
$$

Observe that there is no sign ambiguity in the right member of (17), since $a_{20} / b_{4} \equiv 1(\bmod 5)$, as is noted after (9).

Subcase 6B. 5| $a_{4},(a / p)=-1$.
Here,

$$
A_{20}= \pm 2 b_{4} \quad \text { and } \quad B_{20}= \begin{cases} \pm 8 a_{20}, & \text { if } a \text { is quintic }(\bmod p) \\ \pm 2 a_{20}, & \text { if } a \text { is nonquintic }(\bmod p)\end{cases}
$$

with the congruences (16) and (17) again holding.

Subcase 6C. $5 \nmid a_{4},(a / p)=-1$.
Here

$$
A_{20}= \pm 2 b_{4} \quad \text { and } \quad B_{20}= \begin{cases} \pm 10 b_{20}, & \text { if } a \text { is nonquintic }(\bmod p) \\ 0, & \text { if } a \text { is quintic }(\bmod p)\end{cases}
$$

with (16) holding and

$$
B_{20} \equiv 2 a_{20}\left(a^{f}+a^{3 f}+a^{7 f}+a^{9 f}\right) \quad(\bmod p)
$$

4. Congruence conditions $(\bmod a)$. Throughout this section, $e=12$, $p=12 f+1, \chi$ is a character $(\bmod p)$ of order $12,(a / p)=-1$, and a is prime. From (14) and (15),

$$
\begin{equation*}
F_{12}(a)=t \operatorname{Im} K\left(\chi^{3}\right) / \operatorname{Im} \chi(a)=t b_{4} / \operatorname{Im} \chi(a)= \pm h b_{4} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
K\left(\chi^{3}\right)=a_{4}+i b_{4} \tag{19}
\end{equation*}
$$

and

$$
\begin{array}{ll}
h=t=-6, & \text { if } 3 \mid a_{4} \text { and } a \text { is cubic }(\bmod p), \\
h=t=2, & \text { if } 3 \nmid a_{4} \text { and } a \text { is cubic }(\bmod p), \\
h=4, t=2, & \text { if } 3 \nmid a_{4} \text { and } a \text { is noncubic }(\bmod p) .
\end{array}
$$

If the prime a is odd, then $a+b_{4}$, otherwise we would have

$$
p=a_{4}^{2}+b_{4}^{2} \equiv a_{4}^{2} \quad(\bmod a)
$$

which contradicts $(a / p)=-1$. Thus we can resolve the ambiguity in (18) by determining $F_{12}(a)(\bmod a)$, if $a>3$. (Note $a \neq 3$, as $(a / p)=-1$.) For $a=2$, we will resolve the ambiguity by determining $F_{12}(2)$ modulo an appropriate power of 2 , in (20) and (21) below.

Case 1. $a=2$.
It is classical [4, p. 107] that

$$
b_{4} \equiv-2 i \chi^{3}(2) \quad(\bmod 8)
$$

If 2 is a cubic residue $(\bmod p)$, then

$$
\frac{b_{4}}{\operatorname{Im} \chi(2)}=\frac{i b_{4}}{\chi(2)} \equiv \frac{2 \chi^{3}(2)}{\chi(2)}=-2 \quad(\bmod 8)
$$

so by (18),

$$
\begin{equation*}
F_{12}(2) \equiv-2 t \equiv-4(\bmod 16), \quad \text { if } 2 \text { is cubic }(\bmod p) \tag{20}
\end{equation*}
$$

If $3 \nmid a_{4}$ and 2 is noncubic $(\bmod p)$, then

$$
\begin{aligned}
F_{12}(2) & =\frac{2 b_{4}}{\operatorname{Im} \chi(2)}=\frac{4 i b_{4}}{\chi(2)-\bar{\chi}(2)} \equiv \frac{8 \chi^{3}(2)}{\chi(2)-\bar{\chi}(2)} \\
& =\frac{8}{\chi^{10}(2)-\chi^{8}(2)} \quad(\bmod 32)
\end{aligned}
$$

Since $\chi^{8}(2)=(-1 \pm i \sqrt{3}) / 2$ and $\chi^{10}(2)=(1 \pm i \sqrt{3}) / 2$, (21) $\quad F_{12}(2) \equiv 8(\bmod 32), \quad$ if $3 \nmid a_{4}$ and 2 is noncubic $(\bmod p)$.

Case 2. a is a prime >3.
To determine $F_{12}(a)(\bmod a)$, it suffices, by (18), to determine

$$
S(\chi)=\operatorname{Im} \chi(a) / b_{4}
$$

modulo a. To do this, we need some formulas for Gauss sums $G(\psi)$, defined for characters $\psi(\bmod p)$ by

$$
G(\psi)=\sum_{n=1}^{p} \psi(n) \exp (2 \pi i n / p)
$$

From [1, Theorems 2.2 and 3.1],

$$
G(\chi)^{12}=p J^{4}\left(\chi^{4}\right) K^{6}(\chi)
$$

so by [1, Theorem 3.19],

$$
\begin{equation*}
G(\chi)^{12}=p J^{4}\left(\chi^{4}\right) K^{6}\left(\chi^{3}\right) \tag{22}
\end{equation*}
$$

From [1, (3.28) and Theorems 2.2 and 3.1],

$$
G^{5}(\chi) / G\left(\chi^{5}\right)=J^{2}\left(\chi^{4}\right) K^{2}(\chi)
$$

so by [1, Theorem 3.19],

$$
\begin{equation*}
G^{5}(\chi) / G\left(\chi^{5}\right)=J^{2}\left(\chi^{4}\right) K^{2}\left(\chi^{3}\right) \tag{23}
\end{equation*}
$$

Here, as in [1, Theorem 3.4],
(24) $2 J\left(\chi^{4}\right)=r_{3}+3 i t_{3} \sqrt{3}, \quad$ where $4 p=r_{3}^{2}+27 t_{3}^{2}, r_{3} \equiv 1(\bmod 3)$.

It is clear from the definition of $G(\chi)$ that, in the ring of algebraic integers,

$$
\begin{equation*}
G^{a}(\chi) \equiv \bar{\chi}^{a}(a) G\left(\chi^{a}\right) \quad(\bmod a) \tag{25}
\end{equation*}
$$

We will complete the proof by determining $S(\chi)(\bmod a)$ in (27)-(30) in terms of the parameters p, r_{3}, and a_{4} unambiguously defined in (4) and (24).

Subcase 2A. $a \equiv 5(\bmod 12)$.
By (25) and (23),

$$
\chi^{7}(a) \equiv G^{a-5}(\chi) G^{5}(\chi) / G\left(\chi^{5}\right)=G^{a-5}(\chi) J^{2}\left(\chi^{4}\right) K^{2}\left(\chi^{3}\right) \quad(\bmod a)
$$

Thus, by (22),

$$
\chi^{7}(a) \equiv p^{(a-5) / 12} J^{(a+1) / 3}\left(\chi^{4}\right) K^{(a-1) / 2}\left(\chi^{3}\right) \quad(\bmod a)
$$

Replacing χ by χ^{7}, we obtain

$$
\begin{equation*}
\chi(a) \equiv p^{(a-5) / 12} J^{(a+1) / 3}\left(\chi^{4}\right) K^{(a-1) / 2}\left(\bar{\chi}^{3}\right) \quad(\bmod a) \tag{26}
\end{equation*}
$$

Each member of (26) is a rational linear combination of $1, i, \sqrt{3}, i \sqrt{3}$ by (19) and (24). The respective coefficients of i must be congruent $(\bmod a)$. Since $\operatorname{Im} \chi(a)$ is rational, it follows that

$$
\operatorname{Im} \chi(a) \equiv-p^{(a-5) / 12} \operatorname{Re} J^{(a+1) / 3}\left(\chi^{4}\right) \operatorname{Im} K^{(a-1) / 2}\left(\chi^{3}\right) \quad(\bmod a)
$$

so
(27) $S(\chi) \equiv-p^{(a-5) / 12} b_{4}^{-1} \operatorname{Re} J^{(a+1) / 3}\left(\chi^{4}\right) \operatorname{Im} K^{(a-1) / 2}\left(\chi^{3}\right) \quad(\bmod a)$.

For example, when $a=5$, (27) yields

$$
\begin{aligned}
S(\chi) & \equiv\left(-4 b_{4}\right)^{-1} \operatorname{Re}\left(r_{3}+3 i t_{3} \sqrt{3}\right)^{2} \operatorname{Im}\left(a_{4}+i b_{4}\right)^{2} \\
& \equiv 2 a_{4}\left(r_{3}^{2}-27 t_{3}^{2}\right) \quad(\bmod 5)
\end{aligned}
$$

Subcase 2B. $a \equiv 7(\bmod 12)$.
By (25) and (23),

$$
\begin{aligned}
\chi^{5}(a) & \equiv G^{a+5}(\chi) \chi(-1) p^{-1} G\left(\chi^{5}\right) / G^{5}(\chi) \\
& \equiv G^{a+5}(\chi) \chi(-1) p^{-1} /\left(J^{2}\left(\chi^{4}\right) K^{2}\left(\chi^{3}\right)\right) \quad(\bmod a)
\end{aligned}
$$

Thus, by (22),

$$
\chi^{5}(a) \equiv p^{(a-7) / 12} \chi(-1) J^{(a-1) / 3}\left(\chi^{4}\right) K^{(a+1) / 2}\left(\chi^{3}\right) \quad(\bmod a)
$$

Replacing χ by χ^{5}, we obtain

$$
\chi(a) \equiv p^{(a-7) / 12}(-1)^{f} J^{(a-1) / 3}\left(\bar{\chi}^{4}\right) K^{(a+1) / 2}\left(\chi^{3}\right) \quad(\bmod a)
$$

so

$$
\begin{align*}
S(\chi) \equiv & p^{(a-7) / 12}(-1)^{f} \operatorname{Re} J^{(a-1) / 3}\left(\chi^{4}\right) \tag{28}\\
& \times \operatorname{Im} K^{(a+1) / 2}\left(\chi^{3}\right) / b_{4} \quad(\bmod a)
\end{align*}
$$

For example, when $a=7$, (28) yields

$$
\begin{aligned}
S(\chi) & \equiv(-1)^{f}\left(4 b_{4}\right)^{-1} \operatorname{Re}\left(r_{3}+3 i t_{3} \sqrt{3}\right)^{2} \operatorname{Im}\left(a_{4}+i b_{4}\right)^{4} \\
& \equiv(-1)^{f} a_{4}\left(r_{3}^{2}-27 t_{3}^{2}\right)\left(2 a_{4}^{2}-p\right) \quad(\bmod 7)
\end{aligned}
$$

Subcase 2C. $a \equiv 11(\bmod 12)$.
By (25) and (22),

$$
\begin{aligned}
\chi(a) & \equiv p^{-1} \chi(-1) G^{a+1}(\chi) \\
& \equiv p^{(a-11) / 12} \chi(-1) J^{(a+1) / 3}\left(\chi^{4}\right) K^{(a+1) / 2}\left(\chi^{3}\right) \quad(\bmod a)
\end{aligned}
$$

Thus,

$$
\begin{align*}
S(\chi) \equiv & p^{(a-11) / 12}(-1)^{f} \operatorname{Re} J^{(a+1) / 3}\left(\chi^{4}\right) \tag{29}\\
& \times \operatorname{Im} K^{(a+1) / 2}\left(\chi^{3}\right) / b_{4} \quad(\bmod a)
\end{align*}
$$

For example, when $a=11$, (29) yields

$$
\begin{aligned}
S(\chi) & =(-1)^{f}\left(16 b_{4}\right)^{-1} \operatorname{Re}\left(r_{3}+3 i t_{3} \sqrt{3}\right)^{4} \operatorname{Im}\left(a_{4}+i b_{4}\right)^{6} \\
& \equiv(-1)^{f} a_{4}\left(3 b_{4}^{4}-10 a_{4}^{2} b_{4}^{2}+3 a_{4}^{4}\right)\left(r_{3}^{4}-162 r_{3}^{2} t_{3}^{2}+729 t_{3}^{4}\right) / 8 \\
& \equiv 7 a_{4}(-1)^{f}\left(3 b_{4}^{4}+a_{4}^{2} b_{4}^{2}+3 a_{4}^{4}\right)\left(r_{3}^{4}+3 r_{3}^{2} t_{3}^{2}+3 t_{3}^{4}\right) \quad(\bmod 11)
\end{aligned}
$$

Subcase 2D. $a \equiv 1(\bmod 12)$.
By (25) and (22),

$$
\chi(a) \equiv G^{a-1}(\bar{\chi}) \equiv p^{(a-1) / 12} J^{(a-1) / 3}\left(\bar{\chi}^{4}\right) K^{(a-1) / 2}\left(\bar{\chi}^{3}\right) \quad(\bmod a)
$$

Thus,
(30) $S(\chi) \equiv-p^{(a-1) / 12} \operatorname{Re} J^{(a-1) / 3}\left(\chi^{4}\right) \operatorname{Im} K^{(a-1) / 2}\left(\chi^{3}\right) / b_{4} \quad(\bmod a)$.

For example, when $a=13$, (30) yields

$$
\begin{aligned}
S(\chi) & \equiv-p\left(16 b_{4}\right)^{-1} \operatorname{Re}\left(r_{3}+3 i t_{3} \sqrt{3}\right)^{4} \operatorname{Im}\left(a_{4}+i b_{4}\right)^{6} \\
& \equiv-p a_{4}\left(3 b_{4}^{4}-10 a_{4}^{2} b_{4}^{2}+3 a_{4}^{4}\right)\left(r_{3}^{4}-162 r_{3}^{2} t_{3}^{2}+729 t_{3}^{4}\right) / 8 \\
& \equiv-2 p a_{4}\left(b_{4}^{4}+a_{4}^{2} b_{4}^{2}+a_{4}^{4}\right)\left(r_{3}^{4}+7 r_{3}^{2} t_{3}^{2}+t_{3}^{4}\right) \quad(\bmod 13)
\end{aligned}
$$

Numerical examples.

a	5	5	5	7	7	7	11	11	11	13	13	13
p	13	37	157	61	73	157	61	193	337	37	193	229
$F_{12}(a)$	12	24	-24	-24	48	-12	-12	24	-96	24	-24	12

References

[1] B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory, 11 (1979), 349-398.
[2] R. H. Hudson and K. S. Williams, Resolution of ambiguities in the evaluation of cubic and quartic Jacobsthal sums, Pacific J. Math., 99 (1982), 379-386.
[3] __, An application of a formula of Western to the evaluation of certain Jacobsthal sums, Acta Arith., (to appear).
[4] E. Lehmer, On the number of solutions of $u^{k}+D \equiv w^{2}(\bmod p)$, Pacific J. Math., 5 (1955), 103-118.

Received March 3, 1982 and in revised form June 7, 1982. Supported by NSF grant MCS 81-01860.

University of California, San Diego
La Jolla, CA 92093

