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DETERMINATIONS OF JACOBSTHAL SUMS

RONALD J. EVANS

The sign ambiguities are resolved in evaluations of Jacobsthal sums
2Pm=x(m(mk + a)/p) for k = 2, 3, 4, 6, 10, and 12, where ( /p)
denotes the Legendre symbol.

1. Introduction. For a positive even integer e — In, a prime/? = ef
+ 1, and an integer a prime top, define the Jacobsthal sum of order e by

where ( /p) denotes the Legendre symbol. In [1, §4], the values of
Jacobsthal sums φn(a) of orders e = 4, 6, 8, 12, 20, 24 are given up to
some sign ambiguities. The purpose of this paper is to show how the
precise values of ψn(a) can be found.

In §3, we give, congruence conditions (mod p) which determine the
correct choices of ± signs. The computational complexity of these de-
terminations for large/? is much less than that of computing φn(a) directly
from the definition.

In §4, we describe a method for determining the correct choices of ±
signs by congruence conditions (mod a), when a is prime. If a is small
compared with p, then the determinations in §4 (mod a) turn out to be
computationally simpler than those in §3 (mod /?).

The cases e — 4, 6 and e = 8 have already been treated by Hudson
and Williams in [2] and [3], respectively. We employ different techniques
based on Jacobi sums which work for all values e = 4, 6, 8, 12, 20, 24.
Each of these values of e is considered in §3, but in §4, only the case
e — 12 is treated, for brevity.

It will be convenient to introduce the notation Fe(a) for the sum

m=\

An evaluation of Fe(a) immediately yields one for φn(a), since [4, (7)]

In the sequel, attention will be focused on Fe(a).
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2. Notation and Jacobi sums. For a character λ (mod /?), define the

Jacobi sums

J(λ) = 2 λ(m)λ(l - m), K(λ) = λ(4)/(λ).

Write p = ef+ 1. For each value of e = 4, 6, 8, 12, 20, 24, fix a

character χ = χe (mod /?) of order e. Let P be the prime ideal divisor of p

in Z[exp(2τ7//e)] chosen such that

(2) χ(a)=a{p-γ)/e = af (mod P)

for all a E Z[exp(2τπ/e)]. It is easily seen that

(3) K(χ)=0 (modP).

In [1, §3] one finds the following evaluations of Jacobi sums K(χ) of

orders e — 4, 6, 8, 12, 20, 24 in terms of parameters in quadratic partitions

oίp.

(4) K(χ4) = a4 + ib49 wherep = a\ + Z>4

2, α4 = - (2//?) (mod4);

(5) (y) ()

= a] + 3bj, a3 = — 1 (mod 3);

(6) A:(χ 8 ) = β 8 + /Z?8/2 , where^p = α8

2 + 2Z?8

2, fl8 Ξ - 1 ( m o d 4 ) ;

where

K(χ\2) = a4 + ib4 as in (4);

(8) K(χ24) = a24 + ib24{β, where/? = a\4 + 66|4,

α24 — ̂ 8(πiod3), with J^(χ24) = as + ib%{ϊ as in (6);

(9) * ( X 2 O ) : ' ^ " ' " ' l f 5 t α 4 '

where

and βon Ξ

with AΓ(χ20) = a4 + /Z?4 as in (4).

fβ 4 (mod5) , if 5 | α 4 ,
= fl + 5Z, a n d a = {
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3. Congruence conditions (mod /?). This section is to be read in
conjunction with [1, §4]. We consider only those values of a for which the
evaluations of Fe(a) in [1, §4] have sign ambiguities, and we resolve these
ambiguities with congruence conditions (mod/?), for e = 4, 6, 8, 12, 20,
24.

Case 1. e = 4, (a/p) = — 1.
The proof in [1, Theorem 4.4] shows that

(10) F4(a) = 2 Mχ(a)K(χ)) = -2b4iχ(a) = ±2ft4.

To determine the correct sign, it remains to find F4(a) (mod p). By (3)
and (4), -ib4 = a4 (mod P). Thus by (10) and (2), F4(a) = 2α4α

/(mod P),
so

(11) F4{a)=2a4af (mod/?).

REMARK. While it takes the computer O(p) operations to compute
F4(a) directly from the definition (1), it requires at most Oiy/p) operations
to compute F4(a) from (10) and (11), since af (mod /?) can be computed
in 0(log/?) steps.

Case 2. e — 6, a is noncubic (mod /?).
Write λ = χ2

6. Note that λ(a) = ( - 1 ± i]/3)/2. The proof in [1,
Theorem 4.2] shows that

(12) F6(a)=-l+2Rc(λ(a)K(λ))

= -1 - a3 + 263/3" Im λ(α) = - 1 - a3 ± 3b3.

It remains to determine F6(a) (mod/?). By (3) and (5), a3 = —ib3}/3
(modP), so by (12) and (2),

F6(a) = a3(a2f - a4f) - 1 - a3 = 2a3a
2f - 1 (mod /?).

Case 3. e = 8, (a/p) = - 1 .
From the proof in [1, Theorem 4.6],

(13) Ft(a) = - 2

= -libjϊ (χ(α) + χ3(«)) = ±4

Thus,

f8(β)Ξ2fl8(α/+βV) (mod/7).
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Case 4. e = 12, (α//?) = - 1.

Subcase 4A. 3 | a4, a is cubic (mod /?).

By [1,(4.3)],

(14) F1 2(α) = 6 Re(χ(α)(fl4 + tf>4)) = 6χ(a)ib4 = ±6b4.

By (3) and (7), a4 = -zfe4 (mod P), so

F 1 2 (α) = —6a4a
f (mod/?).

Sw^α^e 4B. 3\ a4.

By [1,(4.5)],

(15) F12(α) = 26 4/Imχ(α)

,.-*.// / N . 5/ ^ ί ± 4 6 4 ' i f a i s noncubic (mod p)
= AAt/W) + X («)) = { ± 2 , 4 ; l f β 1S c u b i c ( m o d ^ ^

Thus,

Fn(a) = -4a4/(af+aV) (mod/?).

5. e — 24, (a/p) = — 1.

This case is slightly different than those above in that Avo congruence

conditions are required to determine F24(a). From the proof in [1,
Theorem 4.10],

F24(a) =A24 + B24,

where

A24 = - 2 Re((fl8 + *W2 )(χ3(α) + χ9(α)))

and

B24 = - 2 Re((α24 + ibjϊ){χ(a) + χ5(a) + χ\a)

{a) + χ5(α) + χ7(α) + χ"(β))

{ ± 12 Z?24, if β is noncubic (mod /?)

0, if α is cubic (mod /?).

It remains to determine A24 and B24 (mod/?). Since a% = —ib^/2 and

α 2 4 = —ib24yf6 (mod P), we have

, 4 2 4 Ξ Ξ 2 α 8 ( t f 3 ' + α 9 / ) (mod/?)
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and

B24 ΞΞ 2a24(af + a5f + aΊf + aUf) (mod p).

Case 6.e = 20.

This case is similar to Case 5, so we omit some details. From the

proof in [1, Theorem 4.13],

where

A20 = 2Re{χ5(a)(a4-ib4)}

and

2 Re{(χ(α) - χ3(α) - χΊ(a) + χ9(a))(-ia20

It remains to determine ^420 and B20 in each of the subcases below.

Subcase 6A. 5 | α 4 , (α//?) = 1, a nonquintic (mod p).

Herev420 = ± 2 a 4 and B20 = ± 10Z>20, with

(16) ^ 2 0 = 2 α 4 α 5 / ( m o d ^ )

and

(17) B20 = 2(af - a3f - aΊf + a9f)a4a20/b4 (mod p).

Observe that there is no sign ambiguity in the right member of (17), since

a20/b4 = 1 (mod 5), as is noted after (9).

Subcase 6B. 5 | α 4 , (a/p) — — 1.

Here,

ί ± $a20, if a is quintic (mod p)
4̂ = ±2b4 and B20 = ^ . . . . , , λ

2 0 4 υ [ ± 2 a 2 0 , if α is n o n q u i n t i c ( m o d p),

with the congruences (16) and (17) again holding.
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Subcase 6C. 5 \ a4, (a/p) = - 1 .
Here

( ± 10&20, if a is nonquintic (mod p)

0, if α is qumtic (mod /?),

with (16) holding and

B20 = 2 α 2 0 ( α / + a3f + aηf + a9f) (mod />).

4. Congruence conditions (mod a). Throughout this section, e = 12,

/? = 1 2 / + 1, χ is a character (mod p) of order 12, (tf//?) = — 1, and <z is

prime. From (14) and (15),

(18) Fn(a) = tlmK(χ3)/lmχ(a) = ώ4/Imχ(fl) = ±hb4

where

(19) /sΓ(χ3) = α 4 + » 4

and

h — t— —6, if 3 I α 4 and α is cubic (mod /?),

h — t — 2, if 31 α 4 and α is cubic (mod /?),

Λ = 4, t — 2, if 3 \ a4 and α is noncubic (mod /?).

If the prime a is odd, then a \ Z>4, otherwise we would have

p = al + b% = al (mod α),

which contradicts (α//>) = — 1. Thus we can resolve the ambiguity in (18)

by determining Fn(a) (mod a), if a > 3. (Note α 7̂  3, as (α//?) = — 1.)

For a = 2, we will resolve the ambiguity by determining -F12(2) modulo an

appropriate power of 2, in (20) and (21) below.

Case 1. a = 2.

It is classical [4, p. 107] that

6 4 Ξ - 2 i χ 3 ( 2 ) (mod 8).

If 2 is a cubic residue (mod /?), then

= - 2 (mod 8),
χ(2)

so by (18),

(20) F12(2) Ξ - It = - 4 (mod 16), if 2 is cubic (mod p).
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If 3 \ a4 and 2 is noncubic (mod p), then

F (2\- 2b* - 4ib< - 8 χ 3 ( 2 )

ι Λ > Imχ(2) χ ( 2 ) - χ ( 2 ) χ(2) - χ(2)

^ • O ( 2 ) - X ^ ( m ° d 3 2 )

Since X

8(2) = ( - 1 ± ιVJ)/2 and χ lo(2) = (1 ± i/3 )/2,

(21) F12(2) Ξ 8 (mod32), if 3\ a4 and 2 is noncubic (mod p).

Case 2. a is a prime > 3.
To determine FX2(a) (mod a), it suffices, by (18), to determine

S(χ) = lm χ(a)/b4

modulo a. To do this, we need some formulas for Gauss sums
defined for characters ψ (mod p) by

G(Ψ) = Σ Ψ(π)exp(2*

From [1? Theorems 2.2 and 3.1],

G(χ)lZ = pJ4(χ4)K6(χ)

so by [1, Theorem 3.19],

(22) < ? ( x ) I 2 = / ^ ( x 4 ) i f 6 ( x 3 ) .

From [1, (3.28) and Theorems 2.2 and 3.1],

so by [1, Theorem 3.19],

(23)

Here, as in [1, Theorem 3.4],

(24) 2/(χ 4 ) = r3 + 3it3{ϊ, where 4p = r3

2 + 27ί3

2, r3 = 1 (mod3).

It is clear from the definition of G(χ) that, in the ring of algebraic
integers,

(25) Ga(χ)=r(a)G(χa) (mod a).

We will complete the proof by determining S(χ) (mod a) in (27)-(30)
in terms of the parameters p, r3, and a4 unambiguously defined in (4) and
(24).
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Subcase 2A. a = 5 (mod 12).

By (25) and (23),

χ\a) = G^(χ)G'(χ)/G(Xη = G«- 5 (χ)/ 2 (χ 4 )* 2 (χ 3 ) (mod a).

Thus, by (22),

χ

Ί(a) =^( f l- 5)/ 1 2/ ( β + 1 ) / 3(χ 4)A r ( Λ~ 1 ) / 2(χ 3) (mod a).

Replacing χ by χ7, we obtain

(26) X(a) =p<*-WW°+W(x*)Kia-l)/2fa3) ( m o d β ) .

Each member of (26) is a rational linear combination of 1, /, \/3\ /"τ/3" by

(19) and (24). The respective coefficients of / must be congruent (mod a).

Since lmχ(a) is rational, it follows that

Imχ(β) ΞΞ - ^ - ^ R e ^ + ^ ί χ ^ I m ^ - ^ ί χ 3 ) (modα)

so

(27) S(χ) = -/><β-5>/12V Re/<fl+I>/3(χ4) Im K^~ι>/2(χ3) (mod α).

For example, when a = 5, (27) yields

S(χ) Ξ(-46 4 )" ι Re(r 3 + 3/r3/3 )

Ξ2α 4(r 3

2-27ί 3

2) (mod 5).

Subcase 2B. α Ξ 7 (mod 12).

By (25) and (23),

^G»+5(χ)X(-\)p-V(j2(χ*)K2(χ3)) (mod a).

Thus, by (22),

χS(fl) =p(-- 7)/ 1 2χ(-l)/(β- 1)/ 3(χ 4)A:<β + 1)/ 2(χ 3) (modfl).

Replacing χ by χ5, we obtain

χ(fl) =/,(«-7)/12(

SO

(28) 5(χ) Ξ ^

X l m ί : ( " + 1 ) / 2 ( χ 3 ) A (modα).
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For example, when σ = 7, (28) yields

S(χ) =(-\)f(4b4y
x Re(r3 + 3iφ)2Im(α4 + ib4)

4

= {-\)fa,{ri-2Ίtl)(lal-p) (mod?).

Subcase 2C. a = 11 (mod 12).
By (25) and (22),

Thus,

(29)

XlmK(a+ι^2(χ3)/b4 (mod a).

For example, when a = 11, (29) yields

= (-l) / (166 4 )" l Re(r 3 + 3iφ ) 4Im(α 4 + iZ>4)
6

Ξ ί - l / ί φ f t ? - 10α^4

2 + 3^)(r 3

4 - 162r3

2ί3

2 + 729/3

4)/8

Ξ 7f l 4 (-1/(3^ + α^ 4

2 + 3α4)(r3

4 + 3r3

2ί3

2 + 3ί3

4) (mod 11).

Subcase 2D. α Ξ 1 (mod 12).
By (25) and (22),

Thus,

(30) S(χ) = -p^-λ^2ReJ^-^3(χ*)ίmK^-^2(χ3)/b4 (mod a).

For example, when a — 13, (30) yields

' Re(r3 + 3iφ)4lm(a4 + ib4f

- \ba\bl + 3a4

4)(r* - \62r3

2ή + 729ί3

4)/8

= -2pa4(bl + a\bl + a4

4)(r3

4 + 7φ2 + t$) (mod 13).
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Numerical examples.

a

P

5

13

12

5

37

24

5

157

-24

7

61

-24

7

73

48

7

157

-12

11

61

-12

11

193

24

11

337

-96

13

37

24

13

193

-24

13

229

12
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