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Classical n-th power residue difference sets modulo p are known
to exist for n = 2,4,8. During the period 1953–1999, their nonex-
istence has been proved for all odd n and for n = 6,10,12,14,16,

18,20. In 1976, Lam showed that qualified n-th power residue dif-
ference sets modulo p exist for n = 2,4,6, and he proved their
nonexistence for all odd n and for n = 8,10,12. We further prove
their nonexistence for n = 14,16,18,20.
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1. Introduction

For an integer n > 1, let p be a prime of the form p = nf + 1. Let Hn denote the set of (nonzero)
n-th power residues in F∗

p , where Fp is the field of p elements. For ε ∈ {0,1}, define Hn,ε = Hn ∪
{1 − ε}. Note that |Hn,ε | = f + ε .

Fix m ∈ F∗
p . In 1975, Lam [18] introduced addition sets, which generalize cyclic difference sets. He

called Hn,ε an n-th power residue addition set modulo p if there exists an integer λ > 0 such that
the list of differences s − mt ∈ F∗

p with s, t ∈ Hn,ε hits each element of F∗
p exactly λ times. If m ∈ Hn ,

such an addition set is a classical power residue difference set modulo p; see [3, p. 174]. If m /∈ Hn ,
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we call such an addition set a qualified power residue difference set modulo p with qualifier m;
cf. [14,15].

The classical n-th power residue difference sets Hn,ε for n � 8 are the following [3, pp. 177–179]:

H2,ε , if p > 3, p ≡ 3 (mod 4), (1.1)

H4,ε , if p > 5, p = (1 + 8ε) + 4y2 for some odd y, (1.2)

H8,ε , if p = (1 + 48ε) + 8u2 = (9 + 432ε) + 64v2, with integers u, v. (1.3)

It is known that Hn,ε is never a classical power residue difference set when n is odd [3, p. 177],
n = 6 [3, p. 178], n = 10 [26], n = 12 [3, p. 179], n = 14 [21], n = 16 [9,25], n = 18 [1,2], and n = 20
[10,22]. These nonexistence results were obtained sporadically during the period 1953–1999. The
cases with even n > 20 are open (see [3, p. 497]), but we conjecture that the list (1.1)–(1.3) is com-
plete.

As was noted above, complete information on the existence of classical n-th power residue dif-
ference sets is known for all n � 20. The primary goal of this paper is to similarly obtain complete
information on the existence of qualified n-th power residue difference sets for all n � 20.

The qualified n-th power residue difference sets for n � 6 with qualifier m are the following, due
to Lam [18,19]:

H2,ε , if p ≡ 1 (mod 4), m ∈ F∗
p, m /∈ H2, (1.4)

H4,ε , if p = (1 + 8ε) + 16x2 for some integer x, m ∈ H2, m /∈ H4, (1.5)

H6,ε , if p = (1 + 24ε) + 108w2 for some integer w, m ∈ H3, m /∈ H6. (1.6)

It is shown in [19] that Hn,ε is never a qualified residue difference set when n is odd and when
n = 8, n = 10, and n = 12. Lam’s results for n = 2,4,6,8,10,12 have also been obtained in the papers
[14,15,4–6], whose authors were at the time unaware of Lam’s work. For related addition sets formed
by taking unions of index classes for p, see [20, Theorems 3.2–3.5].

In this paper, we accomplish our goal by showing that Hn,ε is never a qualified residue difference
set when n = 14,16,18,20. We also give a new proof of Lam’s nonexistence result for odd n, in Sec-
tion 2. Those looking to find new qualified residue difference sets may thus limit their search to the
cases with even n > 20. However, we conjecture that the list (1.4)–(1.6) is complete.

It is well known that cyclic difference sets have applications in astronomy [7,12,13,17]. The first
author was led to rediscover qualified residue difference sets while working on coded aperture imag-
ing for the European Space Agency’s International Gamma-Ray Astrophysical Laboratory (INTEGRAL)
[8,27]. Difference sets have also been used in medical imaging [16,24].

Consider a qualified residue difference set H = Hn,0 modulo p = nf + 1 with qualifier m. For
integer t (mod p), define a binary array A(t) by setting A(t) = 1 if t ∈ H , and A(t) = 0 otherwise.
Define a post processing array G(t) by setting G(t) = 1 − n if t ∈ mH , and G(t) = 1 otherwise. The
corresponding cross-correlation function F on the integers is given by

F (u) =
p−1∑
t=0

A(t)G(t + u).

Because H is a qualified residue difference set, F (u) = f if u ≡ 0 (mod p), and F (u) = 0 otherwise.
Periodic two-valued cross-correlation functions such as F (u) are potentially useful in signal process-
ing, aperture synthesis, and image formation techniques.
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2. Preliminary theorems

Write ζ = exp 2π i/p, and for any t prime to p, define σt ∈ Gal(Q(ζ )/Q) by σt(ζ ) = ζ t . Let χ be a
character (mod p) of order n. Define the Gauss period

S(n) =
∑
r∈Hn

ζ r

and the Gauss sums

g(n) =
∑
x∈Fp

ζ xn
, G(χ) =

∑
x∈Fp

χ(x)ζ x.

These sums are related by [3, pp. 153, 175]

g(n) = nS(n) + 1 =
n−1∑
j=1

G
(
χ j). (2.1)

Whenever Hn,ε is a qualified residue difference set with qualifier m, we have

λ(p − 1) = f 2 + 2ε f (2.2)

and

(
S(n) + ε

)(
σ−m S(n) + ε

) = ε − λ, (2.3)

and so by combining (2.1)–(2.3), we have

(
g(n) + ν

)(
σ−m g(n) + ν

) = ν2 − p, (2.4)

where

ν = nε − 1.

Conversely, it is easily seen that (2.4) implies that Hn,ε is a qualified residue difference set with
qualifier m. Applying (2.4) with n = 2 and using the fact [3, p. 26] that

σ−m g(2) = χ(−m)i(p−1)2/4√p,

we see that H2,ε is a qualified residue difference set with qualifier m if and only if p and m satisfy
the conditions in (1.4).

We now give a new proof of the following result of Lam [19], which shows in particular that
qualified n-th power residue difference sets do not exist when n is odd.

Theorem 2.1. Suppose that Hn,ε is a qualified residue difference set modulo p. Then p ≡ 1 (mod 2n), n is even,
and the qualifiers m of Hn,ε are precisely those m for which m ∈ Hn/2 , m /∈ Hn.
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Proof. The proof for n = 2 was given below (2.4), so we may suppose that n > 2. Applying σ−m to
both sides of (2.4), we see that σm2 fixes g(n). Hence σm2 fixes S(n) by (2.1). It follows that m2 ∈ Hn ,
so that m ∈ Hn/2 and n is even. Finally, f is even by (2.2). �

In the sequel, we prove the nonexistence of qualified n-th power residue difference sets modulo
p for n = 14,16,18,20. In view of Theorem 2.1, we need only consider those primes p = nf + 1
for which f is even. We will need the following theorem of Lam [19, Theorem 3.5] involving the
cyclotomic numbers (i, j) = (i, j)n of order n. Recall that for even f , these numbers satisfy ( j, i) =
(i, j) = (−i, j − i) [3, p. 69].

Theorem 2.2. Let p = nf + 1 with n and f both even. Then Hn,ε is a qualified residue difference set with
qualifier m if and only if m ∈ Hn/2 , m /∈ Hn,

n2(0,n/2)n = p − ν2,

and

n2(i,n/2)n = p + 1 + 2ν, 0 < i < n/2.

3. Nonexistence for n = 14

In this section, ν = 14ε − 1 and p = 14 f + 1 with f even.

Theorem 3.1. H14,ε is never a qualified residue difference set.

Proof. Assume the contrary. We will obtain a contradiction by using the formulas for the cyclotomic
numbers (i, j) = (i, j)14 expressed by J.B. Muskat [21] in terms of the integer parameters T , U , and
Ci (1 � i � 6). These parameters satisfy

p = T 2 + 7U 2, T ≡ 1 (mod 7) (3.1)

and [21, p. 265]

S :=
6∑

i=0

Ciζ
i
7 = J (ψ,ψ), (3.2)

where ζ7 is a complex seventh root of unity, J (ψ,ψ) is a Jacobi sum for a character ψ (mod p) of
order 7, and

6∑
i=0

Ci = p − 2. (3.3)

Define

h j :=
6∑

i=0

CiCi+ j (0 � j � 6), (3.4)

where the subscripts are viewed modulo 7. Then by (3.2),
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p = |S|2 =
6∑

i=0

hiζ
i
7, (3.5)

so that

h1 = h2 = h3 = h4 = h5 = h6 = h0 − p. (3.6)

In view of Theorem 2.2, we have the system of six equations

196(i,7) = p + 1 + 2ν (1 � i � 6). (3.7)

First assume 2 /∈ H7. Solve the system (3.7) to express each Ci (1 � i � 6) as a linear combination of
p, 1, ν , U , and T . Then h2 − h1 = 20U 2/7, so U = 0, which contradicts (3.1).

It remains to consider the more difficult case where 2 ∈ H7. Write

y = (2p − 4 + T − ν)/7, C5 = r, C6 = s. (3.8)

Solving the system (3.7), we obtain

C1 = y − s, C2 = y − r, C3 = 3y/2 − U − r − s, C4 = −y/2 + U + r + s. (3.9)

Then by (3.3),

C0 = p − 2 − 3y. (3.10)

Solving the equation

3h1 − h2 − 2h3 = 0, (3.11)

for s, we obtain

s = (
28r2 + 21y2 + 8Ur − 56yr + 4yU − 12U 2)/(28y + 16U − 56r). (3.12)

The denominator in (3.12) is nonzero, since substitution of y/2 + 2U/7 for r in the left side of (3.11)
yields the nonzero value −13U 2/7. Thus

r = y/2 − U w (3.13)

for some rational number w �= −2/7. Substituting the values of r and s from (3.12)–(3.13) into the
equation h1 − h3 = 0, we deduce that

(3w − 1)
(
7w3 − 7w2 − 7w − 1

) = 0. (3.14)

The cubic polynomial in (3.14) clearly has no rational zeros, so we must have w = 1/3. By (3.13),

r = y/2 − U/3. (3.15)

By (3.12) and (3.15), we also have

s = y/2 − U/3. (3.16)
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Use (3.15)–(3.16) to substitute for r and s in the equation

h0 − h1 − p = 0 (3.17)

and then use (3.8) to substitute for y in (3.17). We see that (3.17) reduces to

27T 2 + 224U 2 + 18Tν − 9ν2 = 0. (3.18)

Solving (3.18) for T , we have

9T = −3ν ± 2
(
9ν2 − 168U 2)1/2

. (3.19)

Since T is an integer, this forces ν = 13 and U 2 = 9. Then by (3.19), T = −5, which contradicts
(3.1). �
4. Nonexistence for n = 16

In this section, ν = 16ε − 1 and p = 16 f + 1 = a2
4 + b2

4 with f even and a4 ≡ −1 (mod 4).

Theorem 4.1. H16,ε is never a qualified residue difference set.

Proof. Assume the contrary. First assume that 2 /∈ H4. We will obtain a contradiction by using the
formulas for the cyclotomic numbers (i, j) = (i, j)16 found in [11]. By Theorem 2.2,

16(1 + a4) = 256
{
(4,8) − (0,8)

} − 128
{
(1,8) + (5,8) − (3,8) − (7,8)

} = (ν + 1)2.

Thus ν = a4, so a2
4 ≡ 1 (mod 32). Since f is even, we also have p ≡ 1 (mod 32), so that 32 divides b2

4.
Thus 8 divides b4, contradicting [3, Theorem 7.5.1].

Finally assume that 2 ∈ H4. Let m denote the qualifier for the qualified residue difference set H16,ε .
By Theorem 2.1, m and −m are octic but not sixteenth power residues (mod p). Thus, by definition
of the Gauss sum g(n), σ−m g(16) = 2g(8) − g(16). Using this formula in (2.4) with n = 16, we obtain

g(8)2 + 2νg(8) + p = M2, (4.1)

where as in [9, Eq. (4)], M2 = (g(16)− g(8))2. Note that if the term p in (4.1) were replaced by −15p,
then (4.1) would become the equation [9, Eq. (15)]. We can now obtain a contradiction to (4.1) in the
same way we obtained a contradiction to [9, Eq. (15)] in [9, pp. 43–44]. We omit the details, instead
pointing out the few minor modifications that must be made in the proof in [9]. In [9, Eq. (16)],
change the sign of the term −8p. In the formula for A below [9, Eq. (17)], change the sign of the
term 4a16. In [9, Eq. (18)], change the sign of the term −2α

√
pY . Change the sign of the right side

of [9, Eq. (19)]. On the left-hand side of the equation above [9, Eq. (21)], change the sign of the
term 4a16. Lastly, in [9, Eq. (23)], 337 should be replaced by 257, which is the first prime for which
p ≡ 1 (mod 32) and 2 ∈ H4. �
5. Nonexistence for n = 18

In this section, ν = 18ε − 1 and p = 18 f + 1 with f even.

Theorem 5.1. H18,ε is never a qualified residue difference set.
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Proof. Assume the contrary. We will use the formulas for the cyclotomic numbers (i, j) = (i, j)18 ex-
pressed by Baumert and Fredricksen [1,2] in terms of the integer parameters L, M , and Ci (0 � i � 5).
These cyclotomic numbers are defined relative to a fixed primitive root g (mod p). Let ind 2, ind 3
denote the indices of 2, 3, respectively, with base g . The parameters L, M satisfy

4p = L2 + 27M2, L ≡ 7 (mod 9).

Moreover, setting

S =
5∑

i=0

Ciζ
i
9, ζ9 = exp 2π i/9,

we have |S|2 = p, so that

p = C2
0 + C2

1 + C2
2 + C2

3 + C2
4 + C2

5 − C0C3 − C1C4 − C2C5, (5.1)

0 = C0C1 + C1C2 + C2C3 + C3C4 + C4C5 − C0C2 − C1C3 − C2C4 − C3C5, (5.2)

0 = C0C4 + C1C5 − C0C2 − C1C3 − C2C4 − C3C5 + C0C5. (5.3)

We will apply Theorem 2.2 in each of the eight cases below.

Case 1. ind 2 ≡ 0 (mod 9), ind 3 ≡ 0 (mod 3).
We have 648(i,9) = 2p + 2 + 4ν , 1 � i � 8. Adding the three formulas for i = 1,2,4, we see that

L = 2ν . Then from the formulas for i = 1,4, we have C1 = C2 = C4 + C5, and from i = 3, we have
C3 = M . Thus (5.2) yields

C2
5 + 2C4C5 + MC4 − MC5 = 0,

and (5.3) yields

C2
5 − C2

4 − MC4 − 2MC5 = 0.

Eliminating C4, we obtain

C3
5 − 3C5M2 − M3 = 0.

Since x3 − 3x − 1 has no rational solution, we must have M = C5 = 0. This gives the contradiction
4p = L2.

Case 2. ind 2 ≡ 0 (mod 9), ind 3 ≡ 1 (mod 3).
Since (2,9) = (2, B), we have C5 = −2C4. Since (1,9) = (4, D), we have C1 + C2 = 4C4. Since

(1,9) = (1, A), we have C2 = C5 + 2C1. Combining these three formulas, we see that

C1 = 2C4, C2 = 2C4, C5 = −2C4.

Therefore, since (2,9) = (1, A), we have

C1 = C2 = C4 = C5 = 0.
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It then follows from the formula for (3,9) that M = −C3. The formula for (1,9) yields p + 1 + L =
p + 1 + 2ν , so that L = 2ν . The formula for (3, C) then yields

p + 1 + L = p + 1 − 8L + 18C0 + 9M,

so that M = 2(ν − C0). Thus by (5.1), p = C2
0 + M2 + MC0. Substituting for M , we obtain p = 3C2

0 −
6C0ν + 4ν2. Since 4p = 4ν2 + 27M2, we also have p = 27C2

0 − 54C0ν + 28ν2. The last two equations
imply that ν = C0, so we obtain the contradiction M = 0.

Case 3. ind 2 ≡ 1 (mod 9), ind 3 ≡ 0 (mod 3).
Since (3,9) = (3, C), we have

−36C1 + 54C2 + 54C3 + 36C4 − 72C5 = 0.

Since (1,9) = (2, B), we have

90C1 − 90C4 + 72C5 = 0.

Since (2, B) = (4,9), we have

36C1 − 36C4 − 36C5 = 0.

Combining these three formulas, we see that

C5 = 0, C1 = C4, C2 = −C3.

Thus by (5.2) and (5.3), C0C1 = C2
3 = 0, so that C2 = 0. Then from (5.1), p = C2

0 + C2
1 . This yields the

contradiction p = (C0 + C1)
2.

Case 4. ind 2 ≡ 1 (mod 9), ind 3 ≡ 1 (mod 3).
Since (3,9) = (3, C), we have

−36C1 + 18C2 + 54C3 + 36C4 = 0.

Since (4,9) = (2, B), we have

−72C1 + 36C2 + 72C4 = 0.

Thus C3 = 0. Since (1,9) = (2, B), we have C2 = 90(C4 − C1)/36. Since (4,9) = (2, B), we have C2 =
−2(C4 − C1). Thus

C1 = C4, C2 = C3 = 0.

From the formula for (4,9), we have

L + 9M + 18C0 = 2ν.

Since (1, A) = (4, D), we have

L + 3M − 2C0 = 0.



JID:YAAMA AID:1364 /FLA [m1G; v 1.47; Prn:6/10/2010; 11:31] P.9 (1-15)

K. Byard et al. / Advances in Applied Mathematics ••• (••••) •••–••• 9
These two formulas yield

10L + 36M = 2ν.

Summing the formulas for (2,9), (1, A), and (4, D), we obtain

21L + 27M = −12ν.

Eliminating L in the last two formulas, we obtain the contradiction M = ν/3.

Case 5. ind 2 ≡ 1 (mod 9), ind 3 ≡ 2 (mod 3).
We successively consider the seven formulas for (1,9), (1, A), (2,9), (2, B), (3,9), (3, C), and

(4, D). Solve the first for C0 (in terms of p, v , L, and M), and then substitute this value into the
remaining six formulas. Solve the second for C1 and then substitute this value into the remaining five
formulas. Continue in this way, solving successively for C2, C3, C4, C5, and M . We thereby obtain the
evaluations

C2 = C3 = C5 = −C0 = −(ν + L)/9, C1 = C4 = (L − 8ν)/9, M = (4ν + L)/9.

By (5.2), 0 = (L + ν)2. Thus L = −ν , so that we have the contradiction M = ν/3.

Case 6. ind 2 ≡ 3 (mod 9), ind 3 ≡ 0 (mod 3).
Since (1,9) = (4, D), we have C1 = C2. Thus, since (1,9) = (2, B), we have C1 = C4 − 2C5. Since

(1, A) = (2,9), it follows that

C5 = 3C4/7, C1 = C4/7.

Thus, since (1,9) = (1, A), we have

C1 = C2 = C4 = C5 = 0.

Finally, since (3,9) = (4,9), we obtain the contradiction M = 0.

Case 7. ind 2 ≡ 3 (mod 9), ind 3 ≡ 1 (mod 3).
Since (2,9) = (4, D), we have C5 +C1 = 0. Since (1, A) = (4, D), we have C2 +C4 = 0. Since (1,9) =

(4,9), we have C2 = C4 = 0. Since (1,9) = (2,9), we have C1 = C5 = 0. From the formula for (1,9),
we have L = 2ν . From the formula for (3,9), we have C3 = ν − C0. From the formula for (3, C), we
have C0 = −M . Thus C3 = ν + M . Then by (5.1), p = C2

3 + M2 + MC3. Replacing C3 by ν + M , we obtain
p = 3M2 + 3Mν + ν2. Therefore 4p = 12M2 + 12Mν + 4ν2. On the other hand, 4p = 27M2 + 4ν2, so
we obtain the contradiction 15M = 12ν .

Case 8. ind 2 ≡ 3 (mod 9), ind 3 ≡ 2 (mod 3).
Summing the formulas for (1,9), (1, A), and (2,9), we obtain

6(p + 1 + 2ν) = 6(p + 1 + L),

so that L = 2ν . Thus, from the formula for (3,9), we obtain the contradiction M = 0. �
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6. Nonexistence for n = 20

In this section, ν = 20ε − 1 and p = 20 f + 1 with f even.

Theorem 6.1. H20,ε is never a qualified residue difference set.

Proof. Assume the contrary. We will use the formulas for the cyclotomic numbers (i, j) = (i, j)20
expressed by Muskat and Whiteman [22,23] in terms of the integer parameters c, d, x, u, v , w , di
(0 � i � 19). These cyclotomic numbers are defined relative to a fixed primitive root g (mod p).
Let ind 2, ind 5 denote the indices of 2, 5, respectively, with base g . The parameters c, d satisfy [22,
p. 197]

p = c2 + 5d2 (6.1)

and the parameters x, u, v , w satisfy [22, Eq. (4.1)]

16p = x2 + 50u2 + 50v2 + 125w2, (6.2)

x ≡ 1 (mod 5), (6.3)

xw = v2 − 4uv − u2. (6.4)

The parameters di satisfy [22, Eq. (2.17)]

di+10 = −di (0 � i � 9) (6.5)

and [22, Eq. (2.18)]

J
(
χ,χ5) =

9∑
j=0

d jζ
j

20, (6.6)

where J is a Jacobi sum and χ is a character (mod p) of order 20 such that χ(g) = ζ20 :=
exp(2π i/20). Taking absolute values in (6.6), we have

p =
∣∣∣∣∣

9∑
j=0

d jζ
j

20

∣∣∣∣∣
2

. (6.7)

By [22, p. 203],

h0 :=
9∑

i=0

d2
i = p. (6.8)

Expanding (6.7) and using (6.8), we see that for each j with 1 � j � 4,

h j :=
9∑

i=0

didi+ j = 0. (6.9)
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According to the tables [23], there are twenty separate cases to consider. Arguing as in [22, p. 214],
we may choose the primitive root g in such a way as to reduce to the eight cases where ind 2 ≡ 0
or 2 (mod 10). Arguing as in the penultimate paragraph in [22, p. 215], we may reduce further to
six cases, by dispensing with the two cases where ind 5 ≡ 2 (mod 4), c ≡ 4 (mod 10). The first four
cases below are the simplest; the last two cases are considerably more involved. We used a Maple
program to perform the lengthy calculations.

Case 1. ind 2 ≡ 0 (mod 10), ind 5 ≡ 0 (mod 4), c ≡ 1 (mod 10).
In view of Theorem 2.2 and the table in [23], we have the matrix equation A X = B , where B is the

9 × 1 column vector (8ν,8ν,8ν,8ν,8ν,8ν,8ν,8ν,8ν), X is the 10 × 1 vector (c, x, u, v, w,d0,d4,d8,

d12,d16), and A is the 9 × 10 matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 −2 120 240 −250 −24 56 56 −24 −24

8 −2 −120 −240 −250 −24 −24 −24 56 56

−40 −10 −120 160 −150 −8 −8 −88 −8 72

−40 −10 120 −160 −150 −8 72 −8 −88 −8

8 −2 −240 120 250 −24 56 −24 56 −24

8 −2 240 −120 250 −24 −24 56 −24 56

−40 −10 160 120 150 −8 −8 −8 72 −88

−40 −10 −160 −120 150 −8 −88 72 −8 −8

128 −32 0 0 0 136 −24 −24 −24 −24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

whose nine rows correspond to the nine cyclotomic numbers (1,10), (1,11), (2,10), (2,12), (3,10),
(3,13), (4,10), (4,14), (5,10) in the table. Solving A X = B , we see that every solution X has vanish-
ing third, fourth, and fifth entries, i.e., u = v = w = 0. This contradicts (6.2).

Case 2. ind 2 ≡ 0 (mod 10), ind 5 ≡ 0 (mod 4), c ≡ 9 (mod 10).
We proceed as in Case 1, but this time with the 9 × 10 matrix A defined by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

40 −10 40 80 −50 8 88 −72 8 8

40 −10 −40 −80 −50 8 8 8 −72 88

−8 −2 40 80 50 24 24 −56 24 −56

−8 −2 −40 −80 50 24 −56 24 −56 24

40 −10 −80 40 50 8 −72 8 88 8

40 −10 80 −40 50 8 8 88 8 −72

−8 −2 80 −40 −50 24 24 24 −56 −56

−8 −2 −80 40 −50 24 −56 −56 24 24

0 0 0 0 0 8 8 8 8 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Solving A X = B , we see that every solution X has fifth entry w = 0. Thus the integers u and v must
be 0 by (6.4), and this contradicts (6.2).

Case 3. ind 2 ≡ 2 (mod 10), ind 5 ≡ 0 (mod 4), c ≡ 1 (mod 10).
We proceed as in Case 1, but this time with the 9 × 10 matrix A defined by
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

88 −12 −90 −130 −150 −24 56 56 −24 −24
8 23 120 −110 175 −24 −24 −24 56 56

−80 10 −20 −40 150 −8 −8 −88 −8 72
−40 −10 −130 −110 100 −8 72 −8 −88 −8

8 −2 −50 50 −100 −24 56 −24 56 −24
48 −22 −20 −40 −250 −24 −24 56 −24 56

−40 15 −40 −30 −25 −8 −8 −8 72 −88
40 −20 190 230 250 −8 −88 72 −8 −8
8 23 −60 30 75 136 −24 −24 −24 −24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Solving A X = B , we see that every solution X has fifth entry w = ν/7, which is impossible since ν/7
is not an integer.

Case 4. ind 2 ≡ 2 (mod 10), ind 5 ≡ 0 (mod 4), c ≡ 9 (mod 10).
We proceed as in Case 1, but this time with the 9 × 10 matrix A defined by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−40 −20 −10 30 50 8 88 −72 8 8
40 15 −40 −30 −25 8 8 8 −72 88

−48 −22 −20 −40 150 24 24 −56 24 −56
−8 −2 −50 50 −100 24 −56 24 −56 24
40 −10 −130 −110 100 8 −72 8 88 8
80 10 −20 −40 −250 8 8 88 8 −72
−8 23 120 −110 175 24 24 24 −56 −56
−88 −12 110 70 50 24 −56 −56 24 24
40 15 100 −50 −125 8 8 8 8 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Solving A X = B , we see that every solution X has fifth entry w = −2d4 + ν/5, which is impossible
since ν/5 is not an integer.

Case 5. ind 2 ≡ 0 (mod 10), ind 5 ≡ 2 (mod 4), c ≡ 6 (mod 10).
Consider the nine linear equations corresponding to the same nine cyclotomic numbers as in

Case 1, and solve for d0, d4, d8, d12, d16, d1, d5, d9, d13, to obtain (in view of (6.5)) d0 = 3(ν + x)/5,
d1 = (4d17 − 2u − 4v − 5w)/4, d2 = (10d − 2ν − 25u + 25v + 25w − 2x)/20, d3 = (3v − u − 2d17)/2,
d4 = (10d + 2ν − 25u − 25v + 25w + 2x)/20, d5 = (−8c + 8d17 − 4ν + 2u − 6v − 5w − 3x)/8,
d6 = −(10d+2ν+25u +25v +25w +2x)/20, d7 = −d17, d8 = (−10d+2ν−25u +25v −25w +2x)/20,
d9 = (4d17 + 4u − 2v − 5w)/4. We now plug these ten formulas into (6.9) to obtain long expressions
for h1, h2, h3, h4 in terms of the parameters p, ν , c, d, x, u, v , w , d17. In particular,

16h1 = 20d(v − u) + 16νv + 8νu + (40c + 25w)(u + v) + 3xu + 11xv. (6.10)

Since u and v cannot both vanish, we can define the relatively prime pair of integers u0, v0 by
u0 = u/(u, v), v0 = v/(u, v). Since h1 = 0, division by (u, v) in (6.10) yields

0 = 20d(v0 − u0) + 16νv0 + 8νu0 + (40c + 25w)(u0 + v0) + 3xu0 + 11xv0. (6.11)

By Theorem 2.2, p ≡ −1−2ν (mod 25), and by (6.2), 16p ≡ x2 (mod 25). Thus x2 ≡ 9+18ν (mod 25),
and since ν is either 19 or −1, it follows from (6.3) that x ≡ 5 + 9ν (mod 25). If we now substitute
5 + 9ν for x in (6.11), then divide both sides by 5, and finally substitute −1 for ν (mod 5) and 1 for
c (mod 5), we obtain the congruence

v0 + du0 ≡ u0 + dv0 (mod 5). (6.12)
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Now repeat the argument starting at (6.10) with h1 − h3 in place of h1. In place of (6.12), we arrive
at the congruence

u0 ≡ −dv0 (mod 5). (6.13)

From (6.12) and (6.13), it follows that 5 does not divide u0 v0, and d2 ≡ 1 (mod 5). Repeat the
argument again with h2 + h4, omitting the division by (u, v). We then obtain the congruence
2w − d + v2 − 4uv − u2 ≡ 0 (mod 5). In view of (6.4), this simplifies to 2w − d + xw ≡ 0 (mod 5).
Then by (6.3), 2d ≡ w (mod 5). Reducing (6.4) modulo 5 and using (6.13), we have

2d ≡ w ≡ xw = v2 − u2 − 4uv ≡ v2 − d2 v2 + 4dv2 ≡ 4dv2 (mod 5),

and so we arrive at the contradiction v2 ≡ 3 (mod 5).

Case 6. ind 2 ≡ 2 (mod 10), ind 5 ≡ 2 (mod 4), c ≡ 6 (mod 10).
Proceeding as in Case 5, we have d0 = (−10d + 12ν + 5u + 35v − 3x)/20, d1 = (16d17 + 12u − 6v +

25w +5x)/16, d2 = (−20d−4ν−10u−20v −25w +x)/40, d3 = (16c−16d17 +2u+24v −5w −7x)/16,
d4 = (20d + 4ν + 60u + 70v + 75w − x)/40, d5 = (8d17 − 4ν + 2u − 16v + 15w + x)/8, d6 = (20d −
4ν − 10u − 20v − 25w + x)/40, d7 = −d17, d8 = (4ν + 10u + 20v + 125w − x)/40, d9 = (16d17 + 26u −
8v + 15w + 5x)/16. Plug these ten formulas into (6.8) and (6.9) to obtain long expressions for h0, h1,
h2, h3, h4. Write

G0 = −2h1, G1 = p − h0 − h2, G2 = h1 − h3, G3 = h0 − p − h4,

and

E = −xw + v2 − u2 − 4uv, F = 16p − x2 − 50u2 − 50v2 − 125w2.

Note that E , F , and the Gi all vanish, by (6.2), (6.4), (6.8), and (6.9).
In the sequel, we will be expressing several parameters in terms of new subscripted parameters,

all of which are integers. Since ind 2 ≡ 2 (mod 5) in Case 6, it follows from [3, Theorem 3.7.9] that
v = x + u + 2 + 4v1, x = 2x1 + 1, and u = 2u1 + 1 (i.e., x, u, and (v − x − u)/2 are all odd). Since v
is even, it follows easily from (6.4) that w = 2v − x + 8w1. By Theorem 2.2, p = −1 − 2ν + 16p1. We
have ν = −1+20ν1, where ν1 is either 0 or 1. Since c is even in Case 6, and p ≡ 1 (mod 8), it follows
from (6.1) that c = 2 + 4c1. Thus d2 ≡ 6ν − 1 (mod 16). It follows that d = ±(2 − ν) + 8d1. We will
consider the two sign possibilities in two separate subcases.

Subcase 1. d = 2 − ν + 8d1.
The following sequence of integer congruences and their successive implications will ultimately

yield the desired contradiction:

E/8 − F/16 ≡ 2 + 2w1 (mod 4) implies w1 = 1 + 2w2,

4G3 ≡ x1 + v1 (mod 2) implies v1 = x1 + 2v2,

E/16 − F/32 ≡ 2x1 + 2w2 (mod 4) implies w2 = x1 + 2w3,

G1 − G2 ≡ u1 (mod 2) implies u1 = 2u2,

G0/2 ≡ 1 + v2 (mod 2) implies v2 = 1 + 2v3,

E/16 ≡ x1 (mod 2) implies x1 = 2x2,
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E/32 ≡ v3 + w3 (mod 2) implies w3 = v3 + 2w4,

G0/4 ≡ ν1 + x2 (mod 2) implies x2 = ν1 + 2x3,

E/64 ≡ 1 + u2 + w4 (mod 2) implies w4 = 1 + u2 + 2w5,

G1/2 ≡ ν1 + u2 + v3 (mod 2) implies v3 = ν1 + u2 + 2v4,

E/64 − F/128 ≡ 2 + 2p1 + 2v4 (mod 4) implies v4 = 1 + p1 + 2v5,

G1/4 ≡ d1 + p1 (mod 2) implies d1 = p1 + 2d2,

G2/8 − G1/8 − G0/8 ≡ c1 (mod 2) implies c1 = 2c2,

G0/8 ≡ 1 + p1 + x3 (mod 2) implies x3 = 1 + p1 + 2x4,

G3/4 ≡ 1 + ν1 + u2 (mod 2) implies u2 = 1 + ν1 + 2u3,

G2/8 ≡ 1 + p1 + v5 + d2 (mod 2) implies v5 = 1 + p1 + d2 + 2v6,

G2/16 ≡ 1 + v6 + d2 (mod 2) implies v6 = 1 + d2 + 2v7,

G0/16 − G1/16 ≡ ν1 + c2 (mod 2) implies c2 = ν1 + 2c3,

E/128 − G3/8 ≡ 1 (mod 2) yields the desired contradiction.

Subcase 2. d = ν − 2 + 8d1.
The following sequence of integer congruences and their successive implications will ultimately

yield the final contradiction:

E/8 − F/16 ≡ 2 + 2w1 (mod 4) implies w1 = 1 + 2w2,

4G3 ≡ x1 + v1 (mod 2) implies v1 = x1 + 2v2,

G1 − G2 ≡ w2 + v2 (mod 2) implies w2 = v2 + 2w3,

E/16 ≡ 1 + u1 (mod 2) implies u1 = 1 + 2u2,

G0/2 ≡ 1 + v2x1 (mod 2) implies v2 = 1 + 2v3, x1 = 1 + 2x2,

G3/2 ≡ 1 + ν1 + w3 (mod 2) implies w3 = 1 + ν1 + 2w4,

E/32 ≡ ν1 + x2 (mod 2) implies x2 = ν1 + 2x3,

E/64 − F/128 − G0/4 ≡ 1 (mod 2) yields the desired contradiction. �
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