Lam's power residue addition sets

Kevin Byard ${ }^{\text {a }}$, Ron Evans ${ }^{\text {b,* }}$, Mark Van Veen ${ }^{\text {c }}$
${ }^{\text {a }}$ Institute of Information and Mathematical Sciences, Massey University, Albany, North Shore, Auckland, New Zealand
${ }^{\mathrm{b}}$ Department of Mathematics 0112, University of California at San Diego, La Jolla, CA 92093-0112, United States
${ }^{\text {c }}$ Varasco LLC, 2138 Edinburg Avenue, Cardiff by the Sea, CA 92007, United States

A R T I C L E I N F O

Article history:

Available online xxxx

MSC:

primary 05B10
secondary 11A15, 11T22, 11 T 24

Keywords:
Qualified residue difference sets
Power residue difference sets
Cyclic difference sets
Power residue addition sets
Cross-correlation function
Cyclotomic numbers
Gauss sums
Jacobi sums

Abstract

Classical n-th power residue difference sets modulo p are known to exist for $n=2,4,8$. During the period 1953-1999, their nonexistence has been proved for all odd n and for $n=6,10,12,14,16$, 18,20 . In 1976, Lam showed that qualified n-th power residue difference sets modulo p exist for $n=2,4,6$, and he proved their nonexistence for all odd n and for $n=8,10,12$. We further prove their nonexistence for $n=14,16,18,20$.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

For an integer $n>1$, let p be a prime of the form $p=n f+1$. Let H_{n} denote the set of (nonzero) n-th power residues in \mathbb{F}_{p}^{*}, where \mathbb{F}_{p} is the field of p elements. For $\epsilon \in\{0,1\}$, define $H_{n, \epsilon}=H_{n} \cup$ $\{1-\epsilon\}$. Note that $\left|H_{n, \epsilon}\right|=f+\epsilon$.

Fix $m \in \mathbb{F}_{p}^{*}$. In 1975, Lam [18] introduced addition sets, which generalize cyclic difference sets. He called $H_{n, \epsilon}$ an n-th power residue addition set modulo p if there exists an integer $\lambda>0$ such that the list of differences $s-m t \in \mathbb{F}_{p}^{*}$ with $s, t \in H_{n, \epsilon}$ hits each element of \mathbb{F}_{p}^{*} exactly λ times. If $m \in H_{n}$, such an addition set is a classical power residue difference set modulo p; see [3, p. 174]. If $m \notin H_{n}$,

[^0]we call such an addition set a qualified power residue difference set modulo p with qualifier m; cf. [14,15].

The classical n-th power residue difference sets $H_{n, \epsilon}$ for $n \leqslant 8$ are the following [3, pp. 177-179]:

$$
\begin{array}{ll}
H_{2, \epsilon}, & \text { if } p>3, \quad p \equiv 3(\bmod 4) \\
H_{4, \epsilon}, & \text { if } p>5, \quad p=(1+8 \epsilon)+4 y^{2} \text { for some odd } y, \\
H_{8, \epsilon}, & \text { if } p=(1+48 \epsilon)+8 u^{2}=(9+432 \epsilon)+64 v^{2}, \text { with integers } u, v . \tag{1.3}
\end{array}
$$

It is known that $H_{n, \epsilon}$ is never a classical power residue difference set when n is odd [3, p. 177], $n=6$ [3, p. 178], $n=10$ [26], $n=12$ [3, p. 179], $n=14$ [21], $n=16$ [9,25], $n=18$ [1,2], and $n=20$ [10,22]. These nonexistence results were obtained sporadically during the period 1953-1999. The cases with even $n>20$ are open (see [3, p. 497]), but we conjecture that the list (1.1)-(1.3) is complete.

As was noted above, complete information on the existence of classical n-th power residue difference sets is known for all $n \leqslant 20$. The primary goal of this paper is to similarly obtain complete information on the existence of qualified n-th power residue difference sets for all $n \leqslant 20$.

The qualified n-th power residue difference sets for $n \leqslant 6$ with qualifier m are the following, due to $\operatorname{Lam}[18,19]:$

$$
\begin{array}{ll}
H_{2, \epsilon}, & \text { if } p \equiv 1(\bmod 4), m \in \mathbb{F}_{p}^{*}, m \notin H_{2}, \\
H_{4, \epsilon}, & \text { if } p=(1+8 \epsilon)+16 x^{2} \text { for some integer } x, m \in H_{2}, m \notin H_{4}, \\
H_{6, \epsilon}, & \text { if } p=(1+24 \epsilon)+108 w^{2} \text { for some integer } w, m \in H_{3}, m \notin H_{6} . \tag{1.6}
\end{array}
$$

It is shown in [19] that $H_{n, \epsilon}$ is never a qualified residue difference set when n is odd and when $n=8, n=10$, and $n=12$. Lam's results for $n=2,4,6,8,10,12$ have also been obtained in the papers [14,15,4-6], whose authors were at the time unaware of Lam's work. For related addition sets formed by taking unions of index classes for p, see [20, Theorems 3.2-3.5].

In this paper, we accomplish our goal by showing that $H_{n, \epsilon}$ is never a qualified residue difference set when $n=14,16,18,20$. We also give a new proof of Lam's nonexistence result for odd n, in Section 2 . Those looking to find new qualified residue difference sets may thus limit their search to the cases with even $n>20$. However, we conjecture that the list (1.4)-(1.6) is complete.

It is well known that cyclic difference sets have applications in astronomy [7,12,13,17]. The first author was led to rediscover qualified residue difference sets while working on coded aperture imaging for the European Space Agency's International Gamma-Ray Astrophysical Laboratory (INTEGRAL) [8,27]. Difference sets have also been used in medical imaging [16,24].

Consider a qualified residue difference set $H=H_{n, 0}$ modulo $p=n f+1$ with qualifier m. For integer $t(\bmod p)$, define a binary array $A(t)$ by setting $A(t)=1$ if $t \in H$, and $A(t)=0$ otherwise. Define a post processing array $G(t)$ by setting $G(t)=1-n$ if $t \in m H$, and $G(t)=1$ otherwise. The corresponding cross-correlation function F on the integers is given by

$$
F(u)=\sum_{t=0}^{p-1} A(t) G(t+u) .
$$

Because H is a qualified residue difference set, $F(u)=f$ if $u \equiv 0(\bmod p)$, and $F(u)=0$ otherwise. Periodic two-valued cross-correlation functions such as $F(u)$ are potentially useful in signal processing, aperture synthesis, and image formation techniques.

2. Preliminary theorems

Write $\zeta=\exp 2 \pi i / p$, and for any t prime to p, define $\sigma_{t} \in \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ by $\sigma_{t}(\zeta)=\zeta^{t}$. Let χ be a character $(\bmod p)$ of order n. Define the Gauss period

$$
S(n)=\sum_{r \in H_{n}} \zeta^{r}
$$

and the Gauss sums

$$
g(n)=\sum_{x \in \mathbb{F}_{p}} \zeta^{x^{n}}, \quad G(\chi)=\sum_{x \in \mathbb{F}_{p}} \chi(x) \zeta^{x}
$$

These sums are related by [3, pp. 153, 175]

$$
\begin{equation*}
g(n)=n S(n)+1=\sum_{j=1}^{n-1} G\left(\chi^{j}\right) \tag{2.1}
\end{equation*}
$$

Whenever $H_{n, \epsilon}$ is a qualified residue difference set with qualifier m, we have

$$
\begin{equation*}
\lambda(p-1)=f^{2}+2 \epsilon f \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
(S(n)+\epsilon)\left(\sigma_{-m} S(n)+\epsilon\right)=\epsilon-\lambda, \tag{2.3}
\end{equation*}
$$

and so by combining (2.1)-(2.3), we have

$$
\begin{equation*}
(g(n)+v)\left(\sigma_{-m} g(n)+v\right)=v^{2}-p \tag{2.4}
\end{equation*}
$$

where

$$
v=n \epsilon-1
$$

Conversely, it is easily seen that (2.4) implies that $H_{n, \epsilon}$ is a qualified residue difference set with qualifier m. Applying (2.4) with $n=2$ and using the fact [3, p. 26] that

$$
\sigma_{-m} g(2)=\chi(-m) i^{(p-1)^{2} / 4} \sqrt{p}
$$

we see that $H_{2, \epsilon}$ is a qualified residue difference set with qualifier m if and only if p and m satisfy the conditions in (1.4).

We now give a new proof of the following result of Lam [19], which shows in particular that qualified n-th power residue difference sets do not exist when n is odd.

Theorem 2.1. Suppose that $H_{n, \epsilon}$ is a qualified residue difference set modulo p. Then $p \equiv 1(\bmod 2 n), n$ is even, and the qualifiers m of $H_{n, \epsilon}$ are precisely those m for which $m \in H_{n / 2}, m \notin H_{n}$.

Proof. The proof for $n=2$ was given below (2.4), so we may suppose that $n>2$. Applying σ_{-m} to both sides of (2.4), we see that $\sigma_{m^{2}}$ fixes $g(n)$. Hence $\sigma_{m^{2}}$ fixes $S(n)$ by (2.1). It follows that $m^{2} \in H_{n}$, so that $m \in H_{n / 2}$ and n is even. Finally, f is even by (2.2).

In the sequel, we prove the nonexistence of qualified n-th power residue difference sets modulo p for $n=14,16,18,20$. In view of Theorem 2.1, we need only consider those primes $p=n f+1$ for which f is even. We will need the following theorem of Lam [19, Theorem 3.5] involving the cyclotomic numbers $(i, j)=(i, j)_{n}$ of order n. Recall that for even f, these numbers satisfy $(j, i)=$ $(i, j)=(-i, j-i)[3, \mathrm{p} .69]$.

Theorem 2.2. Let $p=n f+1$ with n and f both even. Then $H_{n, \epsilon}$ is a qualified residue difference set with qualifier m if and only if $m \in H_{n / 2}, m \notin H_{n}$,

$$
n^{2}(0, n / 2)_{n}=p-v^{2},
$$

and

$$
n^{2}(i, n / 2)_{n}=p+1+2 v, \quad 0<i<n / 2 .
$$

3. Nonexistence for $\boldsymbol{n}=\mathbf{1 4}$

In this section, $v=14 \epsilon-1$ and $p=14 f+1$ with f even.
Theorem 3.1. $H_{14, \epsilon}$ is never a qualified residue difference set.
Proof. Assume the contrary. We will obtain a contradiction by using the formulas for the cyclotomic numbers $(i, j)=(i, j)_{14}$ expressed by J.B. Muskat [21] in terms of the integer parameters T, U, and $C_{i}(1 \leqslant i \leqslant 6)$. These parameters satisfy

$$
\begin{equation*}
p=T^{2}+7 U^{2}, \quad T \equiv 1(\bmod 7) \tag{3.1}
\end{equation*}
$$

and [21, p. 265]

$$
\begin{equation*}
S:=\sum_{i=0}^{6} c_{i} \zeta_{7}^{i}=J(\psi, \psi), \tag{3.2}
\end{equation*}
$$

where ζ_{7} is a complex seventh root of unity, $J(\psi, \psi)$ is a Jacobi sum for a character $\psi(\bmod p)$ of order 7 , and

$$
\begin{equation*}
\sum_{i=0}^{6} c_{i}=p-2 \tag{3.3}
\end{equation*}
$$

Define

$$
\begin{equation*}
h_{j}:=\sum_{i=0}^{6} C_{i} C_{i+j} \quad(0 \leqslant j \leqslant 6), \tag{3.4}
\end{equation*}
$$

where the subscripts are viewed modulo 7. Then by (3.2),

$$
\begin{equation*}
p=|S|^{2}=\sum_{i=0}^{6} h_{i} \zeta_{7}^{i}, \tag{3.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
h_{1}=h_{2}=h_{3}=h_{4}=h_{5}=h_{6}=h_{0}-p \tag{3.6}
\end{equation*}
$$

In view of Theorem 2.2, we have the system of six equations

$$
\begin{equation*}
196(i, 7)=p+1+2 v \quad(1 \leqslant i \leqslant 6) \tag{3.7}
\end{equation*}
$$

First assume $2 \notin H_{7}$. Solve the system (3.7) to express each $C_{i}(1 \leqslant i \leqslant 6)$ as a linear combination of $p, 1, v, U$, and T. Then $h_{2}-h_{1}=20 U^{2} / 7$, so $U=0$, which contradicts (3.1).

It remains to consider the more difficult case where $2 \in H_{7}$. Write

$$
\begin{equation*}
y=(2 p-4+T-v) / 7, \quad C_{5}=r, \quad C_{6}=s . \tag{3.8}
\end{equation*}
$$

Solving the system (3.7), we obtain

$$
\begin{equation*}
C_{1}=y-s, \quad C_{2}=y-r, \quad C_{3}=3 y / 2-U-r-s, \quad C_{4}=-y / 2+U+r+s \tag{3.9}
\end{equation*}
$$

Then by (3.3),

$$
\begin{equation*}
C_{0}=p-2-3 y . \tag{3.10}
\end{equation*}
$$

Solving the equation

$$
\begin{equation*}
3 h_{1}-h_{2}-2 h_{3}=0, \tag{3.11}
\end{equation*}
$$

for s, we obtain

$$
\begin{equation*}
s=\left(28 r^{2}+21 y^{2}+8 U r-56 y r+4 y U-12 U^{2}\right) /(28 y+16 U-56 r) . \tag{3.12}
\end{equation*}
$$

The denominator in (3.12) is nonzero, since substitution of $y / 2+2 U / 7$ for r in the left side of (3.11) yields the nonzero value $-13 U^{2} / 7$. Thus

$$
\begin{equation*}
r=y / 2-U w \tag{3.13}
\end{equation*}
$$

for some rational number $w \neq-2 / 7$. Substituting the values of r and s from (3.12)-(3.13) into the equation $h_{1}-h_{3}=0$, we deduce that

$$
\begin{equation*}
(3 w-1)\left(7 w^{3}-7 w^{2}-7 w-1\right)=0 . \tag{3.14}
\end{equation*}
$$

The cubic polynomial in (3.14) clearly has no rational zeros, so we must have $w=1 / 3$. By (3.13),

$$
\begin{equation*}
r=y / 2-U / 3 . \tag{3.15}
\end{equation*}
$$

By (3.12) and (3.15), we also have

$$
\begin{equation*}
s=y / 2-U / 3 . \tag{3.16}
\end{equation*}
$$

Use (3.15)-(3.16) to substitute for r and s in the equation

$$
\begin{equation*}
h_{0}-h_{1}-p=0 \tag{3.17}
\end{equation*}
$$

and then use (3.8) to substitute for y in (3.17). We see that (3.17) reduces to

$$
\begin{equation*}
27 T^{2}+224 U^{2}+18 T v-9 v^{2}=0 \tag{3.18}
\end{equation*}
$$

Solving (3.18) for T, we have

$$
\begin{equation*}
9 T=-3 v \pm 2\left(9 v^{2}-168 U^{2}\right)^{1 / 2} \tag{3.19}
\end{equation*}
$$

Since T is an integer, this forces $v=13$ and $U^{2}=9$. Then by (3.19), $T=-5$, which contradicts (3.1).

4. Nonexistence for $\boldsymbol{n}=\mathbf{1 6}$

In this section, $v=16 \epsilon-1$ and $p=16 f+1=a_{4}^{2}+b_{4}^{2}$ with f even and $a_{4} \equiv-1(\bmod 4)$.
Theorem 4.1. $H_{16, \epsilon}$ is never a qualified residue difference set.
Proof. Assume the contrary. First assume that $2 \notin H_{4}$. We will obtain a contradiction by using the formulas for the cyclotomic numbers $(i, j)=(i, j)_{16}$ found in [11]. By Theorem 2.2,

$$
16\left(1+a_{4}\right)=256\{(4,8)-(0,8)\}-128\{(1,8)+(5,8)-(3,8)-(7,8)\}=(v+1)^{2} .
$$

Thus $v=a_{4}$, so $a_{4}^{2} \equiv 1(\bmod 32)$. Since f is even, we also have $p \equiv 1(\bmod 32)$, so that 32 divides b_{4}^{2}. Thus 8 divides b_{4}, contradicting [3, Theorem 7.5.1].

Finally assume that $2 \in H_{4}$. Let m denote the qualifier for the qualified residue difference set $H_{16, \epsilon}$. By Theorem 2.1, m and $-m$ are octic but not sixteenth power residues $(\bmod p)$. Thus, by definition of the Gauss sum $g(n), \sigma_{-m} g(16)=2 g(8)-g(16)$. Using this formula in (2.4) with $n=16$, we obtain

$$
\begin{equation*}
g(8)^{2}+2 v g(8)+p=M^{2}, \tag{4.1}
\end{equation*}
$$

where as in [9, Eq. (4)], $M^{2}=(g(16)-g(8))^{2}$. Note that if the term p in (4.1) were replaced by $-15 p$, then (4.1) would become the equation [9, Eq. (15)]. We can now obtain a contradiction to (4.1) in the same way we obtained a contradiction to [9, Eq. (15)] in [9, pp. 43-44]. We omit the details, instead pointing out the few minor modifications that must be made in the proof in [9]. In [9, Eq. (16)], change the sign of the term $-8 p$. In the formula for A below [9, Eq. (17)], change the sign of the term $4 a_{16}$. In [9, Eq. (18)], change the sign of the term $-2 \alpha \sqrt{p} Y$. Change the sign of the right side of [9, Eq. (19)]. On the left-hand side of the equation above [9, Eq. (21)], change the sign of the term $4 a_{16}$. Lastly, in [9, Eq. (23)], 337 should be replaced by 257 , which is the first prime for which $p \equiv 1(\bmod 32)$ and $2 \in H_{4}$.

5. Nonexistence for $\boldsymbol{n}=\mathbf{1 8}$

In this section, $v=18 \epsilon-1$ and $p=18 f+1$ with f even.
Theorem 5.1. $H_{18, \epsilon}$ is never a qualified residue difference set.

Proof. Assume the contrary. We will use the formulas for the cyclotomic numbers $(i, j)=(i, j)_{18}$ expressed by Baumert and Fredricksen [1,2] in terms of the integer parameters L, M, and $C_{i}(0 \leqslant i \leqslant 5)$. These cyclotomic numbers are defined relative to a fixed primitive root $g(\bmod p)$. Let ind 2 , ind 3 denote the indices of 2,3 , respectively, with base g. The parameters L, M satisfy

$$
4 p=L^{2}+27 M^{2}, \quad L \equiv 7(\bmod 9)
$$

Moreover, setting

$$
S=\sum_{i=0}^{5} C_{i} \zeta_{9}^{i}, \quad \zeta_{9}=\exp 2 \pi i / 9
$$

we have $|S|^{2}=p$, so that

$$
\begin{align*}
& p=C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}+C_{5}^{2}-C_{0} C_{3}-C_{1} C_{4}-C_{2} C_{5}, \tag{5.1}\\
& 0=C_{0} C_{1}+C_{1} C_{2}+C_{2} C_{3}+C_{3} C_{4}+C_{4} C_{5}-C_{0} C_{2}-C_{1} C_{3}-C_{2} C_{4}-C_{3} C_{5}, \tag{5.2}\\
& 0=C_{0} C_{4}+C_{1} C_{5}-C_{0} C_{2}-C_{1} C_{3}-C_{2} C_{4}-C_{3} C_{5}+C_{0} C_{5} . \tag{5.3}
\end{align*}
$$

We will apply Theorem 2.2 in each of the eight cases below.

Case 1. ind $2 \equiv 0(\bmod 9)$, ind $3 \equiv 0(\bmod 3)$.
We have $648(i, 9)=2 p+2+4 v, 1 \leqslant i \leqslant 8$. Adding the three formulas for $i=1,2$, 4 , we see that $L=2 \nu$. Then from the formulas for $i=1,4$, we have $C_{1}=C_{2}=C_{4}+C_{5}$, and from $i=3$, we have $C_{3}=M$. Thus (5.2) yields

$$
C_{5}^{2}+2 C_{4} C_{5}+M C_{4}-M C_{5}=0
$$

and (5.3) yields

$$
C_{5}^{2}-C_{4}^{2}-M C_{4}-2 M C_{5}=0
$$

Eliminating C_{4}, we obtain

$$
C_{5}^{3}-3 C_{5} M^{2}-M^{3}=0
$$

Since $x^{3}-3 x-1$ has no rational solution, we must have $M=C_{5}=0$. This gives the contradiction $4 p=L^{2}$.

Case 2. ind $2 \equiv 0(\bmod 9)$, ind $3 \equiv 1(\bmod 3)$.
Since $(2,9)=(2, B)$, we have $C_{5}=-2 C_{4}$. Since $(1,9)=(4, D)$, we have $C_{1}+C_{2}=4 C_{4}$. Since $(1,9)=(1, A)$, we have $C_{2}=C_{5}+2 C_{1}$. Combining these three formulas, we see that

$$
C_{1}=2 C_{4}, \quad C_{2}=2 C_{4}, \quad C_{5}=-2 C_{4}
$$

Therefore, since $(2,9)=(1, A)$, we have

$$
C_{1}=C_{2}=C_{4}=C_{5}=0 .
$$

It then follows from the formula for $(3,9)$ that $M=-C_{3}$. The formula for $(1,9)$ yields $p+1+L=$ $p+1+2 \nu$, so that $L=2 \nu$. The formula for ($3, C$) then yields

$$
p+1+L=p+1-8 L+18 C_{0}+9 M
$$

so that $M=2\left(v-C_{0}\right)$. Thus by (5.1), $p=C_{0}^{2}+M^{2}+M C_{0}$. Substituting for M, we obtain $p=3 C_{0}^{2}-$ $6 C_{0} v+4 \nu^{2}$. Since $4 p=4 v^{2}+27 M^{2}$, we also have $p=27 C_{0}^{2}-54 C_{0} v+28 v^{2}$. The last two equations imply that $\nu=C_{0}$, so we obtain the contradiction $M=0$.

Case 3. ind $2 \equiv 1(\bmod 9)$, ind $3 \equiv 0(\bmod 3)$.
Since $(3,9)=(3, C)$, we have

$$
-36 C_{1}+54 C_{2}+54 C_{3}+36 C_{4}-72 C_{5}=0
$$

Since $(1,9)=(2, B)$, we have

$$
90 C_{1}-90 C_{4}+72 C_{5}=0
$$

Since $(2, B)=(4,9)$, we have

$$
36 C_{1}-36 C_{4}-36 C_{5}=0
$$

Combining these three formulas, we see that

$$
C_{5}=0, \quad C_{1}=C_{4}, \quad C_{2}=-C_{3} .
$$

Thus by (5.2) and (5.3), $C_{0} C_{1}=C_{3}^{2}=0$, so that $C_{2}=0$. Then from (5.1), $p=C_{0}^{2}+C_{1}^{2}$. This yields the contradiction $p=\left(C_{0}+C_{1}\right)^{2}$.

Case 4. ind $2 \equiv 1(\bmod 9)$, ind $3 \equiv 1(\bmod 3)$.
Since $(3,9)=(3, C)$, we have

$$
-36 C_{1}+18 C_{2}+54 C_{3}+36 C_{4}=0
$$

Since $(4,9)=(2, B)$, we have

$$
-72 C_{1}+36 C_{2}+72 C_{4}=0
$$

Thus $C_{3}=0$. Since $(1,9)=(2, B)$, we have $C_{2}=90\left(C_{4}-C_{1}\right) / 36$. Since $(4,9)=(2, B)$, we have $C_{2}=$ $-2\left(C_{4}-C_{1}\right)$. Thus

$$
C_{1}=C_{4}, \quad C_{2}=C_{3}=0
$$

From the formula for $(4,9)$, we have

$$
L+9 M+18 C_{0}=2 v .
$$

Since $(1, A)=(4, D)$, we have

$$
L+3 M-2 C_{0}=0 .
$$

These two formulas yield

$$
10 L+36 M=2 v .
$$

Summing the formulas for $(2,9),(1, A)$, and $(4, D)$, we obtain

$$
21 L+27 M=-12 v
$$

Eliminating L in the last two formulas, we obtain the contradiction $M=\nu / 3$.
Case 5. ind $2 \equiv 1(\bmod 9)$, ind $3 \equiv 2(\bmod 3)$.
We successively consider the seven formulas for (1,9), (1, A), (2, 9), (2,B), (3, 9), (3, C), and $(4, D)$. Solve the first for C_{0} (in terms of p, v, L, and M), and then substitute this value into the remaining six formulas. Solve the second for C_{1} and then substitute this value into the remaining five formulas. Continue in this way, solving successively for $C_{2}, C_{3}, C_{4}, C_{5}$, and M. We thereby obtain the evaluations

$$
C_{2}=C_{3}=C_{5}=-C_{0}=-(v+L) / 9, \quad C_{1}=C_{4}=(L-8 v) / 9, \quad M=(4 v+L) / 9 .
$$

By (5.2), $0=(L+v)^{2}$. Thus $L=-v$, so that we have the contradiction $M=v / 3$.
Case 6. ind $2 \equiv 3(\bmod 9)$, ind $3 \equiv 0(\bmod 3)$.
Since $(1,9)=(4, D)$, we have $C_{1}=C_{2}$. Thus, since $(1,9)=(2, B)$, we have $C_{1}=C_{4}-2 C_{5}$. Since $(1, A)=(2,9)$, it follows that

$$
C_{5}=3 C_{4} / 7, \quad C_{1}=C_{4} / 7 .
$$

Thus, since $(1,9)=(1, A)$, we have

$$
C_{1}=C_{2}=C_{4}=C_{5}=0 .
$$

Finally, since $(3,9)=(4,9)$, we obtain the contradiction $M=0$.
Case 7. ind $2 \equiv 3(\bmod 9)$, ind $3 \equiv 1(\bmod 3)$.
Since $(2,9)=(4, D)$, we have $C_{5}+C_{1}=0$. Since $(1, A)=(4, D)$, we have $C_{2}+C_{4}=0$. Since $(1,9)=$ $(4,9)$, we have $C_{2}=C_{4}=0$. Since $(1,9)=(2,9)$, we have $C_{1}=C_{5}=0$. From the formula for $(1,9)$, we have $L=2 v$. From the formula for (3,9), we have $C_{3}=v-C_{0}$. From the formula for ($3, C$), we have $C_{0}=-M$. Thus $C_{3}=v+M$. Then by (5.1), $p=C_{3}^{2}+M^{2}+M C_{3}$. Replacing C_{3} by $v+M$, we obtain $p=3 M^{2}+3 M v+v^{2}$. Therefore $4 p=12 M^{2}+12 M v+4 \nu^{2}$. On the other hand, $4 p=27 M^{2}+4 \nu^{2}$, so we obtain the contradiction $15 M=12 \nu$.

Case 8. ind $2 \equiv 3(\bmod 9)$, ind $3 \equiv 2(\bmod 3)$.
Summing the formulas for $(1,9),(1, A)$, and $(2,9)$, we obtain

$$
6(p+1+2 v)=6(p+1+L)
$$

so that $L=2 v$. Thus, from the formula for $(3,9)$, we obtain the contradiction $M=0$.

6. Nonexistence for $\boldsymbol{n}=\mathbf{2 0}$

In this section, $v=20 \epsilon-1$ and $p=20 f+1$ with f even.
Theorem 6.1. $H_{20, \epsilon}$ is never a qualified residue difference set.
Proof. Assume the contrary. We will use the formulas for the cyclotomic numbers $(i, j)=(i, j)_{20}$ expressed by Muskat and Whiteman [22,23] in terms of the integer parameters c, d, x, u, v, w, d_{i} $(0 \leqslant i \leqslant 19)$. These cyclotomic numbers are defined relative to a fixed primitive root $g(\bmod p)$. Let ind 2 , ind 5 denote the indices of 2,5 , respectively, with base g. The parameters c, d satisfy [22 , p. 197]

$$
\begin{equation*}
p=c^{2}+5 d^{2} \tag{6.1}
\end{equation*}
$$

and the parameters x, u, v, w satisfy [22, Eq. (4.1)]

$$
\begin{gather*}
16 p=x^{2}+50 u^{2}+50 v^{2}+125 w^{2}, \tag{6.2}\\
x \equiv 1 \quad(\bmod 5) \tag{6.3}\\
x w=v^{2}-4 u v-u^{2} . \tag{6.4}
\end{gather*}
$$

The parameters d_{i} satisfy [22, Eq. (2.17)]

$$
\begin{equation*}
d_{i+10}=-d_{i} \quad(0 \leqslant i \leqslant 9) \tag{6.5}
\end{equation*}
$$

and [22, Eq. (2.18)]

$$
\begin{equation*}
J\left(\chi, \chi^{5}\right)=\sum_{j=0}^{9} d_{j} \zeta_{20}^{j} \tag{6.6}
\end{equation*}
$$

where J is a Jacobi sum and χ is a character $(\bmod p)$ of order 20 such that $\chi(g)=\zeta_{20}:=$ $\exp (2 \pi i / 20)$. Taking absolute values in (6.6), we have

$$
\begin{equation*}
p=\left|\sum_{j=0}^{9} d_{j} \zeta_{20}^{j}\right|^{2} \tag{6.7}
\end{equation*}
$$

By [22, p. 203],

$$
\begin{equation*}
h_{0}:=\sum_{i=0}^{9} d_{i}^{2}=p \tag{6.8}
\end{equation*}
$$

Expanding (6.7) and using (6.8), we see that for each j with $1 \leqslant j \leqslant 4$,

$$
\begin{equation*}
h_{j}:=\sum_{i=0}^{9} d_{i} d_{i+j}=0 . \tag{6.9}
\end{equation*}
$$

According to the tables [23], there are twenty separate cases to consider. Arguing as in [22, p. 214], we may choose the primitive root g in such a way as to reduce to the eight cases where ind $2 \equiv 0$ or $2(\bmod 10)$. Arguing as in the penultimate paragraph in [22, p. 215], we may reduce further to six cases, by dispensing with the two cases where ind $5 \equiv 2(\bmod 4), c \equiv 4(\bmod 10)$. The first four cases below are the simplest; the last two cases are considerably more involved. We used a Maple program to perform the lengthy calculations.

Case 1. ind $2 \equiv 0(\bmod 10)$, ind $5 \equiv 0(\bmod 4), c \equiv 1(\bmod 10)$.
In view of Theorem 2.2 and the table in [23], we have the matrix equation $A X=B$, where B is the 9×1 column vector ($8 v, 8 v$), X is the 10×1 vector ($c, x, u, v, w, d_{0}, d_{4}, d_{8}$, $\left.d_{12}, d_{16}\right)$, and A is the 9×10 matrix

$$
\left(\begin{array}{cccccccccc}
8 & -2 & 120 & 240 & -250 & -24 & 56 & 56 & -24 & -24 \\
8 & -2 & -120 & -240 & -250 & -24 & -24 & -24 & 56 & 56 \\
-40 & -10 & -120 & 160 & -150 & -8 & -8 & -88 & -8 & 72 \\
-40 & -10 & 120 & -160 & -150 & -8 & 72 & -8 & -88 & -8 \\
8 & -2 & -240 & 120 & 250 & -24 & 56 & -24 & 56 & -24 \\
8 & -2 & 240 & -120 & 250 & -24 & -24 & 56 & -24 & 56 \\
-40 & -10 & 160 & 120 & 150 & -8 & -8 & -8 & 72 & -88 \\
-40 & -10 & -160 & -120 & 150 & -8 & -88 & 72 & -8 & -8 \\
128 & -32 & 0 & 0 & 0 & 136 & -24 & -24 & -24 & -24
\end{array}\right)
$$

whose nine rows correspond to the nine cyclotomic numbers $(1,10),(1,11),(2,10),(2,12),(3,10)$, $(3,13),(4,10),(4,14),(5,10)$ in the table. Solving $A X=B$, we see that every solution X has vanishing third, fourth, and fifth entries, i.e., $u=v=w=0$. This contradicts (6.2).

Case 2. ind $2 \equiv 0(\bmod 10)$, ind $5 \equiv 0(\bmod 4), c \equiv 9(\bmod 10)$.
We proceed as in Case 1, but this time with the 9×10 matrix A defined by

$$
\left(\begin{array}{cccccccccc}
40 & -10 & 40 & 80 & -50 & 8 & 88 & -72 & 8 & 8 \\
40 & -10 & -40 & -80 & -50 & 8 & 8 & 8 & -72 & 88 \\
-8 & -2 & 40 & 80 & 50 & 24 & 24 & -56 & 24 & -56 \\
-8 & -2 & -40 & -80 & 50 & 24 & -56 & 24 & -56 & 24 \\
40 & -10 & -80 & 40 & 50 & 8 & -72 & 8 & 88 & 8 \\
40 & -10 & 80 & -40 & 50 & 8 & 8 & 88 & 8 & -72 \\
-8 & -2 & 80 & -40 & -50 & 24 & 24 & 24 & -56 & -56 \\
-8 & -2 & -80 & 40 & -50 & 24 & -56 & -56 & 24 & 24 \\
0 & 0 & 0 & 0 & 0 & 8 & 8 & 8 & 8 & 8
\end{array}\right) .
$$

Solving $A X=B$, we see that every solution X has fifth entry $w=0$. Thus the integers u and v must be 0 by (6.4), and this contradicts (6.2).

Case 3. ind $2 \equiv 2(\bmod 10)$, ind $5 \equiv 0(\bmod 4), c \equiv 1(\bmod 10)$.
We proceed as in Case 1, but this time with the 9×10 matrix A defined by

$$
\left(\begin{array}{cccccccccc}
88 & -12 & -90 & -130 & -150 & -24 & 56 & 56 & -24 & -24 \\
8 & 23 & 120 & -110 & 175 & -24 & -24 & -24 & 56 & 56 \\
-80 & 10 & -20 & -40 & 150 & -8 & -8 & -88 & -8 & 72 \\
-40 & -10 & -130 & -110 & 100 & -8 & 72 & -8 & -88 & -8 \\
8 & -2 & -50 & 50 & -100 & -24 & 56 & -24 & 56 & -24 \\
48 & -22 & -20 & -40 & -250 & -24 & -24 & 56 & -24 & 56 \\
-40 & 15 & -40 & -30 & -25 & -8 & -8 & -8 & 72 & -88 \\
40 & -20 & 190 & 230 & 250 & -8 & -88 & 72 & -8 & -8 \\
8 & 23 & -60 & 30 & 75 & 136 & -24 & -24 & -24 & -24
\end{array}\right) .
$$

Solving $A X=B$, we see that every solution X has fifth entry $w=\nu / 7$, which is impossible since $\nu / 7$ is not an integer.

Case 4. ind $2 \equiv 2(\bmod 10)$, ind $5 \equiv 0(\bmod 4), c \equiv 9(\bmod 10)$.
We proceed as in Case 1, but this time with the 9×10 matrix A defined by

$$
\left(\begin{array}{cccccccccc}
-40 & -20 & -10 & 30 & 50 & 8 & 88 & -72 & 8 & 8 \\
40 & 15 & -40 & -30 & -25 & 8 & 8 & 8 & -72 & 88 \\
-48 & -22 & -20 & -40 & 150 & 24 & 24 & -56 & 24 & -56 \\
-8 & -2 & -50 & 50 & -100 & 24 & -56 & 24 & -56 & 24 \\
40 & -10 & -130 & -110 & 100 & 8 & -72 & 8 & 88 & 8 \\
80 & 10 & -20 & -40 & -250 & 8 & 8 & 88 & 8 & -72 \\
-8 & 23 & 120 & -110 & 175 & 24 & 24 & 24 & -56 & -56 \\
-88 & -12 & 110 & 70 & 50 & 24 & -56 & -56 & 24 & 24 \\
40 & 15 & 100 & -50 & -125 & 8 & 8 & 8 & 8 & 8
\end{array}\right) .
$$

Solving $A X=B$, we see that every solution X has fifth entry $w=-2 d_{4}+\nu / 5$, which is impossible since $v / 5$ is not an integer.

Case 5. ind $2 \equiv 0(\bmod 10)$, ind $5 \equiv 2(\bmod 4), c \equiv 6(\bmod 10)$.
Consider the nine linear equations corresponding to the same nine cyclotomic numbers as in Case 1 , and solve for $d_{0}, d_{4}, d_{8}, d_{12}, d_{16}, d_{1}, d_{5}, d_{9}, d_{13}$, to obtain (in view of (6.5)) $d_{0}=3(\nu+x) / 5$, $d_{1}=\left(4 d_{17}-2 u-4 v-5 w\right) / 4, d_{2}=(10 d-2 v-25 u+25 v+25 w-2 x) / 20, d_{3}=\left(3 v-u-2 d_{17}\right) / 2$, $d_{4}=(10 d+2 v-25 u-25 v+25 w+2 x) / 20, d_{5}=\left(-8 c+8 d_{17}-4 v+2 u-6 v-5 w-3 x\right) / 8$, $d_{6}=-(10 d+2 v+25 u+25 v+25 w+2 x) / 20, d_{7}=-d_{17}, d_{8}=(-10 d+2 v-25 u+25 v-25 w+2 x) / 20$, $d_{9}=\left(4 d_{17}+4 u-2 v-5 w\right) / 4$. We now plug these ten formulas into (6.9) to obtain long expressions for $h_{1}, h_{2}, h_{3}, h_{4}$ in terms of the parameters $p, v, c, d, x, u, v, w, d_{17}$. In particular,

$$
\begin{equation*}
16 h_{1}=20 d(v-u)+16 v v+8 v u+(40 c+25 w)(u+v)+3 x u+11 x v . \tag{6.10}
\end{equation*}
$$

Since u and v cannot both vanish, we can define the relatively prime pair of integers u_{0}, v_{0} by $u_{0}=u /(u, v), v_{0}=v /(u, v)$. Since $h_{1}=0$, division by (u, v) in (6.10) yields

$$
\begin{equation*}
0=20 d\left(v_{0}-u_{0}\right)+16 v v_{0}+8 v u_{0}+(40 c+25 w)\left(u_{0}+v_{0}\right)+3 x u_{0}+11 x v_{0} . \tag{6.11}
\end{equation*}
$$

By Theorem 2.2, $p \equiv-1-2 v(\bmod 25)$, and by $(6.2), 16 p \equiv x^{2}(\bmod 25)$. Thus $x^{2} \equiv 9+18 v(\bmod 25)$, and since v is either 19 or -1 , it follows from (6.3) that $x \equiv 5+9 v(\bmod 25)$. If we now substitute $5+9 v$ for x in (6.11), then divide both sides by 5 , and finally substitute -1 for $v(\bmod 5)$ and 1 for $c(\bmod 5)$, we obtain the congruence

$$
\begin{equation*}
v_{0}+d u_{0} \equiv u_{0}+d v_{0} \quad(\bmod 5) \tag{6.12}
\end{equation*}
$$

Now repeat the argument starting at (6.10) with $h_{1}-h_{3}$ in place of h_{1}. In place of (6.12), we arrive at the congruence

$$
\begin{equation*}
u_{0} \equiv-d v_{0} \quad(\bmod 5) \tag{6.13}
\end{equation*}
$$

From (6.12) and (6.13), it follows that 5 does not divide $u_{0} v_{0}$, and $d^{2} \equiv 1(\bmod 5)$. Repeat the argument again with $h_{2}+h_{4}$, omitting the division by (u, v). We then obtain the congruence $2 w-d+v^{2}-4 u v-u^{2} \equiv 0(\bmod 5)$. In view of (6.4), this simplifies to $2 w-d+x w \equiv 0(\bmod 5)$. Then by (6.3), $2 d \equiv w(\bmod 5)$. Reducing (6.4) modulo 5 and using (6.13), we have

$$
2 d \equiv w \equiv x w=v^{2}-u^{2}-4 u v \equiv v^{2}-d^{2} v^{2}+4 d v^{2} \equiv 4 d v^{2} \quad(\bmod 5),
$$

and so we arrive at the contradiction $v^{2} \equiv 3(\bmod 5)$.
Case 6. ind $2 \equiv 2(\bmod 10)$, ind $5 \equiv 2(\bmod 4), c \equiv 6(\bmod 10)$.
Proceeding as in Case 5, we have $d_{0}=(-10 d+12 v+5 u+35 v-3 x) / 20, d_{1}=\left(16 d_{17}+12 u-6 v+\right.$ $25 w+5 x) / 16, d_{2}=(-20 d-4 v-10 u-20 v-25 w+x) / 40, d_{3}=\left(16 c-16 d_{17}+2 u+24 v-5 w-7 x\right) / 16$, $d_{4}=(20 d+4 v+60 u+70 v+75 w-x) / 40, d_{5}=\left(8 d_{17}-4 v+2 u-16 v+15 w+x\right) / 8, d_{6}=(20 d-$ $4 v-10 u-20 v-25 w+x) / 40, d_{7}=-d_{17}, d_{8}=(4 v+10 u+20 v+125 w-x) / 40, d_{9}=\left(16 d_{17}+26 u-\right.$ $8 v+15 w+5 x) / 16$. Plug these ten formulas into (6.8) and (6.9) to obtain long expressions for h_{0}, h_{1}, h_{2}, h_{3}, h_{4}. Write

$$
G_{0}=-2 h_{1}, \quad G_{1}=p-h_{0}-h_{2}, \quad G_{2}=h_{1}-h_{3}, \quad G_{3}=h_{0}-p-h_{4},
$$

and

$$
E=-x w+v^{2}-u^{2}-4 u v, \quad F=16 p-x^{2}-50 u^{2}-50 v^{2}-125 w^{2} .
$$

Note that E, F, and the G_{i} all vanish, by (6.2), (6.4), (6.8), and (6.9).
In the sequel, we will be expressing several parameters in terms of new subscripted parameters, all of which are integers. Since ind $2 \equiv 2(\bmod 5)$ in Case 6 , it follows from [3, Theorem 3.7.9] that $v=x+u+2+4 v_{1}, x=2 x_{1}+1$, and $u=2 u_{1}+1$ (i.e., x, u, and ($v-x-u$)/2 are all odd). Since v is even, it follows easily from (6.4) that $w=2 v-x+8 w_{1}$. By Theorem 2.2, $p=-1-2 v+16 p_{1}$. We have $v=-1+20 \nu_{1}$, where ν_{1} is either 0 or 1 . Since c is even in Case 6 , and $p \equiv 1(\bmod 8)$, it follows from (6.1) that $c=2+4 c_{1}$. Thus $d^{2} \equiv 6 v-1(\bmod 16)$. It follows that $d= \pm(2-v)+8 d_{1}$. We will consider the two sign possibilities in two separate subcases.

Subcase 1. $d=2-v+8 d_{1}$.
The following sequence of integer congruences and their successive implications will ultimately yield the desired contradiction:

$$
\begin{aligned}
& E / 8-F / 16 \equiv 2+2 w_{1} \quad(\bmod 4) \quad \text { implies } w_{1}=1+2 w_{2}, \\
& 4 G_{3} \equiv x_{1}+v_{1} \quad(\bmod 2) \quad \text { implies } v_{1}=x_{1}+2 v_{2}, \\
& E / 16-F / 32 \equiv 2 x_{1}+2 w_{2} \quad(\bmod 4) \quad \text { implies } \quad w_{2}=x_{1}+2 w_{3}, \\
& G_{1}-G_{2} \equiv u_{1} \quad(\bmod 2) \quad \text { implies } u_{1}=2 u_{2}, \\
& G_{0} / 2 \equiv 1+v_{2} \quad(\bmod 2) \quad \text { implies } v_{2}=1+2 v_{3}, \\
& E / 16 \equiv x_{1} \quad(\bmod 2) \quad \text { implies } \quad x_{1}=2 x_{2},
\end{aligned}
$$

$$
\begin{aligned}
& E / 32 \equiv v_{3}+w_{3} \quad(\bmod 2) \quad \text { implies } \quad w_{3}=v_{3}+2 w_{4}, \\
& G_{0} / 4 \equiv v_{1}+x_{2} \quad(\bmod 2) \quad \text { implies } x_{2}=v_{1}+2 x_{3}, \\
& E / 64 \equiv 1+u_{2}+w_{4} \quad(\bmod 2) \quad \text { implies } \quad w_{4}=1+u_{2}+2 w_{5}, \\
& G_{1} / 2 \equiv v_{1}+u_{2}+v_{3} \quad(\bmod 2) \quad \text { implies } \quad v_{3}=v_{1}+u_{2}+2 v_{4}, \\
& E / 64-F / 128 \equiv 2+2 p_{1}+2 v_{4} \quad(\bmod 4) \quad \text { implies } \quad v_{4}=1+p_{1}+2 v_{5}, \\
& G_{1} / 4 \equiv d_{1}+p_{1} \quad(\bmod 2) \quad \text { implies } \quad d_{1}=p_{1}+2 d_{2}, \\
& G_{2} / 8-G_{1} / 8-G_{0} / 8 \equiv c_{1} \quad(\bmod 2) \quad \text { implies } c_{1}=2 c_{2}, \\
& G_{0} / 8 \equiv 1+p_{1}+x_{3} \quad(\bmod 2) \quad \text { implies } x_{3}=1+p_{1}+2 x_{4}, \\
& G_{3} / 4 \equiv 1+v_{1}+u_{2} \quad(\bmod 2) \quad \text { implies } u_{2}=1+v_{1}+2 u_{3}, \\
& G_{2} / 8 \equiv 1+p_{1}+v_{5}+d_{2} \quad(\bmod 2) \quad \text { implies } v_{5}=1+p_{1}+d_{2}+2 v_{6}, \\
& G_{2} / 16 \equiv 1+v_{6}+d_{2} \quad(\bmod 2) \quad \text { implies } v_{6}=1+d_{2}+2 v_{7}, \\
& G_{0} / 16-G_{1} / 16 \equiv v_{1}+c_{2} \quad(\bmod 2) \quad \text { implies } c_{2}=v_{1}+2 c_{3}, \\
& E / 128-G_{3} / 8 \equiv 1 \quad(\bmod 2) \quad \text { yields the desired contradiction. }
\end{aligned}
$$

Subcase 2. $d=v-2+8 d_{1}$.
The following sequence of integer congruences and their successive implications will ultimately yield the final contradiction:

$$
\begin{aligned}
& E / 8-F / 16 \equiv 2+2 w_{1} \quad(\bmod 4) \quad \text { implies } \quad w_{1}=1+2 w_{2}, \\
& 4 G_{3} \equiv x_{1}+v_{1} \quad(\bmod 2) \quad \text { implies } \quad v_{1}=x_{1}+2 v_{2}, \\
& G_{1}-G_{2} \equiv w_{2}+v_{2} \quad(\bmod 2) \quad \text { implies } \quad w_{2}=v_{2}+2 w_{3}, \\
& E / 16 \equiv 1+u_{1} \quad(\bmod 2) \quad \text { implies } \quad u_{1}=1+2 u_{2}, \\
& G_{0} / 2 \equiv 1+v_{2} x_{1} \quad(\bmod 2) \quad \text { implies } \quad v_{2}=1+2 v_{3}, x_{1}=1+2 x_{2}, \\
& G_{3} / 2 \equiv 1+v_{1}+w_{3} \quad(\bmod 2) \quad \text { implies } \quad w_{3}=1+v_{1}+2 w_{4}, \\
& E / 32 \equiv v_{1}+x_{2} \quad(\bmod 2) \quad \text { implies } \quad x_{2}=v_{1}+2 x_{3}, \\
& E / 64-F / 128-G_{0} / 4 \equiv 1 \quad(\bmod 2) \quad \text { yields the desired contradiction. }
\end{aligned}
$$

Acknowledgment

We are grateful to the referee for pointing out papers [18-20].

References

[1] L.D. Baumert, H. Fredricksen, The cyclotomic numbers of order eighteen with applications to difference sets, Math. Comp. 21 (1967) 204-219.
[2] L.D. Baumert, H. Fredricksen, Table of cyclotomic numbers of order eighteen, http://math.ucsd.edu/~revans/cyclotomic18, 1967.
[3] B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
[4] K. Byard, On qualified residue difference sets, Int. J. Number Theory 2 (2006) 591-597.
[5] K. Byard, Tenth power qualified residue difference sets, Int. J. Number Theory 5 (2009) 797-803.
[6] K. Byard, Twelfth power qualified residue difference sets, Integers 9 (2009) 401-410.
[7] E. Caroli, J.B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, Coded aperture imaging in X- and gamma-ray astronomy, Space Science Reviews 45 (1987) 349-403.
[8] European Space Agency, INTEGRAL, http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=31149.
[9] R.J. Evans, Bioctic Gauss sums and sixteenth power residue difference sets, Acta Arith. 38 (1980/1981) 37-46.
[10] R.J. Evans, Nonexistence of twentieth power residue difference sets, Acta Arith. 84 (1999) 397-402.
[11] R.J. Evans, J.R. Hill, The cyclotomic numbers of order sixteen, Math. Comp. 33 (1979) 827-835.
[12] J. Gunson, B. Polychronopulos, Optimum design of a coded mask X-ray telescope for rocket applications, Mon. Not. R. Astron. Soc. 177 (1976) 485-497.
[13] J. in 't Zand, Coded aperture camera imaging concept, http://astrophysics.gsfc.nasa.gov/cai/coded_intr.htm.
[14] D. Jennings, K. Byard, An extension for residue difference sets, Discrete Math. 167/168 (1997) 405-410.
[15] D. Jennings, K. Byard, Qualified residue difference sets with zero, Discrete Math. 181 (1998) 283-288.
[16] Y.P. Kazachkov, D.S. Semenov, N.P. Goryacheva, Application of coded apertures in γ-ray cameras, Instrum. Experiment. Tech. 50 (2007) 267-274.
[17] L.E. Kopilovich, Applications of difference sets to the aperture design in multielement systems in radio science and astronomy, in: A. Pott, et al. (Eds.), Difference Sets, Sequences and Their Correlation Properties, Kluwer Acad. Publ., Dordrecht, 1999, pp. 297-330.
[18] C.W.H. Lam, A generalization of cyclic difference sets, I, J. Combin. Theory Ser. A 19 (1975) 51-65.
[19] C.W.H. Lam, Nth power residue addition sets, J. Combin. Theory Ser. A 20 (1976) 20-33.
[20] C.W.H. Lam, Cyclotomy and addition sets, J. Combin. Theory Ser. A 22 (1977) 43-60.
[21] J.B. Muskat, The cyclotomic numbers of order fourteen, Acta Arith. 11 (1965/1966) 263-279.
[22] J.B. Muskat, A.L. Whiteman, The cyclotomic numbers of order twenty, Acta Arith. 17 (1970) 185-216.
[23] J.B. Muskat, A.L. Whiteman, Table of cyclotomic numbers of order twenty, http://math.ucsd.edu/~revans/cyclotomic20, 1970.
[24] W.L. Rogers, K.F. Koral, R. Mayans, P.F. Leonard, J.H. Thrall, T.J. Brady, J.W. Keyes, Coded aperture imaging of the heart, J. Nucl. Med. 21 (1980) 371-378.
[25] A.L. Whiteman, The cyclotomic numbers of order sixteen, Trans. Amer. Math. Soc. 86 (1957) 401-413.
[26] A.L. Whiteman, The cyclotomic numbers of order ten, Proc. Sympos. Appl. Math. 10 (1960) 95-111.
[27] C. Winkler, T.J.-L. Courvoisier, G. Di Cocco, N. Gehrels, A. Gimenez, S. Grebenev, W. Hermsen, J.M. Mas-Hesse, F. Lebrun, N. Lund, G.G.C. Palumbo, J. Paul, J.-P. Roques, H. Schnopper, V. Schonfelder, R. Sunyaev, B. Teegarden, P. Ubertini, G. Vedrenne, A.J. Dean, The INTEGRAL mission, Astron. Astrophys. 411 (2003) L1-L6.

[^0]: * Corresponding author.

 E-mail addresses: k.byard@massey.ac.nz (K. Byard), revans@ucsd.edu (R. Evans), mvanveen@ucsd.edu (M. Van Veen).
 0196-8858/\$ - see front matter © 2010 Elsevier Inc. All rights reserved.
 doi:10.1016/j.aam.2010.09.008

