MODULAR FORMS ON HECKE'S MODULAR GROUPS

RONALD J. EVANS

Abstract

Let $H=\{\tau=x+i y: y>0\}$. Let $\lambda>0, k>0, \gamma= \pm 1$. Let $M(\lambda, k, \gamma)$ denote the set of functions f for which $f(\tau)=$ $\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n \tau} / \lambda$ and $f(-1 / \tau)=\gamma(\tau / i)^{k} f(\tau)$, for all $\tau \in H$. Let $M_{0}(\lambda, k, \gamma)$ denote the set of $f \in M(\lambda, k . \gamma)$ for which $f(\tau)=O\left(\gamma^{c}\right)$ uniformly for all x as $y \rightarrow 0^{+}$, for some real c. We give a new proof that if $\lambda=2 \cos (\pi / q)$ for an integer $q \geqq 3$, then $M(\lambda, k, \gamma)=$ $M_{0}(\lambda, k, \gamma)$.

Petersson [5, p. 176] and Ogg [4] filled a gap in Hecke's work [2, p. 21] by establishing analytically the theorem below. We present here a short, elementary proof which uses no non-Euclidean geometry.

Theorem. Let $\lambda=2 \cos (\pi / q)$ for an integer $q \geqq 3$. Then $M(\lambda, k, \gamma)=$ $M_{0}(\lambda, k, \gamma)$.

Proof. Let $f \in M(\lambda, k, \gamma)$. Let $H_{1}=\{\tau \in H:|x| \leqq \lambda / 2, y \leqq 1\}$. Since $f(\tau)=f(\tau+\lambda)$, it suffices to show that $\left|y^{k} f(\tau)\right|$ is uniformly bounded for all $\tau \in H_{1}$.

Let $B(\lambda)=\{\tau \in H:|x|<\lambda / 2,|\tau|>1\}$ and let $\mathrm{Cl}(B(\lambda))$ denote the closure of $B(\lambda)$. For large $y,|f(\tau)|<\left|a_{0}\right|+1$, and since f is bounded on compact subsets of H, there is a constant A such that $|f(\tau)| \leqq A$ for all $\tau \in \mathrm{Cl}(B(\lambda))$.

Hecke's modular group $G(\lambda)$ is defined to be the group of linear fractional transformations generated by $S_{\lambda}: \tau \rightarrow \tau+\lambda$ and $T: \tau \rightarrow-1 / \tau$. We shall identify the transformation $\tau \rightarrow(a \tau+b) /(c \tau+d)$ with the matrix $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$. Hecke proved [2, pp. 11-20] that $B(\lambda)$ is a fundamental region (as defined in [3, p. 20]) for $G(\lambda)$. (For an elementary proof, see [1].) Thus for each $\tau \in H$, there exists

$$
V_{\tau}=\left(\begin{array}{ll}
a_{\tau} & b_{\tau} \\
c_{\tau} & d_{\tau}
\end{array}\right) \in G(\lambda)
$$

such that $V_{\tau} \tau \in \mathrm{Cl}(B(\lambda))$.
It can be easily shown that for all $\tau \in H$ and for all $V=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in G(\lambda)$,

$$
|f(\tau)|=|f(V \tau)| \cdot|c \tau+d|^{-k}
$$

Presented to the Society March 31, 1972; received by the editors May 11, 1972.
AMS (MOS) subject classifications (1970). Primary 10D05, 10D15; Secondary 30A20, 30A58.
Key words and phrases. Modular form, Hecke modular groups, fundamental region, equivalent points.

Thus for all $\tau \in H$,

$$
\begin{aligned}
\left|y^{k} f(\tau)\right| & =y^{k}\left|f\left(V_{\tau} \tau\right)\right| \cdot\left|c_{\tau} \tau+d_{\tau}\right|^{-k} \leqq y^{k} A \cdot\left|c_{\tau} \tau+d_{\tau}\right|^{-k} \\
& =A\left|i c_{\tau}+\left(c_{\tau} x+d_{\tau}\right) / y\right|^{-k} .
\end{aligned}
$$

We shall now show that for all $\tau \in H_{1}$ and for all $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in G(\lambda)$,

$$
\left.|i c+(c x+d)| y\right|^{2} \geqq 1-\lambda / 2
$$

This will show that $\left|y^{k} f(\tau)\right| \leqq A(1-\lambda / 2)^{-k / 2}$ for all $\tau \in H_{1}$, which proves our theorem. Fix $\tau \in H_{1}$ and $V=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G(\lambda)$. Then

$$
\begin{aligned}
(c x+d)^{2} / y^{2}+c^{2} & \geqq(c x+d)^{2}+c^{2}=c^{2}\left(x^{2}+1\right)+d^{2}+2 c d x \\
& \geqq c^{2}+d^{2}-\lambda|c d| \geqq c^{2}+d^{2}-(\lambda / 2)\left(c^{2}+d_{2}\right) \\
& =(1-\lambda / 2)\left(c^{2}+d^{2}\right)
\end{aligned}
$$

It remains to show that $c^{2}+d^{2} \geqq 1$. Suppose that $c^{2}+d^{2}<1$. Then $\operatorname{Im}(V i)=$ $1 /\left(c^{2}+d^{2}\right)>1$, so i is $G(\lambda)$-equivalent to a point $\tau_{1} \in \mathrm{Cl}(B(\lambda))$ such that $\operatorname{Im}\left(\tau_{1}\right)>1$. Thus, by continuity, some point in $B(\lambda)$ close to i is $G(\lambda)$ equivalent to another point in $B(\lambda)$ close to τ_{1}, contradicting the fact that $B(\lambda)$ is a fundamental region.

References

1. R. J. Evans, A fundamental region for Hecke's modular group, J. Number Theory (to appear).
2. E. Hecke, Dirichlet series, Planographed Lecture Notes, Princeton Institute for Advanced Study, Edwards Brothers, Ann Arbor, Mich., 1938.
3. J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys, no. 8, Amer. Math. Soc., Providence, R.I., 1964. MR 29 \#1332.
4. A. Ogg, On modular forms with associated Dirichlet series, Ann. of Math. (2) 89 (1969), 184-186. MR 38 \#3232.
5. H. Petersson, Über die Berechnung der Skalarprodukte ganzer Modulformen, Comment. Math. Helv. 22 (1949), 168-199. MR 10, 445.

Department of Mathematics, Jackson State College, Jackson, Mississippi 39217
Current address: Department of Mathematics, University of Illinois, Urbana, Illinois 61801

