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MODULAR FORMS ON HECKE'S MODULAR GROUPS

RONALD J.  EVANS

Abstract. Let H={T=x+iy.y>0}. Let A>0, k>0, y=±\.

Let MQ\,k, y) denote the set of functions / for which /(t)=

2^=oane21r"'rU and f(-llr)=y(Tli)kf(r), for all reH. Let

M0(A, k, y) denote the set of fe M(X, k. y) for which f(r)=O(y)
uniformly for all x as y-*0+, for some real c. We give a new proof

that if A=2 cos(trlq) for an integer q^3, then M(X, k, y)=

MÁk k, y).

Petersson [5, p. 176] and Ogg [4] filled a gap in Hecke's work [2, p. 21]

by establishing analytically the theorem below. We present here a short,

elementary proof which uses no non-Euclidean geometry.

Theorem. Let X=2 cos(ir¡q) for an integer a_3. Then M(X, k, y)=

M0(X, k, y).

Proof. Let fe M(X, k, y). Let Hx={r e H:\x\<XI2,y ^l}. Since
/(t)=/(t+A), it suffices to show that | j^/"(t)| is uniformly bounded for all

re771.

Let B(X)={t e H:\x\<XI2, |t|>1} and let Cl(B(X)) denote the closure

of B(X). For large j, |/(T)|<|a0|-|-l, and since/is bounded on compact

subsets of 77, there is a constant A such that \f(r)\ ^A for all r e Cl(B(X)).

Hecke's modular group G(X) is defined to be the group of linear frac-

tional transformations generated by Sx : t-^t+X and T: t-*-— 1/t. We shall

identify the transformation T-*-(ar+b)l(cT+d) with the matrix (" ¿).

Hecke proved [2, pp. 11-20] that B(X) is a fundamental region (as defined

in [3, p. 20]) for G(X). (For an elementary proof, see [1].) Thus for each

reH, there exists

such that VrT e Cl(B(X)).

It can be easily shown that for all r e 77 and for all V=G bd) e G(X),

l/MI = \f(Vr)\ ■ |cr + d\~k.
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Thus for all t e 77,

\ff(r)\ = y* \f(Vtr)\ ■ \cTr + dr\~* = fA ■ \cTr + dT\~k

= A \ict + (cTx + dT)/y\-k.

We shall now show that for all r e 77L and for all ("c d) e G(X),

\ic + (ex + d)ly\2 = 1 - X\2.

This will show that \ykf(r)\<A(\-X\2)-kl2 for all r e 77,, which proves

our theorem. Fix t e 77, and V=(° d) e G(X). Then

(ex + d)2ly°- + c2 = (ex + d)2 + c2 = c2(x2 + 1) + d2 + 2cdx

= c2 + a"2 - X \cd\ ^c2 + d2- (X/2)(c2 + d2)

= (1 - Xj2)(c2 + d2).

It remains to show that c2-r-a"2_l. Suppose that c2+a'2<l. Then lm(Vi)=

l/(c2+d2)>\, so i is C(A)-equivalent to a point TxeC\(B(X)) such that

Im(T,)>l. Thus, by continuity, some point in B(X) close to i is G(X)-

equivalent to another point in B(X) close to rlt contradicting the fact that

B(X) is a fundamental region.    D
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