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MULTIDIMENSIONAL ¢-BETA INTEGRALS*
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Abstract. A multidimensional extension of a g-beta integral of Andrews and Askey is evaluated. As an
application, a short new proof of an important g-Selberg integral formula is given.
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1. Introduction. This paper has been motivated by Anderson’s wonderfully
innovative proof [2] of Selberg’s multidimensional beta integral formula [17]. In § 2
(see Theorem 1), we present a new n-dimensional g-beta integral formula which
reduces to that of Andrews and Askey [4, eqn. (2.2)] when n =1 and that of Anderson
[2, “claim”] when q = 1. Our proof is self-contained and in particular makes no appeal
to the results of the aforementioned papers. In § 3, we apply Theorem 1 to give a
surprisingly short, self-contained proof of the g-Selberg integral formula (1.8). Finally,
we indicate in § 4 the modifications that can be made in § 3 to give a short proof of
Kadell’s extension of the g-Selberg integral formula containing the extra parameter m
of Aomoto [5]; see Theorem 2. It is hoped that this method will lead to a short proof
of a g-extension of the Selberg-Jack integral formula [15].

For some of the many applications and extensions of Selberg’s integral, see the
papers of Askey [6]-[8] and Kadell [14]-[16]. For character sum analogues of Selberg’s
integral, see the papers of Anderson [1], Evans [10] and van Wamelen [18].

Let

(1.1) 0<g<l,

and define, for complex x, «a,

(12) (@o=11 (1=ag), (@)= (@)/(ag")e

Define the g-gamma function
(1.3) L,(x)=(q)a(1-9)"™",  xeC.

As q-1,T,(x)->TI(x)[11, eqn. (1.10.3)]. For , B € C and a (say) continuous function
f:C—>C, define the g-integral

(1.4) JBf(x) dqx==JBf(x) dqx—rf(x) dgx,
where

B o
(1.5) j f(x) dpxi=(1-q) % f(Bg™)Bq"

As g- l,jﬁf(x) d,,x—»jﬁf(x) dx [11, p. 19]. For example, for m >0,

(B"—a™)(1-q) B"—a"
(1-q™) m

8
(1.6) J x"Vdx =
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as g - 1. The following g-integral extension of Euler’s beta function integral is essen-
tially a version of the g-binomial theorem [11, pp. 18-19]:

1

(1.7) I 1°7(1q) b1 dgt =T 4(a)T4(b)/T,(a+b), Re (a), Re (b)>0.
0

This is the case n =1 of the following n-dimensional g-Selberg integral formula [13,

eqn. (4.18)]:

1 1 1 n B c—1
Sn(aa b’ C):=_'J T J' H t:‘l 1(tiq)b~1 H H (tl_—qkt}) dqtl e dqtn
(1 8) niJo 0 i=1 1=i<j=n k=1-c

' — g2 "1:[1 Ly(a+jo)ly(b+je)l'y(c+jc)

j=o Tgla+b+(n—1+j)c)l,(c)’

where n, ¢ are positive integers and Re (a), Re (b) > 0. This reduces to Selberg’s integral
formula [17] when g - 1. Note that the integrand in (1.8) is symmetric in the variables
t;. It is not difficult to show that the nonsymmetric version of (1.8) originally conjectured
by Askey [6, Conj. 1] is equivalent to (1.8); see Kadell [13, p.953]. Proofs of (1.8)
have been given independently by Habsieger [12] and Kadell [14].

We observe here for later use that the value of the integral in (1.8) is unchanged
if the upper limits of integration are replaced by ¢~ “, when u and b are integers such
that 0= u = b — 1. This is because (tq),_, vanishes for t=q ', g2, - - -, ¢~ “ It follows
that the integral in (1.8) changes only by a factor of a power of g when the variables
t; are replaced by t,q ™"

2. Extension of the Andrews—Askey g-integral.
THEOREM 1. Let u,, s; be integers such that

2.1) 0=y =s-1, i=0,1,---,n,
and let z;, w; be complex variables with
(2.2) W,' = Ziq_ui, i= 0, 1, ctty, n.
Then
w, w, wy n n $—1
Lt:I J J [0 (z—4q")
=Wy ty=w; Jy=w i=0j=1 k=1
(2.3) - I (=t)dytydgts - - - dgt,
1=i<j=n
Uy (50)Tg(s1) - - - Ty(sn) o
=(—1 o 17_4 q q Z;— kZ~ ,
(-1 Fy(so+s,+ - +5,) o=i<j=n k=1:[—sj( %)
where
(2.4) o=7Y is, 1=Y i(s").
i=1 i=1 2

Remark 1. Suppose that all z; are nonzero and all u; are zero. Then the integral
formula in Theorem 1 can be written in the form

Jzn Jzz J‘Zl 11 (qtj>
th=2zy_1 ty=z; Jy=29 i=0j=1 \ Zi / 5;—1

(2.5) I (=t)dyt dyt, - - - dgt,

1=i<j=n

___Fq(so)rq(sl) e Fq(sn) H z. (ﬁ) (ﬁ) .

Fq(sO+S1+‘ . '+Sn) 0=i<j Zj Zi
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Since (2.5) is valid for all positive integers s; by Theorem 1, it follows by analytic
continuation (cf. [3, p. 115]) that it holds for all complex s; with

1 i/ Zi
Re (s;) > max —oglz,/z[,
o=j=n_[log g]

If n=1, (2.5) reduces to the Andrews-Askey g-integral [4, (2.2)].
Remark 2. From (2.5) and [9, Thm. 2.2}, it may be deduced that the constant
term of the Laurent polynomial

P(Zly T, Zn):=J e j H (qtjzj/zi)si—l

=0,1,2, -, n.

0 0 1=ij=n
1 1;-[ (t]_ tizi/zj) dqtl T dqtn
=i<j=n
equals
(2.6) 11 (1—q)/(l—qsi+si+l+'”+sn)_
i=1

It would be interesting to find a proof independent of [9].

Proof of Theorem 1. Assume that each z; is an integral power of g and that the
sequence wy, Wy, w,, * * +, w, is monotone. It suffices to prove (2.3) under these assump-
tions, since both sides of (2.3) are polynomials in zg, - - -, z,.

Consider any one of the rightmost factors in (2.3), say

(2~7) Za —quB’
with
(2.8) Osa<B=n, l-sg=y=s,—1.

We will show that z, —q”zg is also a factor of L by showing that L vanishes under
the assumption

(2.9) Z, =q"2g.

The g-integral L is a series by definition, and it suffices to show that each summand
in this series vanishes. This will be accomplished if we can show
s s,—1

1 A

(2.10) [T (za—q"t) 11 (z5—q™t)=0 forall teS,
k=1 m=1

where S is the set of integral powers of g between w, and wy including max (w,, wg)

but not min (w,, wg). Define

(2.11) A={z,g " 1=k=s,-1}, B={z;q ™ 1=m=s5—1}.

Since z, = q”z by (2.9), there is no integral power of g lying strictly between the sets
A and B on the real axis. It is thus seen that AU B> S, and (2.10) follows. We have
now proved that L is divisible by each of the linear factors in (2.7), and hence by the
polynomial

s;—1

(2.12) N 1 (z—4").

O=i<j=n k=1-s;

By definition of L, if we view L as a polynomial in z, with leading term C,zg (with
C, independent of z;), then

(2.13) v=n(so—1)+(s;+: - +s,).
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Viewing (2.12) as a polynomial in z,, we see that it also has degree v. Thus it remains
to prove that

1—‘q(SO) e Fq(sn) l—I sﬁl (Z"“qu‘).

2.14) C.=(-1)q"
( ( 1 Fq(s0+~ cot8,) 1=i<j=n k=1-s;
First consider the case n=1. Then C, is the coefficient of zj**"! in
wy so—1 sl—l
(2.15) I I1 (zo=q“t) TI (z1—q™) d,
t=wy k=1 m=1
so C, is the coefficient of z**1 ' in
slwl wo
(2.16) —II (=¢™) j 97287 (qt/ 20) -1 dgt.
m=1 wy
Replace t by z,t to see that C, is the constant term in the expansion in z, of
() [
(2.17) (—1)ng? J' £17(qt) g1 dyt.
w1/ zg

The constant term in (2.17) is unchanged if the lower limit of g-integration is replaced
by 0. It is further unchanged if the upper limit of g-integration is replaced by 1, since

(2.18) (qt)y-1=0 for t=q7" (i=1,2,---,s,—1).

It now follows from (1.7) that (2.14) holds for n =1, so the proof of Theorem 1 is
complete in the case n=1.
Suppose now that n>1 and that Theorem 1 holds with (n—1) in place of n.

Directly from (2.3), we see that C, is the coefficient of z{o" "~ in
v, Wy n n Sl
j j ImIrI (Zi_qktj)' M -t
=W, ty=w; i=1j=2 k=1 2=i<j=n
(2.19) . (_1)S1+~~~+an(821)+'"+(si') JWO t(sl+~~+s,,)—1
t=w,
So—l
“I1 (zo—q*t) djtdyt, - - - d,t,.
k=1

The inner integral on ¢ in (2.19) may be replaced by

q "o
(2.20) Zot J (O ), dyt,

wi/zo
and just as with (2.17), the desired coefficient is unchanged if we further replace the
lower and upper limits of g-integration in (2.20) by zero and 1, respectively. Thus by
(1.7), C, is the constant term of the polynomial in z, obtained from (2.19) by replacing
the inner integral on ¢ by

Fq(so)rq(sl_'_' t +S,,)

2.21 .
(221) T(sot+s+---+s,)

By induction on n, the proof of Theorem 1 is complete.

3. Proof of the g-Selberg integral formula. In this section we apply Theorem 1 to
give a short proof of the g-Selberg integral formula (1.8). The result is true for n=1
by (1.7), so let n>1. We may assume that a and b are positive integers, as the result
can be extended by analytic continuation to hold whenever Re (a), Re (b)>0.
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Given polynomials

n n—1

(3.1) E(t)= H1 (t—e), H()=1I (t1—h)
i= i=1

with

(32) Oée‘§h1§e2§h2§’ * '§hn_1§e,,§1,

use for brevity the symbolic notation

[T N

(3.3)
Il (ei_ej) de dse, - - de,
1=i<j=n
and
j {}qu¢=J J J {}
HeD, (E h,_1=e,_1 hy=e; J hy=e;
(3.4) ®
1 11 1(h,~—hj) d,hy dhy - - - dyh, .
=i<j=n—
Note that
@9 [ S F I
EeD, J HeD,_,(E) HeD,_, J EecD,(V)
where

(3.6) V(t)=1] (t—v) with v,=0, v,=1, v,i=qgh; (1=i=n-1).
i=0
Define

In(aa b, C) = j J H e?_l(qei)b~l
EeD, JHeD, ((E) i=1
3.7
n n—1c—1
~I1 1 11 (¢ 'e;—q"h)) d,H d,E.

i=1j=1k=1

If we replace n by n—1 in Theorem 1 and then further take t,=h;, s;,=c¢, u;=c—1,

W;=e.1, z2=q° 'ei,;, then Theorem 1 yields

[T e an
("51)+c(£')q('z')(§) r,(c)"

(3.8) =(=1) T.(cn)

c—1

I I (@ 'e—q"" ).

1=si<j=n k=1-c
Thus, by definition of S,(a, b, ¢) and I,(a, b, ¢),

()@ @ OCTI LD ¢

(3.9) I,(a,b,c)=(-1) T, (cn)
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By (3.5) and (3.6), interchange of integration in (3.7) yields

o —n(a) n a-—1
I(a,b, C)=I J (=)"@ g T T (0—ge)
HeD,_; JEeD,(V)

j=1k=1

n b-—1

(3.10) 11 T (1—q"e)

j=1k=1

2(") e~y n-1 n c-1
'q ? ( 2 ) l_[ H H (vi_qkej) ququ'
i=1j=1k=1
Apply Theorem 1 with t;=e¢;, so=a, s,=b, s;=c (1=i=n—-1), u;=0, w;=v;, and
z; = v; to see that the inner integral on E equals
("2 +(3) (DG +2G)(2h
(=1 q
Fq(a)l"q(b)l"q(c)”_l n—1 n—1 b-1

a+c—1 — ko
Fq(a+b+(n—1)c) jl;ll Yi jl;Il k=1—1[—c (1 1 U])

O T (u—q*).

1=si<j=n—1k=1-c

(3.11)

Before integrating (3.11) on H, make the change of variables h; > q“~'h; (so v; > q“v;).
As a result,

n—1 n

I(a b, e)= (- 2B

512) OO 2O 0@+ (3G setoreninn

T,(a)Ty(B)T,(e)"
I',(atb+(n—1)c)

Comparison of (3.9) and (3.12) yields
ac(n—1)+c2(n;1) Fq(a)Fq(b)Fq(cn)

S,._1(a+c¢ b+c, c).

S.(a,b,c)=q

(3.13) I,(a+b+(n-1)c)l,(c)
- S,_1(a+c, b+cc)
and the result follows by induction on n. 0

4. Extension of the g-Selberg integral. Let S, ,.(a, b, c) denote the extension of
the g-Selberg integral S,(a, b, c) obtained by inserting the factor t,¢,- - - ¢, in the
integrand in (1.8), where 0= m = n. In Theorem 2 below, we evaluate S, ..(a, b, ¢). It
is not difficult to show that Theorem 2 is equivalent to the case [ =0 of [14, Thm. 2];
see [14, eqns. (4.17), (4.19)].

THEOREM 2. For positive integers n, c and Re (a), Re (b) >0,

S.(a, b, ¢) T, m(a, b, c)
W
m

c(rz") nl:II (1 _ qa+8i)(1. _ qc+ci) .
i=n—m (1 _qa+b+c(n—1+t))(1 _qcn—cz)

4.1) Sa.m(a, b, c)=

where

(4.2) T.m(a, bc)=q
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Proof. We proceed as in the proof in § 3, with the following modifications. Let u
be an indeterminate and let S,(a, b, ¢, u) be the extension of the g-Selberg integral
S.(a, b, ¢) obtained by inserting the factor [[;_, (u—¢) in the integrand of (1.8). We
must show that
S.(a,b,c,u)
En\" s ™ 7 1 m o b n—m
Sua b)) Thmla b )
Let I,(a, b, c, u) be the extension of I,(a, b, c) obtained by inserting the factor
q““"VH(u/q) in the integrand in (3.7). By Lagrange interpolation,

(44) qc(n»l)H(E) — i qc(n—l)H(ﬁ) 1—[ u—ei,
q r=1 q/ i=r € — €
for distinct e;. Thus, from (3.7),

(4.3)

In(a, b, C, u)=I 2 l—[ i 1—[ e?_l(qei)b—l
EeD, r=1i#r € —€; i=1

(4'5) n n—1c—1+8(ir) . .
. J M1 ]‘[ (9° 'e;—q"h;) d,H d,E,
H

€D, (E) i=1j=1
where 8(i, r)=1if i=r and 8(i, r) =0 if i # r. If for each fixed r we replace n by n—1
in Theorem 1, and then further take t,=h;, s;=c+6(i,r), u;=c—1, w;=e¢e;,,, and

z;=q° 'e;,;, then Theorem 1 shows that the inner integral on H in (4.5) equals

(4.6) RHS (3.8) g (n—1)(2c—1) ((11 qcn)) 1;[ (g e, —e,),

where RHS (3.8) denotes the right-hand side of (3.8). Thus

(n-1@e-1n \ 174 ) (1-9°)

L(a,b,c,u)=q J RHS (3.8)
Ee D,

(1-q")
4.7)
n _ n u_ei e
-1 ef l(qei)b~1 >0 (g ‘e, —e) qu-
i=1 r=1i#r €, 7 €;

Given a polynomial F(u), let F*(u) denote its ¢~ “-derivative [11, p. 22], namely

(4.8) F(uy = W= Fla )
u—q ‘u

Since

(49) E*(er)= l;[ (q_cer_ei)’

the inner sum on r in (4.7) equals E*(u). Thus
n-ne-y 1=q°) S¥(a, b, c, u)
(1-g9) S.(a,bc)
After interchanging the order of integration, we obtain
S,_(a+c, b+cc,uqg )
S,_1(a+c¢, b+e )

(4.10) I.(a, b,c,u)=RHS (3.9) q

(4.11) I,(a, b, c,u)=RHS (3.12) q(n—l)(zc-—l)

Comparing (4.10) and (4.11), we arrive at the “differential equation”
Si(a,b,cu) 1-g" S, (ate,btccug )
S.(a, b, c) 1-¢° S, (atcb+cc)

(4.12)
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By induction on n, (4.3) furnishes a solution to (4.12). Moreover, (4.3) is valid for
u =0, by (1.8) with a+1 in place of a. Hence (4.3) is proved.
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