MULTIDIMENSIONAL q-BETA INTEGRALS*

RONALD J. EVANS \dagger

Abstract

A multidimensional extension of a q-beta integral of Andrews and Askey is evaluated. As an application, a short new proof of an important q-Selberg integral formula is given.

Key words. q-integral, Selberg integral, beta integrals
AMS(MOS) subject classification. 33A15

1. Introduction. This paper has been motivated by Anderson's wonderfully innovative proof [2] of Selberg's multidimensional beta integral formula [17]. In § 2 (see Theorem 1), we present a new n-dimensional q-beta integral formula which reduces to that of Andrews and Askey [4, eqn. (2.2)] when $n=1$ and that of Anderson [2, "claim"] when $q=1$. Our proof is self-contained and in particular makes no appeal to the results of the aforementioned papers. In §3, we apply Theorem 1 to give a surprisingly short, self-contained proof of the q-Selberg integral formula (1.8). Finally, we indicate in $\S 4$ the modifications that can be made in $\S 3$ to give a short proof of Kadell's extension of the q-Selberg integral formula containing the extra parameter m of Aomoto [5]; see Theorem 2. It is hoped that this method will lead to a short proof of a q-extension of the Selberg-Jack integral formula [15].

For some of the many applications and extensions of Selberg's integral, see the papers of Askey [6]-[8] and Kadell [14]-[16]. For character sum analogues of Selberg's integral, see the papers of Anderson [1], Evans [10] and van Wamelen [18].

Let

$$
\begin{equation*}
0<q<1, \tag{1.1}
\end{equation*}
$$

and define, for complex x, α,

$$
\begin{equation*}
(\alpha)_{\infty}:=\prod_{r=0}^{\infty}\left(1-\alpha q^{r}\right), \quad(\alpha)_{x}:=(\alpha)_{\infty} /\left(\alpha q^{x}\right)_{\infty} \tag{1.2}
\end{equation*}
$$

Define the q-gamma function

$$
\begin{equation*}
\Gamma_{q}(x):=(q)_{x-1}(1-q)^{1-x}, \quad x \in \mathbb{C} . \tag{1.3}
\end{equation*}
$$

As $q \rightarrow 1, \Gamma_{q}(x) \rightarrow \Gamma(x)$ [11, eqn. (1.10.3)]. For $\alpha, \beta \in \mathbb{C}$ and a (say) continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$, define the q-integral

$$
\begin{equation*}
\int_{\alpha}^{\beta} f(x) d_{q} x:=\int_{0}^{\beta} f(x) d_{q} x-\int_{0}^{\alpha} f(x) d_{q} x \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{0}^{\beta} f(x) d_{q} x:=(1-q) \sum_{m=0}^{\infty} f\left(\beta q^{m}\right) \beta q^{m} . \tag{1.5}
\end{equation*}
$$

As $q \rightarrow 1, \int_{\alpha}^{\beta} f(x) d_{q} x \rightarrow \int_{\alpha}^{\beta} f(x) d x[11$, p. 19]. For example, for $m>0$,

$$
\begin{equation*}
\int_{\alpha}^{\beta} x^{m-1} d_{q} x=\frac{\left(\beta^{m}-\alpha^{m}\right)(1-q)}{\left(1-q^{m}\right)} \rightarrow \frac{\beta^{m}-\alpha^{m}}{m} \tag{1.6}
\end{equation*}
$$

[^0]as $q \rightarrow 1$. The following q-integral extension of Euler's beta function integral is essen-
\[

$$
\begin{equation*}
\int_{0}^{1} t^{a-1}(t q)_{b-1} d_{q} t=\Gamma_{q}(a) \Gamma_{q}(b) / \Gamma_{q}(a+b), \quad \operatorname{Re}(a), \operatorname{Re}(b)>0 . \tag{1.7}
\end{equation*}
$$

\]

This is the case $n=1$ of the following n-dimensional q-Selberg integral formula [13, eqn. (4.18)]:

$$
\begin{align*}
S_{n}(a, b, c) & :=\frac{1}{n!} \int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{n} t_{i}^{a-1}\left(t_{i} q\right)_{b-1} \prod_{1 \leqq i<j \leqq n} \prod_{k=1-c}^{c-1}\left(t_{i}-q^{k} t_{j}\right) d_{q} t_{1} \cdots d_{q} t_{n} \\
& =q^{a c\left({ }_{2}^{2}\right)+2 c^{2}\left({ }_{3}^{3}\right)} \prod_{j=0}^{n-1} \frac{\Gamma_{q}(a+j c) \Gamma_{q}(b+j c) \Gamma_{q}(c+j c)}{\Gamma_{q}(a+b+(n-1+j) c) \Gamma_{q}(c)} \tag{1.8}
\end{align*}
$$

where n, c are positive integers and $\operatorname{Re}(a), \operatorname{Re}(b)>0$. This reduces to Selberg's integral formula [17] when $q \rightarrow 1$. Note that the integrand in (1.8) is symmetric in the variables t_{i}. It is not difficult to show that the nonsymmetric version of (1.8) originally conjectured by Askey [6, Conj. 1] is equivalent to (1.8); see Kadell [13, p. 953]. Proofs of (1.8) have been given independently by Habsieger [12] and Kadell [14].

We observe here for later use that the value of the integral in (1.8) is unchanged if the upper limits of integration are replaced by q^{-u}, when u and b are integers such that $0 \leqq u \leqq b-1$. This is because $(t q)_{b-1}$ vanishes for $t=q^{-1}, q^{-2}, \cdots, q^{-u}$. It follows that the integral in (1.8) changes only by a factor of a power of q when the variables t_{i} are replaced by $t_{i} q^{-u}$.

2. Extension of the Andrews-Askey \boldsymbol{q}-integral.

Theorem 1. Let u_{i}, s_{i} be integers such that

$$
\begin{equation*}
0 \leqq u_{i} \leqq s_{i}-1, \quad i=0,1, \cdots, n, \tag{2.1}
\end{equation*}
$$

and let z_{i}, w_{i} be complex variables with

$$
\begin{equation*}
w_{i}=z_{i} q^{-u_{i}}, \quad i=0,1, \cdots, n . \tag{2.2}
\end{equation*}
$$

Then

$$
\begin{align*}
L:= & \int_{t_{n}=w_{n-1}}^{w_{n}} \cdots \int_{t_{2}=w_{1}}^{w_{2}} \int_{t_{1}=w_{0}}^{w_{1}} \prod_{i=0}^{n} \prod_{j=1}^{n} \prod_{k=1}^{s_{i}-1}\left(z_{i}-q^{k} t_{j}\right) \\
& \cdot \prod_{1 \leqq i<j \leqq n}\left(t_{j}-t_{i}\right) d_{q} t_{1} d_{q} t_{2} \cdots d_{q} t_{n} \tag{2.3}\\
= & (-1)^{\sigma} q^{\tau} \frac{\Gamma_{q}\left(s_{0}\right) \Gamma_{q}\left(s_{1}\right) \cdots \Gamma_{q}\left(s_{n}\right)}{\Gamma_{q}\left(s_{0}+s_{1}+\cdots+s_{n}\right)} \prod_{0 \leqq i<j \leqq n} \prod_{k=1-s_{j}}^{s_{i}-1}\left(z_{i}-q^{k} z_{j}\right),
\end{align*}
$$

where

$$
\begin{equation*}
\sigma=\sum_{i=1}^{n} i s_{i}, \quad \tau=\sum_{i=1}^{n} i\binom{s_{i}}{2} . \tag{2.4}
\end{equation*}
$$

Remark 1. Suppose that all z_{i} are nonzero and all u_{i} are zero. Then the integral formula in Theorem 1 can be written in the form

$$
\begin{align*}
& \int_{t_{n}=z_{n-1}}^{z_{n}} \cdots \int_{t_{2}=z_{1}}^{z_{2}} \int_{t_{1}=z_{0}}^{z_{1}} \prod_{i=0}^{n} \prod_{j=1}^{n}\left(\frac{q t_{j}}{z_{i}}\right)_{s_{i}-1} \\
& \quad \cdot \prod_{1 \leqq i<j \leqq n}\left(t_{j}-t_{i}\right) d_{q} t_{1} d_{q} t_{2} \cdots d_{q} t_{n} \tag{2.5}\\
& \quad=\frac{\Gamma_{q}\left(s_{0}\right) \Gamma_{q}\left(s_{1}\right) \cdots \Gamma_{q}\left(s_{n}\right)}{\Gamma_{q}\left(s_{0}+s_{1}+\cdots+s_{n}\right)} \prod_{0 \leqq i<j \leqq n} z_{j}\left(\frac{z_{i}}{z_{j}}\right)_{s_{j}}\left(\frac{q z_{j}}{z_{i}}\right)_{s_{i}-1} .
\end{align*}
$$

Since (2.5) is valid for all positive integers s_{i} by Theorem 1, it follows by analytic continuation (cf. [3, p. 115]) that it holds for all complex s_{i} with

$$
\operatorname{Re}\left(s_{i}\right)>\max _{0 \leqq j \leqq n} \frac{\log \left|z_{j} / z_{i}\right|}{|\log q|}, \quad i=0,1,2, \cdots, n .
$$

If $n=1,(2.5)$ reduces to the Andrews-Askey q-integral [4, (2.2)].
Remark 2. From (2.5) and [9, Thm. 2.2], it may be deduced that the constant term of the Laurent polynomial

$$
\begin{aligned}
P\left(z_{1}, \cdots, z_{n}\right):= & \int_{0}^{1} \cdots \int_{0}^{1} \prod_{1 \leqq i, j \leqq n}\left(q t_{j} z_{j} / z_{i}\right)_{s_{i}-1} \\
& \cdot \prod_{1 \leqq i<j \leqq n}\left(t_{j}-t_{i} z_{i} / z_{j}\right) d_{q} t_{1} \cdots d_{q} t_{n}
\end{aligned}
$$

equals

$$
\begin{equation*}
\prod_{i=1}^{n}(1-q) /\left(1-q^{s_{i}+s_{i+1}+\cdots+s_{n}}\right) . \tag{2.6}
\end{equation*}
$$

It would be interesting to find a proof independent of [9].
Proof of Theorem 1. Assume that each z_{i} is an integral power of q and that the sequence $w_{0}, w_{1}, w_{2}, \cdots, w_{n}$ is monotone. It suffices to prove (2.3) under these assumptions, since both sides of (2.3) are polynomials in z_{0}, \cdots, z_{n}.

Consider any one of the rightmost factors in (2.3), say

$$
\begin{equation*}
z_{\alpha}-q^{\gamma} z_{\beta} \tag{2.7}
\end{equation*}
$$

with

$$
\begin{equation*}
0 \leqq \alpha<\beta \leqq n, \quad 1-s_{\beta} \leqq \gamma \leqq s_{\alpha}-1 . \tag{2.8}
\end{equation*}
$$

We will show that $z_{\alpha}-q^{\gamma} z_{\beta}$ is also a factor of L by showing that L vanishes under the assumption

$$
\begin{equation*}
z_{\alpha}=q^{\gamma} z_{\beta} . \tag{2.9}
\end{equation*}
$$

The q-integral L is a series by definition, and it suffices to show that each summand in this series vanishes. This will be accomplished if we can show

$$
\begin{equation*}
\prod_{k=1}^{s_{\alpha}-1}\left(z_{\alpha}-q^{k} t\right) \prod_{m=1}^{s_{\beta}-1}\left(z_{\beta}-q^{m} t\right)=0 \quad \text { for all } t \in S, \tag{2.10}
\end{equation*}
$$

where S is the set of integral powers of q between w_{α} and w_{β} including max $\left(w_{\alpha}, w_{\beta}\right)$ but not $\min \left(w_{\alpha}, w_{\beta}\right)$. Define

$$
\begin{equation*}
A=\left\{z_{\alpha} q^{-k}: 1 \leqq k \leqq s_{\alpha}-1\right\}, \quad B=\left\{z_{\beta} q^{-m}: 1 \leqq m \leqq s_{\beta}-1\right\} \tag{2.11}
\end{equation*}
$$

Since $z_{\alpha}=q^{\gamma} z_{\beta}$ by (2.9), there is no integral power of q lying strictly between the sets A and B on the real axis. It is thus seen that $A \cup B \supset S$, and (2.10) follows. We have now proved that L is divisible by each of the linear factors in (2.7), and hence by the polynomial

$$
\begin{equation*}
\prod_{0 \leqslant i<j \leqq n} \prod_{k=1-s_{j}}^{s_{i}-1}\left(z_{i}-q^{k} z_{j}\right) . \tag{2.12}
\end{equation*}
$$

By definition of L, if we view L as a polynomial in z_{0} with leading term $C_{n} z_{0}^{\nu}$ (with C_{n} independent of z_{0}), then

$$
\begin{equation*}
\nu=n\left(s_{0}-1\right)+\left(s_{1}+\cdots+s_{n}\right) . \tag{2.13}
\end{equation*}
$$

Viewing (2.12) as a polynomial in z_{0}, we see that it also has degree ν. Thus it remains to prove that

$$
\begin{equation*}
C_{n}=(-1)^{\sigma} q^{\tau} \frac{\Gamma_{q}\left(s_{0}\right) \cdots \Gamma_{q}\left(s_{n}\right)}{\Gamma_{q}\left(s_{0}+\cdots+s_{n}\right)} \prod_{1 \leqq i<j \leqq n} \prod_{k=1-s_{j}}^{s_{i}-1}\left(z_{i}-q^{k} z_{j}\right) . \tag{2.14}
\end{equation*}
$$

First consider the case $n=1$. Then C_{1} is the coefficient of $z_{0}^{s_{0}+s_{1}-1}$ in

$$
\begin{equation*}
\int_{t=w_{0}}^{w_{1}} \prod_{k=1}^{s_{0}-1}\left(z_{0}-q^{k} t\right) \prod_{m=1}^{s_{1}-1}\left(z_{1}-q^{m} t\right) d_{q} t \tag{2.15}
\end{equation*}
$$

so C_{1} is the coefficient of $z_{0}^{s_{0}+s_{1}-1}$ in

$$
\begin{equation*}
-\prod_{m=1}^{s_{1}-1}\left(-q^{m}\right) \int_{w_{1}}^{w_{0}} t^{s_{1}-1} z_{0}^{s_{0}-1}\left(q t / z_{0}\right)_{s_{0}-1} d_{q} t . \tag{2.16}
\end{equation*}
$$

Replace t by $z_{0} t$ to see that C_{1} is the constant term in the expansion in z_{0} of

$$
\begin{equation*}
(-1)^{s_{1}} q^{\binom{s_{1}}{2}} \int_{w_{1} / z_{0}}^{q^{-u_{0}}} t^{s_{1}-1}(q t)_{s_{0}-1} d_{q} t \tag{2.17}
\end{equation*}
$$

The constant term in (2.17) is unchanged if the lower limit of q-integration is replaced by 0 . It is further unchanged if the upper limit of q-integration is replaced by 1 , since

$$
\begin{equation*}
(q t)_{s_{0}-1}=0 \quad \text { for } \quad t=q^{-i} \quad\left(i=1,2, \cdots, s_{0}-1\right) \tag{2.18}
\end{equation*}
$$

It now follows from (1.7) that (2.14) holds for $n=1$, so the proof of Theorem 1 is complete in the case $n=1$.

Suppose now that $n>1$ and that Theorem 1 holds with ($n-1$) in place of n. Directly from (2.3), we see that C_{n} is the coefficient of $z_{0}^{\left(s_{0}+\cdots+s_{n}\right)-1}$ in

$$
\begin{align*}
\int_{t_{n}=w_{n-1}}^{w_{n}} & \cdots \int_{t_{2}=w_{1}}^{w_{2}} \prod_{i=1}^{n} \prod_{j=2}^{n} \prod_{k=1}^{s_{i}-1}\left(z_{i}-q^{k} t_{j}\right) \cdot \prod_{2 \leqq i<j \leqq n}\left(t_{j}-t_{i}\right) \\
& \cdot(-1)^{s_{1}+\cdots+s_{n}} q^{\left(s_{1}\right)+\cdots+\binom{s_{n}}{2}} \int_{t=w_{1}}^{w_{0}} t^{\left(s_{1}+\cdots+s_{n}\right)-1} \tag{2.19}\\
& \cdot \prod_{k=1}^{s_{0}-1}\left(z_{0}-q^{k} t\right) d_{q} t d_{q} t_{2} \cdots d_{q} t_{n} .
\end{align*}
$$

The inner integral on t in (2.19) may be replaced by

$$
\begin{equation*}
z_{0}^{\left(s_{0}+\cdots+s_{n}\right)-1} \int_{w_{1} / z_{0}}^{q^{-u_{0}}} t^{\left(s_{1}+\cdots+s_{n}\right)-1}(q t)_{s_{0}-1} d_{q} t, \tag{2.20}
\end{equation*}
$$

and just as with (2.17), the desired coefficient is unchanged if we further replace the lower and upper limits of q-integration in (2.20) by zero and 1 , respectively. Thus by (1.7), C_{n} is the constant term of the polynomial in z_{0} obtained from (2.19) by replacing the inner integral on t by

$$
\begin{equation*}
\frac{\Gamma_{q}\left(s_{0}\right) \Gamma_{q}\left(s_{1}+\cdots+s_{n}\right)}{\Gamma_{q}\left(s_{0}+s_{1}+\cdots+s_{n}\right)} \tag{2.21}
\end{equation*}
$$

By induction on n, the proof of Theorem 1 is complete.
3. Proof of the \boldsymbol{q}-Selberg integral formula. In this section we apply Theorem 1 to give a short proof of the q-Selberg integral formula (1.8). The result is true for $n=1$ by (1.7), so let $n>1$. We may assume that a and b are positive integers, as the result can be extended by analytic continuation to hold whenever $\operatorname{Re}(a), \operatorname{Re}(b)>0$.

Given polynomials

$$
\begin{equation*}
E(t)=\prod_{i=1}^{n}\left(t-e_{i}\right), \quad H(t)=\prod_{i=1}^{n-1}\left(t-h_{i}\right) \tag{3.1}
\end{equation*}
$$

with

$$
\begin{equation*}
0 \leqq e_{1} \leqq h_{1} \leqq e_{2} \leqq h_{2} \leqq \cdots \leqq h_{n-1} \leqq e_{n} \leqq 1, \tag{3.2}
\end{equation*}
$$

use for brevity the symbolic notation

$$
\begin{align*}
\int_{E \in D_{n}}\{ \} d_{q} E:= & \int_{e_{n}=0}^{1} \cdots \int_{e_{2}=0}^{e_{3}} \int_{e_{1}=0}^{e_{2}}\{ \} \\
& \cdot \prod_{1 \leqq i<j \leqq n}\left(e_{i}-e_{j}\right) d_{q} e_{1} d_{q} e_{2} \cdots d_{q} e_{n} \tag{3.3}
\end{align*}
$$

and

$$
\begin{align*}
\int_{H \in D_{n-1}(E)}\{ \} d_{q} H:= & \int_{h_{n-1}=e_{n-1}}^{e_{n}} \cdots \int_{h_{2}=e_{2}}^{e_{3}} \int_{h_{1}=e_{1}}^{e_{2}}\{ \} \tag{3.4}\\
& \cdot \prod_{1 \leqq i<j \leqq n-1}\left(h_{i}-h_{j}\right) d_{q} h_{1} d_{q} h_{2} \cdots d_{q} h_{n-1} .
\end{align*}
$$

Note that

$$
\begin{equation*}
\int_{E \in D_{n}} \int_{H \in D_{n-1}(E)}=\int_{H \in D_{n-1}} \int_{E \in D_{n}(V)}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
V(t)=\prod_{i=0}^{n}\left(t-v_{i}\right) \quad \text { with } v_{0}=0, \quad v_{n}=1, \quad v_{i}=q h_{i} \quad(1 \leqq i \leqq n-1) . \tag{3.6}
\end{equation*}
$$

Define

$$
\begin{align*}
I_{n}(a, b, c):= & \int_{E \in D_{n}} \int_{H \in D_{n-1}(E)} \prod_{i=1}^{n} e_{i}^{a-1}\left(q e_{i}\right)_{b-1} \tag{3.7}\\
& \cdot \prod_{i=1}^{n} \prod_{j=1}^{n-1} \prod_{k=1}^{c-1}\left(q^{c-1} e_{i}-q^{k} h_{j}\right) d_{q} H d_{q} E .
\end{align*}
$$

If we replace n by $n-1$ in Theorem 1 and then further take $t_{i}=h_{i}, s_{i}=c, u_{i}=c-1$, $w_{i}=e_{i+1}, z_{i}=q^{c-1} e_{i+1}$, then Theorem 1 yields

$$
\begin{align*}
& \int_{H \in D_{n-1}(E)} \prod_{i=1}^{n} \prod_{j=1}^{n-1} \prod_{k=1}^{c-1}\left(q^{c-1} e_{i}-q^{k} h_{j}\right) d_{q} H \\
& =(-1)^{\binom{n-1}{2}+c\binom{n}{2}} q^{\binom{n}{2}\binom{c}{2}} \frac{\Gamma_{q}(c)^{n}}{\Gamma_{q}(c n)} \tag{3.8}\\
& \cdot \prod_{1 \leqq i<j \leqq n} \prod_{k=1-c}^{c-1}\left(q^{c-1} e_{i}-q^{k+c-1} e_{j}\right) .
\end{align*}
$$

Thus, by definition of $S_{n}(a, b, c)$ and $I_{n}(a, b, c)$,

$$
\begin{equation*}
I_{n}(a, b, c)=(-1)^{\binom{n-1}{2}+c\binom{n}{2}} q^{\binom{n}{2}\binom{c}{2}+\binom{n}{2}\binom{2 c-1}{2}} \frac{\Gamma_{q}(c)^{n}}{\Gamma_{q}(c n)} S_{n}(a, b, c) . \tag{3.9}
\end{equation*}
$$

By (3.5) and (3.6), interchange of integration in (3.7) yields

$$
\begin{aligned}
I_{n}(a, b, c)= & \int_{H \in D_{n-1}} \int_{E \in D_{n}(V)}(-1)^{n(a-1)} q^{-n\binom{a}{2}} \prod_{j=1}^{n} \prod_{k=1}^{a-1}\left(0-q^{k} e_{j}\right) \\
& \cdot \prod_{j=1}^{n} \prod_{k=1}^{b-1}\left(1-q^{k} e_{j}\right) \\
& \cdot q^{2\binom{n}{2}\binom{c-1}{2}} \prod_{i=1}^{n-1} \prod_{j=1}^{n} \prod_{k=1}^{c-1}\left(v_{i}-q^{k} e_{j}\right) d_{q} E d_{q} H .
\end{aligned}
$$

Apply Theorem 1 with $t_{i}=e_{i}, s_{0}=a, s_{n}=b, s_{i}=c(1 \leqq i \leqq n-1), u_{i}=0, w_{i}=v_{i}$, and $z_{i}=v_{i}$ to see that the inner integral on E equals

$$
\begin{align*}
(-1) & { }^{\binom{n-1}{2}+c\binom{n}{2}} q^{\binom{n}{2}\binom{c}{2}+2\binom{n}{2}\binom{c-1}{2}} \\
\quad \cdot & \frac{\Gamma_{q}(a) \Gamma_{q}(b) \Gamma_{q}(c)^{n-1}}{\Gamma_{q}(a+b+(n-1) c)} \prod_{j=1}^{n-1} v_{j}^{a+c-1} \prod_{j=1}^{n-1} \prod_{k=1-c}^{b-1}\left(1-q^{k} v_{j}\right) \tag{3.11}\\
& \cdot \prod_{1 \leqq i<j \leqq n-1} \prod_{k=1-c}^{c-1}\left(v_{i}-q^{k} v_{j}\right) .
\end{align*}
$$

Before integrating (3.11) on H, make the change of variables $h_{i} \rightarrow q^{c-1} h_{i}$ (so $v_{i} \rightarrow q^{c} v_{i}$). As a result,

$$
\begin{align*}
I_{n}(a, b, c)= & (-1)^{\binom{n-1}{2}+c\binom{n}{2}} \\
& \cdot q^{\binom{n}{2}\binom{c}{2}+2\binom{n}{2}\binom{c-1}{2}+(c-1)\binom{n}{2}+\binom{n-1}{2}\binom{2 c}{2}+c(a+c-1)(n-1)} \tag{3.12}\\
& \cdot \frac{\Gamma_{q}(a) \Gamma_{q}(b) \Gamma_{q}(c)^{n-1}}{\Gamma_{q}(a+b+(n-1) c)} S_{n-1}(a+c, b+c, c) .
\end{align*}
$$

Comparison of (3.9) and (3.12) yields

$$
\begin{align*}
S_{n}(a, b, c)= & q^{a c(n-1)+c^{2}\left(\frac{n-1}{2}\right)} \frac{\Gamma_{q}(a) \Gamma_{q}(b) \Gamma_{q}(c n)}{\Gamma_{q}(a+b+(n-1) c) \Gamma_{q}(c)} \tag{3.13}\\
& \cdot S_{n-1}(a+c, b+c, c)
\end{align*}
$$

and the result follows by induction on n.
4. Extension of the \boldsymbol{q}-Selberg integral. Let $S_{n, m}(a, b, c)$ denote the extension of the q-Selberg integral $S_{n}(a, b, c)$ obtained by inserting the factor $t_{1} t_{2} \cdots t_{m}$ in the integrand in (1.8), where $0 \leqq m \leqq n$. In Theorem 2 below, we evaluate $S_{n, m}(a, b, c)$. It is not difficult to show that Theorem 2 is equivalent to the case $l=0$ of [14, Thm. 2]; see [14, eqns. (4.17), (4.19)].

Theorem 2. For positive integers n, c and $\operatorname{Re}(a), \operatorname{Re}(b)>0$,

$$
\begin{equation*}
S_{n, m}(a, b, c)=\frac{S_{n}(a, b, c) T_{n, m}(a, b, c)}{\binom{n}{m}} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{n, m}(a, b, c):=q^{c\binom{m}{2}} \prod_{i=n-m}^{n-1} \frac{\left(1-q^{a+c i}\right)\left(1-q^{c+c i}\right)}{\left(1-q^{a+b+c(n-1+i)}\right)\left(1-q^{c n-c i}\right)} . \tag{4.2}
\end{equation*}
$$

Proof. We proceed as in the proof in § 3, with the following modifications. Let u be an indeterminate and let $S_{n}(a, b, c, u)$ be the extension of the q-Selberg integral $S_{n}(a, b, c)$ obtained by inserting the factor $\prod_{i=1}^{n}\left(u-t_{i}\right)$ in the integrand of (1.8). We must show that

$$
\begin{equation*}
\frac{S_{n}(a, b, c, u)}{S_{n}(a, b, c)}=\sum_{m=0}^{n}(-1)^{m} T_{n, m}(a, b, c) u^{n-m} . \tag{4.3}
\end{equation*}
$$

Let $I_{n}(a, b, c, u)$ be the extension of $I_{n}(a, b, c)$ obtained by inserting the factor $q^{c(n-1)} H(u / q)$ in the integrand in (3.7). By Lagrange interpolation,

$$
\begin{equation*}
q^{c(n-1)} H\left(\frac{u}{q}\right)=\sum_{r=1}^{n} q^{c(n-1)} H\left(\frac{e_{r}}{q}\right) \prod_{i \neq r} \frac{u-e_{i}}{e_{r}-e_{i}}, \tag{4.4}
\end{equation*}
$$

for distinct e_{i}. Thus, from (3.7),

$$
\begin{align*}
I_{n}(a, b, c, u)= & \int_{E \in D_{n}} \sum_{r=1}^{n} \prod_{i \neq r} \frac{u-e_{i}}{e_{r}-e_{i}} \prod_{i=1}^{n} e_{i}^{a-1}\left(q e_{i}\right)_{b-1} \\
& \cdot \int_{H \in D_{n-1}(E)} \prod_{i=1}^{n} \prod_{j=1}^{n-1} \prod_{k=1}^{c-1+\delta(i, r)}\left(q^{c-1} e_{i}-q^{k} h_{j}\right) d_{q} H d_{q} E \tag{4.5}
\end{align*}
$$

where $\delta(i, r)=1$ if $i=r$ and $\delta(i, r)=0$ if $i \neq r$. If for each fixed r we replace n by $n-1$ in Theorem 1, and then further take $t_{i}=h_{i}, s_{i}=c+\delta(i, r), u_{i}=c-1, w_{i}=e_{i+1}$, and $z_{i}=q^{c-1} e_{i+1}$, then Theorem 1 shows that the inner integral on H in (4.5) equals

$$
\begin{equation*}
\operatorname{RHS}(3.8) q^{(n-1)(2 c-1)} \frac{\left(1-q^{c}\right)}{\left(1-q^{c n}\right)} \prod_{i \neq r}\left(q^{-c} e_{r}-e_{i}\right), \tag{4.6}
\end{equation*}
$$

where RHS (3.8) denotes the right-hand side of (3.8). Thus

$$
\begin{align*}
I_{n}(a, b, c, u)= & q^{(n-1)(2 c-1)} \frac{\left(1-q^{c}\right)}{\left(1-q^{c n}\right)} \int_{E \in D_{n}} \text { RHS (3.8) } \\
& \cdot \prod_{i=1}^{n} e_{i}^{a-1}\left(q e_{i}\right)_{b-1} \sum_{r=1}^{n} \prod_{i \neq r} \frac{u-e_{i}}{e_{r}-e_{i}}\left(q^{-c} e_{r}-e_{i}\right) d_{q} E . \tag{4.7}
\end{align*}
$$

Given a polynomial $F(u)$, let $F^{*}(u)$ denote its q^{-c}-derivative [11, p. 22], namely

$$
\begin{equation*}
F^{*}(u)=\frac{F(u)-F\left(q^{-c} u\right)}{u-q^{-c} u} \tag{4.8}
\end{equation*}
$$

Since

$$
\begin{equation*}
E^{*}\left(e_{r}\right)=\prod_{i \neq r}\left(q^{-c} e_{r}-e_{i}\right), \tag{4.9}
\end{equation*}
$$

the inner sum on r in (4.7) equals $E^{*}(u)$. Thus

$$
\begin{equation*}
I_{n}(a, b, c, u)=\operatorname{RHS}(3.9) q^{(n-1)(2 c-1)} \frac{\left(1-q^{c}\right)}{\left(1-q^{c n}\right)} \frac{S_{n}^{*}(a, b, c, u)}{S_{n}(a, b, c)} \tag{4.10}
\end{equation*}
$$

After interchanging the order of integration, we obtain

$$
\begin{equation*}
I_{n}(a, b, c, u)=\operatorname{RHS}(3.12) q^{(n-1)(2 c-1)} \frac{S_{n-1}\left(a+c, b+c, c, u q^{-c}\right)}{S_{n-1}(a+c, b+c, c)} \tag{4.11}
\end{equation*}
$$

Comparing (4.10) and (4.11), we arrive at the "differential equation"

$$
\begin{equation*}
\frac{S_{n}^{*}(a, b, c, u)}{S_{n}(a, b, c)}=\frac{1-q^{c n}}{1-q^{c}} \frac{S_{n-1}\left(a+c, b+c, c, u q^{-c}\right)}{S_{n-1}(a+c, b+c, c)} . \tag{4.12}
\end{equation*}
$$

By induction on n, (4.3) furnishes a solution to (4.12). Moreover, (4.3) is valid for $u=0$, by (1.8) with $a+1$ in place of a. Hence (4.3) is proved.

Acknowledgments. The author is grateful to Professors G. Anderson, G. Andrews, R. Askey, D. Bressoud, and K. Kadell for helpful correspondence.

REFERENCES

[1] G. Anderson, The evaluation of Selberg sums, C.R. Acad. Sci. Paris Sér. I Math., 311 (1990), pp. 469-472.
[2] ——, A short proof of Selberg's generalized beta formula, Forum Math., 3 (1991), pp. 415-417.
[3] G. Andrews, q-Series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, Regional Conference Series in Math., 66, American Mathematical Society, Providence, RI, 1986.
[4] G. Andrews and R. Askey, Another q-extension of the beta function, Proc. Amer. Math. Soc., 81 (1981), pp. 97-100.
[5] K. Аомото, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal., 18 (1987), pp. 545-549.
[6] R. Askey, Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal., 11 (1980), pp. 938-951.
[7] -, Computer algebra and definite integrals, in Computer Algebra, D. Chudnovsky and R. Jenks, eds., pp. 121-128, Dekker, New York, 1989.
[8] -_, Integration and computers, in Computers in Mathematics, D. Chudnovsky and R. Jenks, eds., pp. 35-82, Dekker, New York, 1990.
[9] D. Bressoud and I. Goulden, Constant term identities extending the q-Dyson theorem, Trans. Amer. Math. Soc., 291 (1985), pp. 203-228.
[10] R. Evans, The evaluation of Selberg character sums, Enseign. Math., (2), to appear.
[11] G. Gaspar and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, Vol. 35, Cambridge University Press, NY, 1990.
[12] L. Habsieger, Une q-intégrale de Selberg et Askey, SIAM J. Math. Anal., 19 (1988), pp. 1475-1489.
[13] K. KADELL, A proof of some q-analogues of Selberg's integral for $k=1$, SIAM J. Math. Anal., 19 (1988), pp. 944-968.
[14] \quad, A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris, SIAM J. Math. Anal., 19 (1988), pp. 969-986.
[15] -, The Selberg-Jack symmetric functions, Adv. Math., to appear.
[16] —, A proof of the q-Macdonald-Morris conjecture for $B C_{n}$, Trans. Amer. Math. Soc., to appear.
[17] A. Selberg, Bemerkninger om et multipelt integral, Norsk Mat. Tidsskrift, 26 (1944), pp. 71-78 (Collected Papers, I, No. 14).
[18] P. van Wamelen, Proof of Evans-Root conjectures for Selberg character sums, to appear.

[^0]: * Received by the editors December 17, 1990; accepted for publication (in revised form) June 21, 1991.
 \dagger Department of Mathematics 0112, University of California, San Diego, La Jolla, California 92093-0112.

