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MULTIDIMENSIONAL q-BETA INTEGRALS*

RONALD J. EVANS+

Abstract. A multidimensional extension of a q-beta integral of Andrews and Askey is evaluated. As an
application, a short new proof of an important q-Selberg integral formula is given.
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1. Introduction. This paper has been motivated by Anderson’s wonderfully
innovative proof [2] of Selberg’s multidimensional beta integral formula [17]. In 2
(see Theorem 1), we present a new n-dimensional q-beta integral formula which
reduces to that of Andrews and Askey [4, eqn. (2.2)] when n 1 and that of Anderson
[2, "claim"] when q 1. Our proof is self-contained and in particular makes no appeal
to the results of the aforementioned papers. In 3, we apply Theorem 1 to give a
surprisingly short, self-contained proof of the q-Selberg integral formula (1.8). Finally,
we indicate in 4 the modifications that can be made in 3 to give a short proof of
Kadell’s extension of the q-Selberg integral formula containing the extra parameter m
of Aomoto [5]; see Theorem 2. It is hoped that this method will lead to a short proof
of a q-extension of the Selberg-Jack integral formula [15].

For some of the many applications and extensions of Selberg’s integral, see the
papers of Askey [6]-[8] and Kadell 14]-[ 16]. For character sum analogues of Selberg’s
integral, see the papers of Anderson [1], Evans [10] and van Wamelen [18].

Let

(1.1) O<q<l,

and define, for complex x, c,

(1.2) (a):= [I (1-aqr), (a)x:=(a)/(aqX)
r=0

Define the q-gamma function

(1.3) Fq(x):=(q)._l(1-q)1-, xC.

As q- 1, Fq(X) 1-’(x) [11, eqn. (1.10.3)]. For a, fl C and a (say) continuous function
f’C C, define the q-integral

Io(1.4) f(x) dqx := f(x) dqx- f(x) Uqx,

where

(1.5) f(x) dqx := (1 q) , f(q")flq".
0 rn----O

As q - 1, f(x) dqx - f(x) dx [11, p. 19]. For example, for m > 0,

(1.6) fx’-’dqx:(fl’-cem)(1-q) fl"-"(1-qm) m
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MULTIDIMENSIONAL q-BETA INTEGRALS 759

as q--> 1. The following q-integral extension of Euler’s beta function integral is essen-
tially a version of the q-binomial theorem [11, pp. 18-19]"

(.7) t-(q)b-, dq=r(a)r(b)/r(a+b), Re (a), Re (b) > 0.

This is the case n 1 of the following n-dimensional q-Selberg integral formula [13,
eqn. (4.18)]"

 Io’ Io’ S,(a, b, c):=. tT-l(tiq)b-1 H I-I (ti--qktj) dqtl dqt,
i-----1 l<i<j<:n k=l-c

(1.8)
"rT Fq(a +jc)Fq(b +jC)Fq(C +jc)qaC(’)+2c2() j=o Fq(a+b+(n-l+j)C)Fq(C)’

where n, c are positive integers and Re (a), Re (b) > 0. This reduces to Selberg’s integral
formula 17] when q--> 1. Note that the integrand in (1.8) is symmetric in the variables
ti. It is not difficult to show that the nonsymmetric version of (1.8) originally conjectured
by Askey [6, Conj. 1] is equivalent to (1.8); see Kadell [13, p. 953]. Proofs of (1.8)
have been given independently by Habsieger [12] and Kadell [14].

We observe here for later use that the value of the integral in (1.8) is unchanged
if the upper limits of integration are replaced by q-U, when u and b are integers such
that 0_-< u _-< b- 1. This is because (tq)b_l vanishes for q-l, q-2,... q-U. It follows
that the integral in (1.8) changes only by a factor of a power of q when the variables
ti are replaced by tiq -u.

2. Extension of the Andrews-Askey q-integral.
THEOREM 1. Let ui, si be integers such that

(2.1) O<-ui<-_si-1, i=0,1,...,n,

and let Zi, W be complex variables with

(2.2) wi ziq- ui, i-0, 1,...,n.

Then

(2.3)

where

L: I-I (zi-qtj)
Wn_ t2=w t=w i=Oj=l k=l

H (tj- ti) dqtl dqt2...dqtn

si--1
(_l)q rq(So)Fq(.s_l)... Fq(s.) H UFq(so+ Sl+ + s) oi<, k=l-

(zi qkzj),

(2.4) o---i=l iSi’ 7"--i=1 i(i)
Remark 1. Suppose that all zi are nonzero and all ui are zero. Then the integral

formula in Theorem 1 can be written in the form

(2.5)

Si--1
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760 RONALD J. EVANS

Since (2.5) is valid for all positive integers si by Theorem 1, it follows by analytic
continuation (cf. [3, p. 115]) that it holds for all complex si with

log
Re (si) > max 0, 1, 2, , n.

o_-<j_-<, [log q[

If n 1, (2.5) reduces to the Andrews-Askey q-integral [4, (2.2)].
Remark 2. From (2.5) and [9, Thm. 2.2], it may be deduced that the constant

term of the Laurent polynomial

P(z,, z,) II (qbzj/zi),-,
l<=i,j<=n

equals

II (b--tizi/ZJ) dqt dqt
l<=i<j<=n

(2.6) lI (1 q)/(1 qS,+S,+l++s.).
i=1

It would be interesting to find a proof independent of [9].
Proof of Theorem 1. Assume that each z is an integral power of q and that the

sequence w0, wl, we, , w, is monotone. It suffices to prove (2.3) under these assump-
tions, since both sides of (2.3) are polynomials in Zo,’’ ", z,.

Consider any one of the rightmost factors in (2.3), say

(2.7) z qzt,
with

(2.8) O<=a<fl<=n, 1-st3-<_ y--<_ s- 1.

We will show that z,- qzt is also a factor of L by showing that L vanishes under
the assumption

(2.9) z, qrzt.
The q-integral L is a series by definition, and it suffices to show that each summand
in this series vanishes. This will be accomplished if we can show

s
(2.10) [I (z-qkt) I-I (Zt--qmt) =0 for all tS,

k=l m=l

where S is the set of integral powers of q between w, and we including max (w,, w)
but not min (w, w). Define

(2.11) A={z,q-k" l<=k<-s-l}, B={zq-m" 1=< m=<st3-1}.
Since z, q/z/3 by (2.9), there is no integral power of q lying strictly between the sets
A and B on the real axis. It is thus seen that A U B = S, and (2.10) follows. We have
now proved that L is divisible by each of the linear factors in (2.7), and hence by the
polynomial

si--1
(2.12) I-[ H (zi qkz)

O<i<.j<n k=l-sj

By definition of L, if we view L as a polynomial in Zo with leading term C,,z (with
C, independent of Zo), then

(2.13) ,= n(So- 1) + (s, +...+
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MULTIDIMENSIONAL q-BETA INTEGRALS 761

Viewing (2.12) as a polynomial in Zo, we see that it also has degree u. Thus it remains
to prove that

si--1
(2.14) C,=(-1)q

Fq(s)" Fq(s")
1-[ [I (z,-qz)

First consider the case n 1. Then C1 is the coefficient of z/s’-I in

S0--1 Sl--1
(2.15) y (Zo- qgt) I-I (Zl- qmt) dqt,

t=w -----1 m----1

so C1 is the coefficient of z+’-1 in

(2.16) l-I1 (-q .l
t,-zo-(qt/zo)o_ dqt.

Replace by Zot to see that C is the constant term in the expansion in Zo of

(2.7) (-)q t’-(qt)o_ dt.
W1/ ZO

The constant term in (2.17) is unchanged if the lower limit of q-integration is replaced
by 0. It is further unchanged if the upper limit of q-integration is replaced by 1, since

(2.18) (qt)so_=0 for t=q- (i=l,2,...,So-1).

It now follows from (1.7) that (2.14) holds for n 1, so the proof of Theorem 1 is
complete in the case n 1.

Suppose now that n > 1 and that Theorem 1 holds with (n-1) in place of n.
Directly from (2.3), we see that C, is the coefficient of Z(o++--1 in

1-I (z,- qkt)" [I (tj-- t,)
Wn_ t2----W i=1 j=2 k=l 2<=i<j<--n

(2.19) (1):,++ q
(s21)+’’’+(") f w t(s,+’"+s.)-

t--

So--1
1] (Zo- qkt) dqt dqt2" dqt.
k=l

The inner integral on in (2.19) may be replaced by
q-U

(2.20) zo++--1 t++.-l(qt)o_l dqt,
W1/ ZO

and just as with (2.17), the desired coefficient is unchanged if we further replace the
lower and upper limits of q-integration in (2.20) by zero and 1, respectively. Thus by
(1.7), C is the constant term of the polynomial in Zo obtained from (2.19) by replacing
the inner integral on by

(2.21)
rq(So)rq(S, +’’ "+
Fq(so+ s, -t-" "-I- sn)

By induction on n, the proof of Theorem 1 is complete.

3. Proof of the q-Selberg integral formula. In this section we apply Theorem 1 to
give a short proof of the q-Selberg integral formula (1.8). The result is true for n- 1
by (1.7), so let n > 1. We may assume that a and b are positive integers, as the result
can be extended by analytic continuation to hold whenever Re (a), Re (b)> 0.
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762 RONALD J. EVANS

Given polynomials

(3.1) E(t)= (t-e,), H(t)= I-I (t-hi)
i=1 i=1

with

(3.2)

use for brevity the symbolic notation

I1{}Ge: {}
(3.3)

D,, en=O e2=O 1:0

I] (ei e;) dqel dqe2" dqe,

and

(3.4)

Note that

fH D,,-1 (E)

(3.5)

where

I en Ie3 I e2

{ } doll: { }
hn-l=en_l h2=e hl:e

1-I (h,- h;) dqhl dqh2""dqhn_.

HDn_ EDn(V)’

(3.6) V(t)= II (t-v,)
i=0

with Vo=0, vn=l, v,=qh, (l<-i<-_n-1).

Define

(3.7)
ei (qei)b-,

D HDn_I(E i=l

n--1 c--1

I-[ 1-I I-[ (qC-1 ei_ qkhj) dqH dqE.
i=1 j=l k=l

If we replace n by n- 1 in Theorem 1 and then further take t, h,, si c, u, c- 1,
c-1

Wi ei+ 1, Zi q ei+l, then Theorem 1 yields

I nI’l(qC-lei-qkhj) dqH
HDn_I(E) i=1 j--1 k=l

(3.8) =(-1)
(nl)+c(.) ()() rq(C)

q
rq(cn)

c--1

I-I [I (qC-’ei--qk+C-lej).
l<i<jn k:l-c

Thus, by definition of S,(a, b, c) and/(a, b, c),

(3.9) )(n;1)+c() ()()+()(271) Fq(c)n
I,(a,b,c)=(-1 q

rq(cn)
S,(a,b,c).
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MULTIDIMENSIONAL q-BETA INTEGRALS 763

By (3.5) and (3.6), interchange of integration in (3.7) yields

(3.10)

I(a, b, c)= In (- 1)"(’-’)q (O-qe)
j= k=

b-1

II II (-qe)
j=l k=l

2()(cl) nll c--1

q I [[ (v qke) dqE dqH.
i=1 j=l k=l

Apply Theorem 1 with ti=ei, so=a, s,=b, si=c (l _-< i_-< n -1), ui=0, wi=vi, and
zi vi to see that the inner integral on E equals

)(’) /(7) ()(9 /(7)(’)
(-1 q

(3.11)
Fq(a)Fq(b)Fo(c).-1.-1 ,-, b-,

a+c--1v I-I l-I (1-qv)
Fq(a+b+(n-1)c) = = =l-c

c--1

H H (v,--qkvj).
lNi<j<n--1 k=l-c

Before integrating (3.11) on H, make the change of variables hi qC-hi (so vi- qCv).
As a result,

(nl) +c()
I(a,b,c)=(-1)

(3.12)
()() +2 ()(c’ +(c--l) () + (n-l)(c) +c(a+c--1)(n--1)

.q

Fq(a)Fq(b)Fq(c)"-’
S_l(a+c,b+c,c).

Fq(a+b+(n-1)c)
Comparison of (3.9) and (3.12) yields

ac(-)+c2("1) Fq(a)Fq(b)Fq(cn)
S,(a,b,c)=q

(3.13) Fq(a + b + (n 1)c)Fq(c)
Sn-l(a+c, b+c, c)

and the result follows by induction on n.

4. Extension of the q-Selberg integral. Let Sn,m(a, b, c) denote the extension of
the q-Selberg integral S,(a, b, c) obtained by inserting the factor tlt2""t, in the
integrand in (1.8), where 0 <= m <-n. In Theorem 2 below, we evaluate S,.,(a, b, c). It
is not difficult to show that Theorem 2 is equivalent to the case =0 of [14, Thm. 2];
see [14, eqns. (4.17), (4.19)].

THEOREM 2. For positive integers n, c and Re (a), Re (b) > 0,

S.(a,b,c)T,,.,(a,b,c)(4.1) S,.,(a,b,c)=

m

where

(4.2) Tn,m(a b, c):= q
c(7) n--1 (l__q’+ci)(l__qC+C’)

i___.H_,.. (1 qa+b+c(n-,+i))(1 qCn-Ci)
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764 RONALD J. EVANS

Proof. We proceed as in the proof in 3, with the following modifications Let u
be an indeterminate and let Sn(a, b, c, u) be the extension of the q-Selberg integral
Sn (a, b, c) obtained by inserting the factor I]7=1 (u- ti) in the integrand of (1.8). We
must show that

(4.3)
Sn(a, b, c, u)__ (__l)mTnm(a b, c)u n-m.
Sn(a, b, c) ,,=o

Let In(a, b, c, u) be the extension of In(a, b, c) obtained by inserting the factor
qC(n-H(u/q) in the integrand in (3.7). By Lagrange interpolation,

(4.4) qC(n-H() q(n-lH(e)l-I u-e
r=l ir er ei

for distinct ei. Thus, from (3.7),

’n(a,b,c,u) f i] u-el i ei (qei)b-1
ED r=l ir er- ei i=1

(4.5)
(qC- ei- qkhj) dqH dqE,

HDn_I(E i=1 j=l k=l

where 6(i, r) 1 if r and 6(i, r) 0 if # r. If for each fixed r we replace n by n- 1
in Theorem 1, and then further take t hi, si-- c d- 6(i, r), ui-- c- 1, wi-- ei+l, and

z qC-lei+, then Theorem 1 shows that the inner integral on H in (4.5) equals

(1
(4.6) RHS (3.8) q(n-)(2c-) I-I(1 qCn)

(q-G-- e),

where RHS (3.8) denotes the right-hand side of (3.8). Thus

(4.7)
in(a, b, c, u)__ q(n_l)(2c_l) (1..-._q) f(1-q EDn

RHS (3.8)

a--1e (qei) b-1 I-I
U ei (q er ei) dqE.

i=1 r=l ir er- ei

Given a polynomial F(u), let F*(u) denote its q-C-derivative [11, p. 22], namely

E*(er) I-[ (q-Cer-- ei),
ir

the inner sum on r in (4.7) equals E*(u). Thus

(4.10) In(a, b, c, u)= RHS (3.9) q(n-,2c-, (1 _qC) S*(a, b, c, u).
(1-qCn) Sn(a, b, c)

After interchanging the order of integration, we obtain

(4.11) In(a,b,c,u)=RHS(3.12) q
(n-)(2c-1)sn-l(a+c’b+c’c’uq-c)

Sn_l(a+c,b+c,c)

Comparing (4.10) and (4.11), we arrive at the "differential equation"

(4.12)
S*(a, b, c, u) 1-q Sn_(a+c, b+c, c, uq-c)
Sn(a, b, c) 1-q Sn_l(a+c, b+c, c)

Since

(4.9)

u-q-Cu(4.8) F*(u)
F(u)-F(q-Cu)
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MULTIDIMENSIONAL q-BETA INTEGRALS 765

By induction on n, (4.3) furnishes a solution to (4.12). Moreover, (4.3) is valid for
u 0, by (1.8) with a + 1 in place of a. Hence (4.3) is proved.

Acknowledgments. The author is grateful to Professors G. Anderson, G. Andrews,
R. Askey, D. Bressoud, and K. Kadell for helpful correspondence.
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