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In 1974, M. Newman conjectu red tha t for any root of unity' , the matri x group genera ted by (~ ~) and 

Q ~) is non-free. This conjecture is proved here. 
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Given a complex number {, le t G be the group generated by the two mat ri ces 

A = (~ f), B = (~ ~). 
The problem of c harac terizing those values of ~ for whi ch G is free has been ex tens ively s tudi ed; see [1] , [2] , 

[3], and the refere nces therein. 
From now on , let ~ denote a primitive q-th root of 1. Newman [4]1 conjectured th at G is non-free for a ll q. 

The purpose of this note is to prove th at conjec ture . Our method is simila r to tha t in [4]. In contras t with our 
result , Brenner and Charnow [2, Theorem 6.1] have proved that th e semigroup ge nerated by A and B is free if 

q Ib {3, 4, 6}. 

THEOREM: G is non-free for every primitive q-th roo t of unity ~. 

PROOF: For m 2: 1, inductively define K m E G asfollows: 

Write 

Kn = (an bn ). 
C n dn 

As noted in [4], it is easily seen that Kn has trace 2 and de terminant 1 , and that Kn is determined by the 

equalities 

and 

n 

an = ~2n L ~_2k 
k=l 

For n, m 2: 1, define K{n, In) L G inductively as follows: 

K{n, O) = Kn , K{n , m) = K{n , m - I) AK- 1(n , m - 1). 

As a formal word in A and B , no cancellation occurs in K (n, In), and K (n, In) has length 2n+", - 1. 
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For n, m 2:: 1, write 

K( ) = (a(n, m) b(n, m)) 
n , m c(n, m) d(n , m) . 

Observe that K (n, m) has trace 2 and determinant 1, and K (n, m) is determined by the equalities 

a(n, m) 

and 

Wri te q = 2 iu with u odd . Let t denote the order of 2 (mod u), so that 2 HI 0= 2i (mod q). 
We have 

and 

i 

= 1 - ~2 j+ 1 2: ~_2k, 
k=1 

since the expression in braces van ishes in view of the fact that 2k 0= 2k+1 (mod q) for each k betweenj + 1 
andj + t. Thus, 

K{j + t t + 1) = {K (j, 1) , if j 2:: 1, 
, B- 1 , if j = O. 

This relation shows that G is non-free. 
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