Non-Free Groups Generated By Two Parabolic Matrices*

Ronald J. Evans
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093

November 11, 1978
In 1974, M. Newman conjectured that for any root of unity ζ, the matrix group generated by $\left(\begin{array}{ll}1 & \zeta \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ \zeta & 1\end{array}\right)$ is non-free. This conjecture is proved here.
Key words: Free groups, matrix groups, roots of unity.
Given a complex number ζ, let G be the group generated by the two matrices

$$
A=\left(\begin{array}{ll}
1 & \zeta \\
0 & 1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0 \\
\zeta & 1
\end{array}\right)
$$

The problem of characterizing those values of ζ for which G is free has been extensively studied; see [1], [2], [3], and the references therein.

From now on, let ζ denote a primitive q-th root of 1 . Newman [4] ${ }^{1}$ conjectured that G is non-free for all q. The purpose of this note is to prove that conjecture. Our method is similar to that in [4]. In contrast with our result, Brenner and Charnow [2, Theorem 6.1] have proved that the semigroup generated by A and B is free if $q \triangle\{3,4,6\}$.
Theorem: G is non-free for every primitive q-th root of unity ζ.
Proof: For $m \geq 1$, inductively define $K_{m} \in G$ as follows:

$$
K_{1}=B, K_{m+1}=K_{m} A^{-1} K_{m}^{-1}
$$

Write

$$
K_{n}=\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)
$$

As noted in [4], it is easily seen that K_{n} has trace 2 and determinant 1 , and that K_{n} is determined by the equalities

$$
a_{n}=\zeta^{2^{n}} \sum_{k=1}^{n} \zeta^{-2^{k}}
$$

and

$$
c_{n}=\zeta^{2^{n}-1}
$$

For $n, m \geq 1$, define $K(n, m) \triangle G$ inductively as follows:

$$
K(n, 0)=K_{n}, K(n, m)=K(n, m-1) A K^{-1}(n, m-1)
$$

As a formal word in A and B, no cancellation occurs in $K(n, m)$, and $K(n, m)$ has length $2^{n+m}-1$.

[^0]For $n, m \geq 1$, write

$$
K(n, m)=\left(\begin{array}{ll}
a(n, m) & b(n, m) \\
c(n, m) & d(n, m)
\end{array}\right) .
$$

Observe that $K(n, m)$ has trace 2 and determinant 1 , and $K(n, m)$ is determined by the equalities

$$
a(n, m)=-\zeta^{2^{n+m}}\left(\sum_{k=1}^{n} \zeta^{-2^{k}}-\sum_{k=n+1}^{n+m} \zeta^{-2^{k}}\right)
$$

and

$$
c(n, m)=-\zeta^{2^{n+m}-1}
$$

Write $q=2^{j} u$ with u odd. Let t denote the order of $2(\bmod u)$, so that $2^{j+t} \equiv 2^{j}(\bmod q)$.
We have

$$
c(j+t, t+1)=-\zeta^{2 j^{j+1}-1}
$$

and

$$
\begin{aligned}
a(j+t, t+1) & =-\zeta^{2^{j+1}}\left(\sum_{k=1}^{j} \zeta^{-2^{k}}+\left\{\sum_{k=j+1}^{j+t} \zeta^{-2^{k}}-\sum_{k=j+t+1}^{j+2 t} \zeta^{-2^{k}}\right\}-\zeta^{-2^{j+1}}\right) \\
& =1-\zeta^{2^{j+1}} \sum_{k=1}^{j} \zeta^{-2^{k}},
\end{aligned}
$$

since the expression in braces vanishes in view of the fact that $2^{k} \equiv 2^{k+t}(\bmod q)$ for each k between $j+1$ and $j+t$. Thus,

$$
K(j+t, t+1)=\left\{\begin{array}{cc}
K(j, 1), & \text { if } j \geq 1, \\
B^{-1}, & \text { if } j=0
\end{array}\right.
$$

This relation shows that G is non-free.

References

[1] Brenner J. L., MacLeod R. A., Olesky D. D., Some nonfree groups of 2×2 matrices, Canad. J. Math. 27 (1975), $237-245$.
[2] Brenner J. L. and Charnow A. K., Free semigroups of 2×2 matrices, Pac. J. Math. 77 (1978), 57-69.
[3] Lydon R. C. and Ullman J. L., Groups generated by two parabolic linear fractional transformations, Canad. J. Math 21 (1969), 1388-1403.
[4] Newman M., A conjecture on a matrix group with two generators, J. Res. Nat. Bur. Stds. (U.S.), 78B (Math. Sci.), No. 2, 69-70, (April-June 1974).

[^0]: AMS Subject Classification: 20F05; 20H10

 * Invited paper
 ${ }^{1}$ Figures in brackets indicate literature references at the end of this paper.

