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THE Odie PERIOD POLYNOMIAL

RONALD J. EVANS1

Abstract. The coefficients and the discriminant of the octic period polynomial

i/^z) are computed, where, for a prime p = 8/ + 1, ^(r) denotes the minimal

polynomial over Q of the period (1/%)2.%Z¡ exp(2trins/p). Also, the finite set of

prime octic nonresidues (mod p) which divide integers represented by i|/8(z) is

characterized.

1. Introduction. In this paper we extend certain results of E. Lehmer in [7]. Let

p = ef + 1 be prime, and define the Gauss sum Ge of order e by

p

Ge =  2 exp{2<nine/p).
n=\

Let Fe(z) denote the minimal polynomial of Ge over Q, so that Fe(z) has degree e.

Let ipe(z) denote the minimal polynomial over Q of the Gauss period i)0 =

(Ge — \)/e. Then ^(z), the period polynomial of order e, equals

^eiz) = e-<Feiez + 1).

Explicit determinations of the coefficients of Fe{z) have been made for all e < 6; see

[2] for references, and also [5] for e = 6.

In §2, we determine the coefficients of L8(z), and hence of ^(z), in terms of p, C,

and A", where

(1) p- 8/+ 1 = X2 + Y2 = C2 + 2D2,       C = X=\    (mod4).

The discriminant of i//8(z) is computed in §3. A theorem of Kummer [7, p. 436; 4, p.

197] shows that the set Ep of odd prime eth power nonresidues (mod p) which

divide integers represented by ^(z) is a subset of the set of divisors of the

discriminant of ^(z). (A generalization of Kummer's theorem, in which/) is replaced

by any composite n > 0, is proved in [3].) In §4, we prove that for e — 8, Ep consists

precisely of the odd prime nonoctic quartic residues (mod p) which divide DY. A

characterization of Ep for e = 4 was known to Sylvester [9, p. 392]. It is given in the

Appendix. Further results of this type are proved in [3, §§3-5].

We will generally merely sketch proofs, omitting a number of lengthy calculations.

The formulas for the discriminant and coefficients of the period polynomial have

been double-checked by computer for primesp = 8/+ 1 < 200.
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We are indebted to E. Lehmer for many helpful comments. Also, the counsel of J.

Sutton has been helpful.

2. Determination of £8(z). Define

(2) L =(-!)'

and

(3) AT = 1 or -1, according as 2 is quartic or not (mod p).

A special case of the following theorem is given in [7, (33)].

Theorem 1. In the notation o/(l)-(3),

£8(z) = z8 + fp(-3 - 4£)z6 - \6piA} - 2A5)z5

where

+ 2piA0 + 2pA\ - M\ + \6A4)zA

-32p(pAxA2 + A4A5 + A3)z* + 4p{pA0A2 + 8A3A5 + \6pA2 - 4A\)z2

-\6pipA0Al-2A3A4)z+p{pA2- \6A2),

A0=p(9-24E+ \6N)- 16AT(1 + E - N) + 4X2 + 8C2,

Ax =Xi\ -2N) + 2CÍE-N),

A2 = 1 -4£,

A3 = 2pC{2 - 3E+ 2N) -pXil + 4£ - 4A^) - 2*C2,

AA = pil +4E- 4N) -4NCX,

A5 = X+ 2EC.

Proof. Define

S={p,   R = ¡2p - 2SA-,   R{ = ]¡2p + 2SX,

U= 2EÍS - C)i2S + ENR),    Í7, = 2£(S + C)(2S - £A/Ä,),

F=2£(5- C)(2S- ENR),    Vx = 2£(5 + C){2S + ENRX).

It follows from [1, Theorem 3.18] and Galois theory that the eight conjugates of G8

over Q, i.e., the eight zeros of £8(z), are given by

(4) S + R±/Û,    S-R±{P,

(5) -S + Ri+IÜ^,    -S-Ri±IVl.

The four numbers in (4) are the conjugates of G8 over Q(S). From (4), one easily

finds the quartic irreducible polynomial Es(z) of G8 — S over Q(S). Then £8(z) can

be computed by the formula £8(z) = Es(z — S)E_s(z + S). In this way, calcula-

tions with the numbers in (5) can be avoided.
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3. The discriminant of t//8( z ). In the notation of ( 1 )-(3), define

(6) J = (AN - 2)CX - C2 - X2 + 4pi\ + N - 2E) + 4DYÍ2N - £ - 1)

and

(7) K = 2y(3£>2 + 2pE - 2pN) + 4£>(2/?£ - 2pN -p + CX),

where the choices of Y and D in (6) must be the same as those in (7).

Theorem 2. The discriminant A e>/^8(z) is A = B2B2B32B4p~', w/itve

B4 = 2*Y2D\    B3 = 2-]6{pJ2 - K2),

B2 = 2-nY2{{2p- 2pE - D2)2 - p{X + C - 2EC)2),

and B¡ is obtained from B3 by replacing Y by -Y (or, equivalently, D by -D).

Proof. The eight zeros of u08( z ) are the periods

/
i»*= 2  eM2"ig*v+k/p)       (k = 0,1,...,7),

p=i

where g is a primitive root of p. Thus A = P2P2P3P4, where Pr — Ul=0(T)k — T]r+k).

It remains to prove that

(8) Pr=pBr       ir= 1,2,3,4).

It is easy to verify (8) for r = 2, 4 with use of (4). Suppose that r = 1 or 3. One can

compute T)0 — r/r from (4) and (5). Then Pr, the norm of r/0 — -qr from Q(ij0) to Q,

can be found by successively computing the norm first down to Q( R ), then down to

Q(5), and then down to Q. The computations are facilitated by use of the formula

4V¡U¡ = 2D(R - R}+ 2ENS).

4. Prime factors of t//8( n ). Let Gp denote the infinite set of odd primes which divide

t//8(rt) for some n. Let Ep denote the set of octic nonresidues (mod p) in Gp. The set

Ep is finite; indeed, Kummer showed that £ is contained in the set of divisors of A.

The following theorem characterizes Ep.

Theorem 3. Ep equals the set of odd prime nonoctic quartic residues (mod p) which

divide DY.

Proof. Let q e E   By Kummer's theorem [7, p. 436], either

(9) q is quartic and q \ P4,

or

(10) q is quadratic and q\ (tj0 - t/2)(7)i - tj3) in Q,

where ñ is the ring of algebraic integers. By (8) and Theorem 2, q \ DY when (9)

holds. Thus suppose that (10) holds. We will show that q \ Y; it will then also follow

that q is quartic, since every odd prime factor of Y is quartic by the law of

biquadratic reciprocity [8, p. 77].
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By [7, (3)], we have

7

(11) (t)o — T72)(T»i -Vi) =   2 Cki]k,
k = 0

where Q = (1, A:) + (1, k - 2) - (3, Â:) - (1, k - 1), and the (/, j) denote cyclo-

tomic numbers (mod p) of order 8. From the table of values of the (/', j) given in

[6, pp. 116-117], we see that

(12) C3 + C4=±Y/4.

By (10) and (11), q\Ck for each k. Hence q\ y by (12).

Conversely, suppose that q is an odd prime quartic nonoctic residue (mod p)

which divides DY. Since P4 = p2~*Y2D4, q \ P4. Let 15 denote the ring of integers of

Q(tj0), and let N(ct) denote the norm of a from Q(tj0) to Q. Since q\ P4, we have

q | N(t)0 — t/4), so tj0 = t)4 (mod Q) for some prime ideal Q of ß dividing q&. Since q

is quartic but not octic,

1,8=     2   exp(2W,g8V^)     =  2  exp(2^g8t+4//>)=T,4    (modq).
\e=l / c=l

ThusT/g = 7,0 (mod £). The polynomial xq - x equals II*=0(.x —/) (mod g), so

q-\ q-l

0^«-lo)=ß%-j)=   II ^(y)    (mod9).
7=0 7=0

Thus <71 tpg(j) for somey, so q E Ep.

Example. For p = 193, q = 3, we have <y | 7, q | £8(0), and <7 G £p. For /j = 1193,

q— 11, we have <? | D, q | £8(0), and <7 G £ .

Appendix. Sylvester [9, p. 392] characterized £ for e — 4 as follows. Write

p = A2 + B2 wnhA = 1 (mod4).

If p — 8/c + 1, then Ep is empty; if p — %k + 5, then £p is the set of primes = 3

(mod 4) which divide B.

Since Sylvester's proof [10] is erroneous, we sketch a proof below.

Suppose that p = 8/c + 1. From the well-known formula for t,0 = (G4 — l)/4

[1, Theorem 3.11], it is easily seen that the discriminant of the period polynomial

4>4(z) is A = 2~}0p3Bb. Suppose q G Ep. By Kummer's theorem [7, p. 436], q \ A, so

q\B. By the law of biquadratic reciprocity [8,p. 77], every odd prime factor of B is

quartic (mod p),soq&E. Thus £ is empty.

Finally, suppose that p = 8Â: + 5. Let q be a prime divisor of B with q = 3

(mod 4). Then q is not quartic, by the biquadratic reciprocity law. Furthermore, the

formula for tj0 [1,Theorem 3.11] can be used to show easily that B\F4(-A), so

q\\p4(n) for some integer n. Thus q G £ . Conversely, suppose that q is any odd

prime in £ By Kummer's theorem, q\P2. Since P2= pB2/4, q\B. If q=\

(mod 4), then q would be quartic by the law of biquadratic reciprocity, which

contradicts q G Ep. Thus q = 3 (mod4).
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