THE OCTIC PERIOD POLYNOMIAL

RONALD J. EVANS¹

ABSTRACT. The coefficients and the discriminant of the octic period polynomial $\psi_8(z)$ are computed, where, for a prime p = 8f + 1, $\psi_8(z)$ denotes the minimal polynomial over Q of the period $(1/8)\Sigma_{n=1}^{p-1}\exp(2\pi i n^8/p)$. Also, the finite set of prime octic nonresidues (mod p) which divide integers represented by $\psi_8(z)$ is characterized.

1. Introduction. In this paper we extend certain results of E. Lehmer in [7]. Let p = ef + 1 be prime, and define the Gauss sum G_e of order e by

$$G_e = \sum_{n=1}^{p} \exp(2\pi i n^e/p).$$

Let $F_e(z)$ denote the minimal polynomial of G_e over \mathbf{Q} , so that $F_e(z)$ has degree e. Let $\psi_e(z)$ denote the minimal polynomial over \mathbf{Q} of the Gauss period $\eta_0 = (G_e - 1)/e$. Then $\psi_e(z)$, the period polynomial of order e, equals

$$\psi_e(z) = e^{-e}F_e(ez+1).$$

Explicit determinations of the coefficients of $F_e(z)$ have been made for all $e \le 6$; see [2] for references, and also [5] for e = 6.

In §2, we determine the coefficients of $F_8(z)$, and hence of $\psi_8(z)$, in terms of p, C, and X, where

(1)
$$p = 8f + 1 = X^2 + Y^2 = C^2 + 2D^2$$
, $C \equiv X \equiv 1 \pmod{4}$.

The discriminant of $\psi_8(z)$ is computed in §3. A theorem of Kummer [7, p. 436; 4, p. 197] shows that the set E_p of odd prime *e*th power nonresidues (mod *p*) which divide integers represented by $\psi_e(z)$ is a subset of the set of divisors of the discriminant of $\psi_e(z)$. (A generalization of Kummer's theorem, in which *p* is replaced by any composite n > 0, is proved in [3].) In §4, we prove that for e = 8, E_p consists precisely of the odd prime nonoctic quartic residues (mod *p*) which divide *DY*. A characterization of E_p for e = 4 was known to Sylvester [9, p. 392]. It is given in the Appendix. Further results of this type are proved in [3, §§3-5].

We will generally merely sketch proofs, omitting a number of lengthy calculations. The formulas for the discriminant and coefficients of the period polynomial have been double-checked by computer for primes p = 8f + 1 < 200.

1980 Mathematics Subject Classification. Primary 10G05; Secondary 10A15.

Received by the editors March 6, 1982.

Key words and phrases. Octic period polynomial.

¹Author has NSF grant MCS-8101860.

R. J. EVANS

We are indebted to E. Lehmer for many helpful comments. Also, the counsel of J. Sutton has been helpful.

2. Determination of $F_8(z)$. Define

$$(2) E = (-1)^{f}$$

and

(3)
$$N = 1$$
 or -1 , according as 2 is quartic or not (mod p).

A special case of the following theorem is given in [7, (33)].

THEOREM 1. In the notation of (1)-(3),

$$F_8(z) = z^8 + 4p(-3 - 4E)z^6 - 16p(A_1 - 2A_5)z^5 + 2p(A_0 + 2pA_2^2 - 8A_5^2 + 16A_4)z^4 - 32p(pA_1A_2 + A_4A_5 + A_3)z^3 + 4p(pA_0A_2 + 8A_3A_5 + 16pA_1^2 - 4A_4^2)z^2 - 16p(pA_0A_1 - 2A_3A_4)z + p(pA_0^2 - 16A_3^2),$$

where

$$A_{0} = p(9 - 24E + 16N) - 16XC(1 + E - N) + 4X^{2} + 8C^{2}$$

$$A_{1} = X(1 - 2N) + 2C(E - N),$$

$$A_{2} = 1 - 4E,$$

$$A_{3} = 2pC(2 - 3E + 2N) - pX(1 + 4E - 4N) - 2XC^{2},$$

$$A_{4} = p(1 + 4E - 4N) - 4NCX,$$

$$A_{5} = X + 2EC.$$

PROOF. Define

$$S = \sqrt{p}, \quad R = \sqrt{2p - 2SX}, \quad R_1 = \sqrt{2p + 2SX},$$
$$U = 2E(S - C)(2S + ENR), \quad U_1 = 2E(S + C)(2S - ENR_1),$$
$$V = 2E(S - C)(2S - ENR), \quad V_1 = 2E(S + C)(2S + ENR_1).$$

It follows from [1, Theorem 3.18] and Galois theory that the eight conjugates of G_8 over Q, i.e., the eight zeros of $F_8(z)$, are given by

(4)
$$S + R \pm \sqrt{U}, \quad S - R \pm \sqrt{V},$$

(5)
$$-S + R_1 \pm \sqrt{U_1}, \quad -S - R_1 \pm \sqrt{V_1}.$$

The four numbers in (4) are the conjugates of G_8 over Q(S). From (4), one easily finds the quartic irreducible polynomial $E_S(z)$ of $G_8 - S$ over Q(S). Then $F_8(z)$ can be computed by the formula $F_8(z) = E_S(z - S)E_{-S}(z + S)$. In this way, calculations with the numbers in (5) can be avoided.

390

3. The discriminant of $\psi_8(z)$. In the notation of (1)–(3), define

(6) $J = (4N-2)CX - C^2 - X^2 + 4p(1 + N - 2E) + 4DY(2N - E - 1)$ and

(7)
$$K = 2Y(3D^2 + 2pE - 2pN) + 4D(2pE - 2pN - p + CX),$$

where the choices of Y and D in (6) must be the same as those in (7).

THEOREM 2. The discriminant Δ of $\psi_8(z)$ is $\Delta = B_1^2 B_2^2 B_3^2 B_4 p^7$, where

$$B_4 = 2^{-8}Y^2D^4, \quad B_3 = 2^{-16}(pJ^2 - K^2),$$

$$B_2 = 2^{-12}Y^2((2p - 2pE - D^2)^2 - p(X + C - 2EC)^2),$$

and B_1 is obtained from B_3 by replacing Y by -Y (or, equivalently, D by -D).

PROOF. The eight zeros of $\psi_8(z)$ are the periods

$$\eta_k = \sum_{\nu=1}^f \exp(2\pi i g^{8\nu+k}/p) \qquad (k = 0, 1, \dots, 7),$$

where g is a primitive root of p. Thus $\Delta = P_1^2 P_2^2 P_3^2 P_4$, where $P_r = \prod_{k=0}^{7} (\eta_k - \eta_{r+k})$. It remains to prove that

(8)
$$P_r = pB_r$$
 $(r = 1, 2, 3, 4).$

It is easy to verify (8) for r = 2, 4 with use of (4). Suppose that r = 1 or 3. One can compute $\eta_0 - \eta_r$ from (4) and (5). Then P_r , the norm of $\eta_0 - \eta_r$ from $Q(\eta_0)$ to Q, can be found by successively computing the norm first down to Q(R), then down to Q(S), and then down to Q. The computations are facilitated by use of the formula $\sqrt{U}\sqrt{U_1} = 2D(R - R_1 + 2ENS)$.

4. Prime factors of $\psi_8(n)$. Let G_p denote the infinite set of odd primes which divide $\psi_8(n)$ for some *n*. Let E_p denote the set of octic nonresidues (mod *p*) in G_p . The set E_p is finite; indeed, Kummer showed that E_p is contained in the set of divisors of Δ . The following theorem characterizes E_p .

THEOREM 3. E_p equals the set of odd prime nonoctic quartic residues (mod p) which divide DY.

PROOF. Let $q \in E_p$. By Kummer's theorem [7, p. 436], either

(9)
$$q$$
 is quartic and $q | P_4$,

or

(10)
$$q$$
 is quadratic and $q \mid (\eta_0 - \eta_2)(\eta_1 - \eta_3)$ in Ω ,

where Ω is the ring of algebraic integers. By (8) and Theorem 2, $q \mid DY$ when (9) holds. Thus suppose that (10) holds. We will show that $q \mid Y$; it will then also follow that q is quartic, since every odd prime factor of Y is quartic by the law of biquadratic reciprocity [8, p. 77].

By [7, (3)], we have

(11)
$$(\eta_0 - \eta_2)(\eta_1 - \eta_3) = \sum_{k=0}^{\prime} C_k \eta_k$$

where $C_k = (1, k) + (1, k - 2) - (3, k) - (1, k - 1)$, and the (i, j) denote cyclotomic numbers (mod p) of order 8. From the table of values of the (i, j) given in [6, pp. 116-117], we see that

(12)
$$C_3 + C_4 = \pm Y/4.$$

By (10) and (11), $q | C_k$ for each k. Hence q | Y by (12).

Conversely, suppose that q is an odd prime quartic nonoctic residue (mod p) which divides DY. Since $P_4 = p2^{-8}Y^2D^4$, $q | P_4$. Let \emptyset denote the ring of integers of $\mathbf{Q}(\eta_0)$, and let $N(\alpha)$ denote the norm of α from $\mathbf{Q}(\eta_0)$ to Q. Since $q | P_4$, we have $q | N(\eta_0 - \eta_4)$, so $\eta_0 \equiv \eta_4 \pmod{Q}$ for some prime ideal Q of \emptyset dividing $q \emptyset$. Since q is quartic but not octic,

$$\eta_0^q = \left(\sum_{v=1}^f \exp(2\pi i g^{8v}/p)\right)^q \equiv \sum_{v=1}^f \exp(2\pi i g^{8v+4}/p) = \eta_4 \pmod{q}$$

Thus $\eta_0^q = \eta_0 \pmod{Q}$. The polynomial $x^q - x$ equals $\prod_{j=0}^{q-1} (x-j) \pmod{q}$, so

$$0 \equiv N(\eta_0^q - \eta_0) \equiv \prod_{j=0}^{q-1} N(\eta_0 - j) = \prod_{j=0}^{q-1} \psi_8(j) \pmod{q}.$$

Thus $q \mid \psi_8(j)$ for some j, so $q \in E_p$.

EXAMPLE. For p = 193, q = 3, we have $q \mid Y$, $q \mid F_8(0)$, and $q \in E_p$. For p = 1193, q = 11, we have $q \mid D$, $q \mid F_8(0)$, and $q \in E_p$.

Appendix. Sylvester [9, p. 392] characterized E_p for e = 4 as follows. Write $p = A^2 + B^2$ with $A \equiv 1 \pmod{4}$.

If p = 8k + 1, then E_p is empty; if p = 8k + 5, then E_p is the set of primes $\equiv 3 \pmod{4}$ which divide B.

Since Sylvester's proof [10] is erroneous, we sketch a proof below.

Suppose that p = 8k + 1. From the well-known formula for $\eta_0 = (G_4 - 1)/4$ [1, Theorem 3.11], it is easily seen that the discriminant of the period polynomial $\psi_4(z)$ is $\Delta = 2^{-10}p^3B^6$. Suppose $q \in E_p$. By Kummer's theorem [7, p. 436], $q \mid \Delta$, so $q \mid B$. By the law of biquadratic reciprocity [8, p. 77], every odd prime factor of B is quartic (mod p), so $q \notin E_p$. Thus E_p is empty.

Finally, suppose that p = 8k + 5. Let q be a prime divisor of B with $q \equiv 3 \pmod{4}$. Then q is not quartic, by the biquadratic reciprocity law. Furthermore, the formula for η_0 [1, Theorem 3.11] can be used to show easily that $B \mid F_4(-A)$, so $q \mid \psi_4(n)$ for some integer n. Thus $q \in E_p$. Conversely, suppose that q is any odd prime in E_p . By Kummer's theorem, $q \mid P_2$. Since $P_2 = pB^2/4$, $q \mid B$. If $q \equiv 1 \pmod{4}$, then q would be quartic by the law of biquadratic reciprocity, which contradicts $q \in E_p$. Thus $q \equiv 3 \pmod{4}$.

392

THE OCTIC PERIOD POLYNOMIAL

References

1. B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), 349-398.

2. _____, Determinations of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 107-129.

3. R. J. Evans, Period polynomials for generalized cyclotomic periods (to appear).

4. E. E. Kummer, Collected papers, vol. 1 (A. Weil, ed.), Springer-Verlag, Berlin and New York, 1975.

5. D. H. Lehmer and E. Lehmer, The sextic period polynomial, Pacific J. Math. (to appear).

6. E. Lehmer, On the number of solutions of $u^k + D \equiv w^2 \pmod{p}$, Pacific J. Math. 5 (1955), 103-118.

7. _____, Period equations applied to difference sets, Proc. Amer. Math. Soc. 6 (1955), 433-442.

8. H. J. S. Smith, Report on the theory of numbers, Chelsea, New York.

9. J. J. Sylvester, Instantaneous proof of a theorem of Lagrange, Amer. J. Math. 3 (1880), 390-392; Mathematical papers, vol. 3, Chelsea, New York, 1973, pp. 446-448.

10. ____, On the multisection of the roots of unity, Johns Hopkins University Circulars 1 (1881), 150-151; Mathematical papers, vol. 3, Chelsea, New York, 1973, pp. 477-478.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, LA JOLLA, CALIFORNIA 92093