THE OCTIC PERIOD POLYNOMIAL

RONALD J. EVANS ${ }^{1}$

Abstract

The coefficients and the discriminant of the octic period polynomial $\psi_{8}(z)$ are computed, where, for a prime $p=8 f+1, \psi_{8}(z)$ denotes the minimal polynomial over \mathbf{Q} of the period $(1 / 8) \sum_{n=1}^{p-1} \exp \left(2 \pi i n^{8} / p\right)$. Also, the finite set of prime octic nonresidues $(\bmod p)$ which divide integers represented by $\psi_{8}(z)$ is characterized.

1. Introduction. In this paper we extend certain results of E . Lehmer in [7]. Let $p=e f+1$ be prime, and define the Gauss sum G_{e} of order e by

$$
G_{e}=\sum_{n=1}^{p} \exp \left(2 \pi i n^{e} / p\right) .
$$

Let $F_{e}(z)$ denote the minimal polynomial of G_{e} over \mathbf{Q}, so that $F_{e}(z)$ has degree e. Let $\psi_{e}(z)$ denote the minimal polynomial over \mathbf{Q} of the Gauss period $\eta_{0}=$ $\left(G_{e}-1\right) / e$. Then $\psi_{e}(z)$, the period polynomial of order e, equals

$$
\psi_{e}(z)=e^{-e} F_{e}(e z+1)
$$

Explicit determinations of the coefficients of $F_{e}(z)$ have been made for all $e \leqslant 6$; see [2] for references, and also [5] for $e=6$.

In $\S 2$, we determine the coefficients of $F_{8}(z)$, and hence of $\psi_{8}(z)$, in terms of p, C, and X, where

$$
\begin{equation*}
p=8 f+1=X^{2}+Y^{2}=C^{2}+2 D^{2}, \quad C \equiv X \equiv 1 \quad(\bmod 4) . \tag{1}
\end{equation*}
$$

The discriminant of $\psi_{8}(z)$ is computed in §3. A theorem of Kummer [7, p. 436; 4, p. 197] shows that the set E_{p} of odd prime e th power nonresidues $(\bmod p)$ which divide integers represented by $\psi_{e}(z)$ is a subset of the set of divisors of the discriminant of $\psi_{e}(z)$. (A generalization of Kummer's theorem, in which p is replaced by any composite $n>0$, is proved in [3].) In §4, we prove that for $e=8, E_{p}$ consists precisely of the odd prime nonoctic quartic residues $(\bmod p)$ which divide $D Y$. A characterization of E_{p} for $e=4$ was known to Sylvester [9, p. 392]. It is given in the Appendix. Further results of this type are proved in [3, §§3-5].

We will generally merely sketch proofs, omitting a number of lengthy calculations. The formulas for the discriminant and coefficients of the period polynomial have been double-checked by computer for primes $p=8 f+1<200$.

[^0]We are indebted to E . Lehmer for many helpful comments. Also, the counsel of J . Sutton has been helpful.

2. Determination of $F_{8}(z)$. Define

$$
\begin{equation*}
E=(-1)^{f} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
N=1 \text { or }-1, \text { according as } 2 \text { is quartic or not }(\bmod p) \tag{3}
\end{equation*}
$$

A special case of the following theorem is given in [7,(33)].
Theorem 1. In the notation of (1)-(3),

$$
\begin{aligned}
F_{8}(z)= & z^{8}+4 p(-3-4 E) z^{6}-16 p\left(A_{1}-2 A_{5}\right) z^{5} \\
& +2 p\left(A_{0}+2 p A_{2}^{2}-8 A_{5}^{2}+16 A_{4}\right) z^{4} \\
& -32 p\left(p A_{1} A_{2}+A_{4} A_{5}+A_{3}\right) z^{3}+4 p\left(p A_{0} A_{2}+8 A_{3} A_{5}+16 p A_{1}^{2}-4 A_{4}^{2}\right) z^{2} \\
& -16 p\left(p A_{0} A_{1}-2 A_{3} A_{4}\right) z+p\left(p A_{0}^{2}-16 A_{3}^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{0}=p(9-24 E+16 N)-16 X C(1+E-N)+4 X^{2}+8 C^{2}, \\
& A_{1}=X(1-2 N)+2 C(E-N), \\
& A_{2}=1-4 E, \\
& A_{3}=2 p C(2-3 E+2 N)-p X(1+4 E-4 N)-2 X C^{2}, \\
& A_{4}=p(1+4 E-4 N)-4 N C X, \\
& A_{5}=X+2 E C .
\end{aligned}
$$

Proof. Define

$$
\begin{gathered}
S=\sqrt{p}, \quad R=\sqrt{2 p-2 S X}, \quad R_{1}=\sqrt{2 p+2 S X}, \\
U=2 E(S-C)(2 S+E N R), \quad U_{1}=2 E(S+C)\left(2 S-E N R_{1}\right), \\
V=2 E(S-C)(2 S-E N R), \quad V_{1}=2 E(S+C)\left(2 S+E N R_{1}\right) .
\end{gathered}
$$

It follows from [1, Theorem 3.18] and Galois theory that the eight conjugates of G_{8} over \mathbf{Q}, i.e., the eight zeros of $F_{8}(z)$, are given by

$$
\begin{array}{cl}
S+R \pm \sqrt{U}, & S-R \pm \sqrt{V} \\
-S+R_{1} \pm \sqrt{U_{1}}, & -S-R_{1} \pm \sqrt{V_{1}} . \tag{5}
\end{array}
$$

The four numbers in (4) are the conjugates of G_{8} over $\mathbf{Q}(S)$. From (4), one easily finds the quartic irreducible polynomial $E_{S}(z)$ of $G_{8}-S$ over $\mathbf{Q}(S)$. Then $F_{8}(z)$ can be computed by the formula $F_{8}(z)=E_{S}(z-S) E_{-S}(z+S)$. In this way, calculations with the numbers in (5) can be avoided.
3. The discriminant of $\psi_{8}(z)$. In the notation of (1)-(3), define

$$
\begin{equation*}
J=(4 N-2) C X-C^{2}-X^{2}+4 p(1+N-2 E)+4 D Y(2 N-E-1) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
K=2 Y\left(3 D^{2}+2 p E-2 p N\right)+4 D(2 p E-2 p N-p+C X) \tag{7}
\end{equation*}
$$

where the choices of Y and D in (6) must be the same as those in (7).
Theorem 2. The discriminant Δ of $\psi_{8}(z)$ is $\Delta=B_{1}^{2} B_{2}^{2} B_{3}^{2} B_{4} p^{7}$, where

$$
\begin{aligned}
& B_{4}=2^{-8} Y^{2} D^{4}, \quad B_{3}=2^{-16}\left(p J^{2}-K^{2}\right) \\
& B_{2}=2^{-12} Y^{2}\left(\left(2 p-2 p E-D^{2}\right)^{2}-p(X+C-2 E C)^{2}\right)
\end{aligned}
$$

and B_{1} is obtained from B_{3} by replacing Y by $-Y$ (or, equivalently, D by $-D$).
Proof. The eight zeros of $\psi_{8}(z)$ are the periods

$$
\eta_{k}=\sum_{v=1}^{f} \exp \left(2 \pi i g^{8 v+k} / p\right) \quad(k=0,1, \ldots, 7),
$$

where g is a primitive root of p. Thus $\Delta=P_{1}^{2} P_{2}^{2} P_{3}^{2} P_{4}$, where $P_{r}=\prod_{k=0}^{7}\left(\eta_{k}-\eta_{r+k}\right)$. It remains to prove that

$$
\begin{equation*}
P_{r}=p B_{r} \quad(r=1,2,3,4) . \tag{8}
\end{equation*}
$$

It is easy to verify (8) for $r=2,4$ with use of (4). Suppose that $r=1$ or 3 . One can compute $\eta_{0}-\eta_{r}$ from (4) and (5). Then P_{r}, the norm of $\eta_{0}-\eta_{r}$ from $\mathbf{Q}\left(\eta_{0}\right)$ to \mathbf{Q}, can be found by successively computing the norm first down to $\mathbf{Q}(R)$, then down to $\mathbf{Q}(S)$, and then down to \mathbf{Q}. The computations are facilitated by use of the formula $\sqrt{U} \sqrt{U_{1}}=2 D\left(R-R_{1}+2 E N S\right)$.
4. Prime factors of $\psi_{8}(n)$. Let G_{p} denote the infinite set of odd primes which divide $\psi_{8}(n)$ for some n. Let E_{p} denote the set of octic nonresidues $(\bmod p)$ in G_{p}. The set E_{p} is finite; indeed, Kummer showed that E_{p} is contained in the set of divisors of Δ. The following theorem characterizes E_{p}.

Theorem 3. E_{p} equals the set of odd prime nonoctic quartic residues $(\bmod p)$ which divide $D Y$.

Proof. Let $q \in E_{p}$. By Kummer's theorem [7, p. 436], either

$$
\begin{equation*}
q \text { is quartic and } q \mid P_{4} \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
q \text { is quadratic and } q \mid\left(\eta_{0}-\eta_{2}\right)\left(\eta_{1}-\eta_{3}\right) \text { in } \Omega \tag{10}
\end{equation*}
$$

where Ω is the ring of algebraic integers. By (8) and Theorem $2, q \mid D Y$ when (9) holds. Thus suppose that (10) holds. We will show that $q \mid Y$; it will then also follow that q is quartic, since every odd prime factor of Y is quartic by the law of biquadratic reciprocity [8, p. 77].

By [7,(3)], we have

$$
\begin{equation*}
\left(\eta_{0}-\eta_{2}\right)\left(\eta_{1}-\eta_{3}\right)=\sum_{k=0}^{7} C_{k} \eta_{k}, \tag{11}
\end{equation*}
$$

where $C_{k}=(1, k)+(1, k-2)-(3, k)-(1, k-1)$, and the (i, j) denote cyclotomic numbers $(\bmod p)$ of order 8 . From the table of values of the (i, j) given in [6, pp. 116-117], we see that

$$
\begin{equation*}
C_{3}+C_{4}= \pm Y / 4 \tag{12}
\end{equation*}
$$

By (10) and (11), $q \mid C_{k}$ for each k. Hence $q \mid Y$ by (12).
Conversely, suppose that q is an odd prime quartic nonoctic residue $(\bmod p)$ which divides $D Y$. Since $P_{4}=p 2^{-8} Y^{2} D^{4}, q \mid P_{4}$. Let $\mathcal{\theta}$ denote the ring of integers of $\mathbf{Q}\left(\eta_{0}\right)$, and let $N(\alpha)$ denote the norm of α from $\mathbf{Q}\left(\eta_{0}\right)$ to \mathbf{Q}. Since $q \mid P_{4}$, we have $q \mid N\left(\eta_{0}-\eta_{4}\right)$, so $\eta_{0} \equiv \eta_{4}(\bmod Q)$ for some prime ideal Q of \mathcal{C} dividing $q \mathbb{C}$. Since q is quartic but not octic,

$$
\eta_{0}^{q}=\left(\sum_{v=1}^{f} \exp \left(2 \pi i g^{8_{v}} / p\right)\right)^{q} \equiv \sum_{v=1}^{f} \exp \left(2 \pi i g^{8 v+4} / p\right)=\eta_{4} \quad(\bmod q)
$$

Thus $\eta_{0}=\eta_{0}(\bmod Q)$. The polynomial $x^{q}-x$ equals $\prod_{j=0}^{q-1}(x-j)(\bmod q)$, so

$$
0 \equiv N\left(\eta_{0}^{q}-\eta_{0}\right) \equiv \prod_{j=0}^{q-1} N\left(\eta_{0}-j\right)=\prod_{j=0}^{q-1} \psi_{8}(j) \quad(\bmod q)
$$

Thus $q \mid \psi_{8}(j)$ for some j, so $q \in E_{p}$.
Example. For $p=193, q=3$, we have $q|Y, q| F_{8}(0)$, and $q \in E_{p}$. For $p=1193$, $q=11$, we have $q|D, q| F_{8}(0)$, and $q \in E_{p}$.

Appendix. Sylvester [9, p. 392] characterized E_{p} for $e=4$ as follows. Write $p=A^{2}+B^{2}$ with $A \equiv 1(\bmod 4)$.

If $p=8 k+1$, then E_{p} is empty; if $p=8 k+5$, then E_{p} is the set of primes $\equiv 3$ $(\bmod 4)$ which divide B.

Since Sylvester's proof [10] is erroneous, we sketch a proof below.
Suppose that $p=8 k+1$. From the well-known formula for $\eta_{0}=\left(G_{4}-1\right) / 4$ [1, Theorem 3.11], it is easily seen that the discriminant of the period polynomial $\psi_{4}(z)$ is $\Delta=2^{-10} p^{3} B^{6}$. Suppose $q \in E_{p}$. By Kummer's theorem [7, p. 436], $q \mid \Delta$, so $q \mid B$. By the law of biquadratic reciprocity [8, p. 77], every odd prime factor of B is quartic $(\bmod p)$, so $q \notin E_{p}$. Thus E_{p} is empty.

Finally, suppose that $p=8 k+5$. Let q be a prime divisor of B with $q \equiv 3$ $(\bmod 4)$. Then q is not quartic, by the biquadratic reciprocity law. Furthermore, the formula for η_{0} [1, Theorem 3.11] can be used to show easily that $B \mid F_{4}(-A)$, so $q \mid \psi_{4}(n)$ for some integer n. Thus $q \in E_{p}$. Conversely, suppose that q is any odd prime in E_{p}. By Kummer's theorem, $q \mid P_{2}$. Since $P_{2}=p B^{2} / 4, q \mid B$. If $q \equiv 1$ $(\bmod 4)$, then q would be quartic by the law of biquadratic reciprocity, which contradicts $q \in E_{p}$. Thus $q \equiv 3(\bmod 4)$.

References

1. B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), 349-398.
2. \qquad , Determinations of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 107-129.
3. R. J. Evans, Period polynomials for generalized cyclotomic periods (to appear).
4. E. E. Kummer, Collected papers, vol. 1 (A. Weil, ed.), Springer-Verlag, Berlin and New York, 1975.
5. D. H. Lehmer and E. Lehmer, The sextic period polynomial, Pacific J. Math. (to appear).
6. E. Lehmer, On the number of solutions of $u^{k}+D \equiv w^{2}(\bmod p)$, Pacific J. Math. $5(1955), 103-118$.
7. \qquad , Period equations applied to difference sets, Proc. Amer. Math. Soc. 6 (1955), 433-442.
8. H. J. S. Smith, Report on the theory of numbers, Chelsea, New York.
9. J. J. Sylvester, Instantaneous proof of a theorem of Lagrange, Amer. J. Math. 3 (1880), 390-392; Mathematical papers, vol. 3, Chelsea, New York, 1973, pp. 446-448.
10. \qquad On the multisection of the roots of unity, Johns Hopkins University Circulars 1 (1881), 150-151; Mathematical papers, vol. 3, Chelsea, New York, 1973, pp. 477-478.

Department of Mathematics, University of California, San Diego, la Jolla, California 92093

[^0]: Received by the editors March 6, 1982.
 1980 Mathematics Subject Classification. Primary 10G05: Secondary 10A15.
 Key words and phrases. Octic period polynomial.
 'Author has NSF grant MCS-8101860.

