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PERIOD POLYNOMIALS FOR GENERALIZED CYCLOTOMIC PERIODS

Ronald J. Evans*

The theory of cyclotomic period polynomials is developed for general
periods of an arbitrary modulus, extending known results for the Gauss
periods of prime modulus. Primes dividing the discriminant of the
period polynomial are investigated, as are those primes dividing values

of the period polynomial.

1. Introduction and notation

Let n and s be relatively prime positive integers. Write
Zn = exp(2ri/n). Let G = Gn be the group of ¢(n) reduced residues
(mod n) and let H be an arbitrary subgroup of index e in G. For
¢ €6, define o € Gal(Q(£,)/Q(L,)) by o (L) =4s , o (Z) =%,
Let r denote the product of the distinct prime factors of n,
or twice that, according as 8 }/ n or 8/n. Choose a ¢ Z[Zzn], a # 0.

We can now define the generalized period

(1.1) > o) (az,)

h €H

If a=1 and H is cyclic, then 7 is the cyclotomic period studied
for prime n by Gauss in 1801 and for general n by Kummer [12] in

1856.
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2 EVARS
In the case a = 1, Diamond, Gerth, and Vaaler [4] have proved the

beautiful result that 7n # 0 iff
(1.2) no nontrivial element of H is =1 (mod x).

(For example, (1.2) holds if n is squarefree. An example for prime
power n is given in Corollary 10.) In Theorem 5, this result is proved
for general nonzero a € Z[&ﬁs].

In [3], it was proved for cyclic H that if n # 0, then 7 has
degree e = |G/H| over Q(Z,). This now follows for general H by
Theorem 6. Consequently for 7 # 0 and s = 1, the minimal polynomial
of n1 over @ has the form

e

(1'3) W(z) = H (Z - Ti(ﬂ)),

i=1

yhere the Tifn) are the distinct conjugates of .

We call V(z) the period polynomial of m. Its discriminant is denoted
by D(¥).

For prime n, the period polynomial of 1 has been explicitly
computed for all values of e =5 (see [3]), for e = 6 [18A}, and for
e = 8 [6]. Gurak {7], [8] and the Lehmers [17], [18] have recently
studied the beginning coefficients of the period polynomial in the case
that n is large in comparison to £ = |H|. In order to apply their
results for general periods, Theorem 6 is needed.

Theorem 4 shows that if (1.2) holds and t [ an (in the ring of
algebraic integers) for a given rational prime t, then = érvcfn)
(mod t} for all ¢ € G - H. This result is needed in our subsequent

investigations in Theorem 8 of prime factors of the discriminant D(V¥).
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Note that Theorem 4 is easy to prove when n 1is prime, since then

n-1

n is a relative integral basis

a € Z(ZS} and the set zn’ zﬁ,...,z
for Q({sn) over Q(gs). The argument for general n is considerably
more complicated, as the proof of Theorem 4 shows.

In the sequel, ¢ denotes any (rational) prime not dividing na.
We often view q as an element of G; e.g., q € H means q = h (mod n)
for some h € H.

Suppose that {1.2) holds and s = 1. The prime q is said to
be exceptional if q #H and V¥(z) has a zero (mod q). If q £ H and
qu(W), then q is said to be semiexceptional. Theorem 7, (3.8)
shows that exceptional primes are semiexceptional. In particular, there
are only finitely many exceptional primes for each fixed pair a, n. On
the other hand, semiexceptional primes needn't be exceptional. For
example, with a =1, n =73, e = |G/H| = 8, q = 3, we have
D) = 3°254737 [20, p. 442] and 3 £ H, since 3 is not octic (mod 73);
thus 3 1is semiexceptional. However, 3 is not exceptional because V¥(2)

has no zero (mod 3) [20, (33)].

In §4 and §5, the exceptional and semiexceptional primes are

1t
o)
=)
2
o

explicitly determined for prime n in the cases e =4 and e
case e = 6 is discussed in [18A]. For all other values of e = 8, no
such primes exist, by Corollary 9. The determination of exceptional and
semiexceptional primes for e = 4 was first accomplished by Sylvester
[24], [26], but his proof (see [25]) wuses the erronecus assumption that,
for general e, semiexceptional primes are exceptional.

The primary purpose of this paper is to prove Theorems 7 and 8. In
the case that n is prime, much of Theorem 7 was proved by Kummer
[11, p. 197]. (Note Weil's remarks about Kummer's paper in [13, pp. 4, 953].)
I. Schur [23] anticipated part of (3.8) for general mn. In the case that

n is prime, Sylvester [24], [26] stated (3.6) without proof. Alsc for
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4 EVANS

prime n, E. Lehmer ([21, p. 22] gave (3.7) and applied it to give resi-
duacity criteria for e = 3, 4. As is indicated in the examples at the end
of §3, special cases of Corollaries 9 and 10 have been proved by
E. Lehmer [22] in 1968 and more recently by D. H. and E. Lehmer
{16] in 1981.

In §6, we list a few corrections to literature quoted in this

paper.

2. Periods
In the sequel, if n > 1, 1let p be the largest prime factor of

n, and write

(2.1) n = pam, with ptm, a =1,

Write

(2.2) T = TPy,

where Pg = 4 if n=2%> 8, and Py =P otherwise. Note that T, is

the product of the distinct prime factors of m, or twice that, according

as 8 fm or 8|m.

Lemma 1. Suppose that x, k € Z with p } k, and that pBH(x - 1) where
B=>1, but B>1 when p = 2. Then
A
A+B, . k
po P

- 1) for each integer A = 0.

Proof, The proof follows easily by induction on A.
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Lemma 2. Let X € Z, x =1 (mod r), and x # 1 (mod n). Then for some
d > 0 and some prime t such that tzln,
4 d
(2.3) x" =1 (mod n/t) and x # 1 (mod n).
Proof. The result is true for n = 4, so suppose that n > 4. We

proceed by induction on the number of distinct prime factors of n.
Case 1. pal(x - 1).

Since x = 1 (mod ro) and x # 1 (mod m), the induction hypothesis

d

yields some d > 0 and some prime t such that tzlm, x = 1 (mod m/t),

and ¢ £ 1 (mod m). Thus (2.3) holds for this pair d,t.
a
Case 2. p [ (x-1).

Since x = 1 (mod 1), we have pB”(x - 1), where a>B=1 and
B>1 when p = 2. Since p 1is the largest prime factcr of n,
p [ ¢(m). Define d = @(m)pA, where A =a - B - 1. Note that A= 0.
By Lemma 1, pa'lﬂ(xd - 1). Also M1 (mod m) since o(m)|d.
Therefore (2.3) holds with t = p. Finally note that pzln since

a>B=1.
Lemma 3. Suppose that (1.2) holds and G = H. Then m = + a.

Proof. Since (1.2) holds and G = H, reduction (mod r) maps G = Gn
isomorphically onto Gr' Thus o¢(r) = ¢(n), so T =n, In particular,

n is squarefree and a € Z[gs]. Therefore, from (1.1},

n=Z o (ax) = a erf.

X €G X € G
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The Ramanujan sum :E: Kﬁ equals p(n) [1, Theorem 8.6}, where
X€G6
is the Moebius function. As n is squarefree, u(n) = +1, so

n=+a.

Theorem 4. Suppose that no nontrivial element of H is =1 (mod r).

Let t be a prime with t J na. Then

2.4) n # oc(n) (mod t) for all ¢ € G - H.

Proof. The theorem is true for n < 4, so let n > 4. We proceed by
induction on the number of distinct prime factors of n. Consider the
subgroup I ¢ H defined by

(2.5) I={x€¢H:x=1 (mdpH}.

Reduction (mod m) maps I isomorphically onto a subgroup J < Gm.

Write
k
(2.6) H = \~) in,
i=1
a disjoint union of cosets with X = 1. Then
h

(2.7) R:i=0o (M= Z o a(a)ZmZha

m+p h €H h(mtp) P

k k
=Zocho(a)z Eo(&g)
i=1 il p¥xel x( m+p” m i=1 %\ p”
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where

(2.8) > oo a(a)zm).

x €1 m+p

For w € Gm’ define Ty € Gal(&é;ns)/Q(g a))
sp
by

(2.9 T, ) = 2 Tw(z a)= X
sp

Then

(2.10) 8 = Z Tx(" a(a)zm)

m+p

Thus & is a generalized period of the type in

(1.1}, with the roles

of n, n, G, H, a, s, v played by &, m, Gm, J, o a(a), spa, Ty

m+p

respectively. Furthermore, it follows from (1.2) that no nontrivial

elemernit of the subgroup J ¢ Gm is = 1 (mod ro). Therefore, by induc-
tion hypothesis,
(z.11) Tw(é) # 8(mod t) for all w ¢ Gm - J.

If J# Gm’ it follows from (2.11) that

(2.12) & £ 0 (mod t).

In fact, since t X a, Lemma 3 shows that (2.12) also holds when

J=G.
m

For 1 =i <k, write

i 1

(2.13) Xy = PgS; * T, cx, = posi + ri (0 < ri,ri < po).
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We proceed to show that

(2.14) r,,. ..,r

1 are distinct and r/

1,...,r’ are distinct.

k k

Assume for the purpose of contradiction that x; = xj (mod po) for some

i, j with i # j. Then x : = xixgl = 1 (mod po). On the other hand,

x #1 (mod pa), since the cosets in (2.6) are distinct. Thus
pBH(x - 1) with 1=B<a, and B>1 when p = 2.
By Lemma 1,

(2.15) xP 1 (mod p%).

m

Since xw(r) =1 (mod ¥r) and x € H, (1.2) yields

(2.16) ) 21 (mod p%).

Since p is the largest prime factor of n, the exponents pa—B and
o(r) in (2.15) and (2.16) are relatively prime. This yields the
contradiction x = 1 (mod pa). Therefore, the assumption X5 = xj (mod pO)
is false, and consequently (2.14) holds.

Suppose that 1 = cc(n)‘(mod t) for some ¢ € G. To prove (2.4),

it must be shown that ¢ € H. By (2.7),

k X
X. CX.

(2.17) 2 : o, (8)2 =R = o (R) = _5_ , ey (8)Z L(mod t).
i=1 i p i=1 i pt

By (2.17) and (2.13),
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k k , .
P.S. T, PASe T}

RO (g ¥is (5))g iy (g o1 ch.(5))5 > (mod t).
i=11p i p i=1p i P

i= i i=
2 Py-1
The elements ¢ @’ Z a,...,{ a comprise all or part of a relative integral
P
Py

Sn). Thus, in view of (2.14) and (2.18),

basis for Qcésn) over Q(&
there is a fixed value of i such that r; =1 and

PaS PASS
(2.19) ¥ 2 Lo ) =% 2 Lo, (6) (mod t).
1 i

Note that X; = 1, r, =1, and 5y = 0. Thus the left side of (2.19)

equals &. Define

(2.20) d: = cx; = posi + 1.

Then since r; =r, =1, (2.19) yields 6 = gd;l cd(é) (mod t),
P

S0
1-d
(2.21) cd(ﬁ) =X a & (mod t).
p
Assume for the purpose of contradiction that d # 1 (mod pa). Then by

(2.20), pB”(l - d) for some B with 1 <B<a, and B >1 when p = 2.

Define

A
(2.22) dy = gemp (A =0).

Fix A=qa - B - 1. By Lemma 1,

(2.23) p* e, - 1
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consequently

(2.24) m® g, - 1.

Applying %y successively w(m)pA - 1 times to the members of (2.21),

we obtain

l—dA

(2.25) o ,(8) = &2

d p

{(mod t).
By (2.8), & ¢ Q(gﬁ,), so by (2.24), o ,(8) = 6. Therefore (2.25) becom
> d

l—dA
(2.26) 6 = thp (mpd t).

By (2.26) and (2.23), t|s8(1 - gp), so t|6p. This is impossible since

t#p and t [ 5 by (2.12). Therefore

(2.27) d=1 (mod p7).

By (2.27) and (2.21),
(2.28) 06(6) = & (mod t).

Reduction . (mod m) maps d to an element Yy € Gm. By (2.27) and

(2.9),
(2.29) rycs) = 0,4(6).
From (2.28) and (2.29),

(2.30) Ty(&) = 8 (mod t).
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In view of (2.11) and (2.30), y € J. Thus, by the definitions of J
and y, d =h (mod m) for some h € I. Since also d =1 = h (mod pa),
it follows that d = h (mod n). Therefore d € H, so by (2.20) and

(2.6), ¢ € H, as desired.
Theorem 5. No nontrivial element of His =1 (mod r) iff n # 0.

Proof. Suppose that (1.2) holds. If G =H, then m # 0 by Lemma 3.
If G#H, then m #0 by Theorem 4.

Conversely, suppose that (1.2) fails to hold. By Lemma 2,
(2.3) holds for some x € H and integers d, t with t prime such

that tzln. Define u=n/t and K={h € H : h=1 (mod u)}. Write

(2.31) H = U XK

v

a union of disjoint cosets. By (2.3), K contains the nontrivial
element h = xd. Since h =1 (mod u) and tlu, we have ht z1
(mod n). Thus h, hz,...,ht are t distinct elements of K. Moreover,

K contains no other elements; for if K had more than t elements, then

two such elements k., and k2 would satisfy (kl - ) /u (k2 - 1/u

1

(mod t), whence kl = k2 (mod n}). Thus K = {h

h} =14+ wou. The w; Tun through a complete residue system (mod t)

L.1<1is< t}. Write

as i runs from 1 to t, so

Consequently, from (2.31),
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t t .
(2.32 " :Z;: iZl R <az“>= Zv: iZI °x, (aé}‘:l>

where the second equality of (2.32) holds because Rt =1 (mod u).
Theorem 6. If m # 0, then 7 has degree e = IG/H| over Q(Zs).

Proof. Suppose that 7 # 0. Then (1.2) holds by Theorem 5. Therefore
Theorem 4 can be applied to show that mn # cCCn) for each ¢ € G - H.
It is clear from (1.1) that n = ccfn) for ¢ € H. Thus 71 is fixed
by exactly |[H| automorphisms o, in Gal(Q(Z, )/Q()), so m has

degree e over Q(Zs].

3. Exceptional and semiexceptional primes

Throughout the sequel, q is a prime with q J na; H is chosen
such that (1.2) holds, so m# 0; s =1; and M= {H,q) is the sub-
group of G generated by H and gq.

We identify the elements c¢ € G with the elements
o € Gal(QGﬁn)/Q), and similarly the elements of G/H with those in the
corresponding Galois group. When an element of G or G/H' is to be viewed
as an automorphism, it will be denoted by either o or <. Thus the period

polynomial V¥(z) in (1.3) can be written as

(3.1) MOR H (z - vm).

T € G/H

For each T € G, define
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(3.2) p_=nh-m),

where N denotes the norm from @(n) to Q. The discriminant D) of

the period polynomial V(z) equals

(3.3) D) = n P

1#7€GMH *

For prime n, explicit formulas for D(¥) are known for small e. See

[14] for e =4; {[22] for e =5; [18A] for e = 6; and [6] for e = 8.
Let 6 denote the ring of integers in @Q(n). The symbol Q will be

reserved for a prime ideal of 6 dividing q6 .

Theorem 7. The prime q has the following properties.

(3.9 If qu(¢), e.g., if q is semiexceptional, then
|M/H]

- d
qloEG/M o(n - T(m) and q

P_ for each 7 € G such that q|P_ .
T T
(3.5 If ¥(z) has a zero-(mod q), e.g., if q 1is exceptional, then

M/H
al o(n - ©()) and gIM/H]
o € G/M

qIPT for © = dq’ then V¥(z) has a zero (mod q).

PT, for each T € M. Conversely, if

(3.6) If q € H, then V¥(z) has a zero (mod qk) for any k > 0.

(3.7 If ql D), then q € H iff ¥(z) has a zero (mod q).

(3.8) If q is exceptional, then qlD(W) and q 1is semiexceptional.

Proof. From (3.3), we see that (3.5) implies (3.8). Together (3.6)

and (3.8) imply (3.7). It remains to prove (3. 4) - (3.6). This will
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be done in Cases 1 - 3, respectively.

By Theorem 6,

(3.9) H = 6a1(Qz )/am))
and
(3.10) G/H = Gal(@(n)/Q}.

For any field K with @ < K< @ ), 1let D (K) denote the decomposition
n q

group for q in K, and let. fq(K) denote its order. We have [10, p. 104}
(3.11) p(a) = (op) = carfeeyy/z)

for the decomposition field Z. By (3.9) - (3.11), we have

(3.12) M={(Hq) = Gal(Q(Zn)/Z n Q(n,))
and

(3.13) p,(aem) = ca1(ee/z n am) = we.
Case 1. alp).

By (3.3), q|r>T for some <t € G - H. By (3.2),
(3.14) Q(n- )

for some choice of Q. By (3.10) and (3.13),
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(3.15) 6q = I_I a(Q).

o € G/M

By (3.14) and (3.15),

(3.16) q ]?—[ c(n - T(ﬂ)) .

loc € G/M
Since fq(QCq)) = |M/HI by (3.13), it follows by taking norms in
(3.14) that
(3.17) oMl

T

Now (3.4) follows by (3.16) and (3.17).
Case 2A. ¥(z) has a zero (mod q).

Here q divides V¥(u) = N(u -n) for some u € Z, so
(3.18) Qlu -m)
for some choice of Q. By (3.13), 1(Q) = Q for all = € M. Thus,
application of < in (3.18) shows that (3.14) holds for all =T € M.
The proof of Case 1 now shows that (3.16) and (3.17) hold for all
T € M. This proves the first part of (3.5)}.

Case 2B. q PT for T =o0_.

We have
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(3.19) nd = Z o, (a% 19 = 2 (mod q) .
h €H n

Since q PT, we have Q|(n - T(n)) for some choice of Q. Together with

(3.19), this yields

(3.20) Q|(nq - ).

Now,
q -1

(3.21) n-n= I—I (n- K (mod q),
k=0

so by (3.20), Qf(n - k) for some integer k. Thus q divides

N(k - 1) = ¥(k). This proves the second part of (3.5).
Case 3. q € H.

Since q € H, the group in (3.9) contains that in (3.11), so
Z>QMm). Thus q splits completely in @(m). For any choice of Q, it
follows that Q is a first degree prime, that is, N(Q) = q. Thus, for

any k > 0, the ring G/Qk has N(Qk) = qk elements, and there is a ring

isomorphism

(3.22) 6/Q" ~ z/4"z.

By (3.22), m = u (mod Qk) for some u € Z, so qk = N(Qk) divides

¥(u) = N(u -n)). This proves (3.6).

Theorem 8. If q 1is semiexceptional, then G # M.

232



EVANS 17

Proof. Suppose that q 1is semiexceptional and G = M. Then by (3.4),
n =1(n) (mod q) for some T € G - H.
This contradicts Theorem 4.

Corollary 9. If e = [G/H] is prime, then there avre no semiexceptional

(or exceptional) primes.

Proof. Suppose that g is semiexceptional and e is prime. Then
H< (H,9} =M= G, which contradicts Theorem 8, Thus, if e is prime,

no primes are semiexceptional (or exception2l, by (3.8)).

Corollary 10. Let n = pa for any odd prime p, with a = 1, and let

dj{p - 1). Let H be the group of pa-ld-th powers {mod n). (Note that
(1.2) holds.) If gqlbD(), then (ind q, pq'ld) > 1, where ind q denotes
the index of q with respect to any primitive root (mod n).

a-1

Proof. Suppose that q|DO) and (ind g, p~ "d) = 1. Then q is semi-

exceptional and G = (H,q) =M, which contradicts Theorem 8,

Examples.

In the three examples below, n = pa for an odd prime p, with
a=1,
1. Let n = p2 and let H be the group of p-th powers (mod n).
Then there are no semiexcepfional or exceptional primes, by Corollary 10.

This was proved for a = 1 by the Lehmers [16, Theorems 14 and 15].
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a .
2. et n=p with a>1, and let H be the group of pQ'l—th

powers (mod n). Then all semiexceptional primes, if any, are p-th

powers (mod n), by Corollary 10; c.f. T[16, p. 2971,

3. Let n=p=ef+1 and let H be the group of (nonzero) e-th
power residues {mod p), with e prime. Then there are no semiexceptional
or exceptional primes. This special case of Corollary 9 was proved for
a=1 by E. Lehmer [22, p. 375]. A generalization involving Kloosterman
sums is given in [15, p. 108].

4, Exceptional and semiexceptional primes for e = 4

In this section, a=1; n=p=4f + 1= X2 + Y2 with X =1

(mod 4); and H 1is the group of quartic residues {mod p}. We will
explicitly characterize the sets of exceptional and semiexceptional
primes q. The cases q = 2 and q > 2 are considered in Theorems 11
and 12, respectively. For the most part, the results in these theorems
were stated without proof by Sylvester [24], [25], [26]1.

From (1.1), m is the quartic period

£
4v
4.1 n = Z g8,
v =1 P

where g 1is a primitive root (mod p}. For T =0 ,, write n; T (M)
g
and Pf:PT. By [2, Theorem 3.11], the four conjugates of m, namely

T}G’ ﬂl: ﬂ2, and ns, have the form

“.2) ;v‘? 1x (2p - ZX‘@UZ}/%g ~vF -1 x (26 + zx\@‘)”z},m.

The following well known formulae for the quartic period polynomial ¥(z)

and its discriminant D{¥) can be obtained directly from (4.2):
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4.3) ¥ = 2 + 2%+ 22 (2p + (1Fp)/s

+ z(l + 2pX -p —Zp(-l)f)/IG + (1 + 8pX -4pX2 -2p +5p2 _4(_1)f(p + pz))/zsf,,

and

(4.4) DY) = PP, with Py =py’/4 and P =-pY?/16 + p2(1 - (-DF)ss.

Theorem 11. We have

(4.5) f is even iff D(¥) 1is even,
and
(4.6) f is even iff V¥(z) has a zero (mod 2).

Moreover, the following are equivalent:

4.7 2 1is exceptional;

(4.8 2 is semiexceptional;

(4.9) 2 is quadratic but not quartic (mod p);
(4.10) afy.

Proof. Suppose that f is odd. Than < %-) = -1, so M=G. Thus D)
is odd by Theorem 8. Then (3.5) implies that V¥(z) has no zero (mod 2).
Suppose now that f is even. Then ( %—) =1 and 4|Y by [2, Theorem

3.17]. Since P2 = pY2/4 by (4.4), P2 is even. Therefore, 2|DQV).
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Moreover, by (3.5}, V(z) has a zero (mod 2). This cdompletes the proof of

(4.5) and (4.6).

By (3.8), (4.7) implies (4.8). Assume (4.8). Then 2]D(¢), so
2|f by (4.5). Since moreover 2 is not quartic (mod p)} by (4.8), it
follows that (4.9) holds. The equivalence of (4.9) and (4.10}) can
be seen from [2, Theorem 3.17]. Finally, assume (4.9). Then 2]£, so

¥(z) has a zero (mod 2) by (4.6). This gives (4.7).

Theorem 12. Let g > 2. There are no odd semiexceptional primes if f

is even. If f is odd, then the following are equivalent:

(4.11) q 1is semiexceptional;
(3.12) q is exceptional;
{4.13) q =3 (mod 4) and qlY.

Proof. In [6, Appendix], it was proved that there are no odd semiexceptional
primes when f dis even, and it was also proved that (4.12) and (4.13) are
equivalent. By (3.8), (4.12) implies (4.11). Finally, suppose 4.11)
holds, with 2 I £. We will deduce (4.13). Since q|D(V), q divides P1

or P,. If q|P then gq|{4p - Yz)/lé by (4.4). In this event, E. Lehme:

2 1?
[20, Theorem III] proved that q 1is quartic {mod p), which contradicts
(4.11). Thus qle, so by (4.4), qlY. If q =1 (mod 4), then q would be

quartic by the biquadratic reciprocity law {9}, so q = 3 (mod 4).
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5. Exceptional and semiexceptional primes for e = 8

In this section, a=1; n=p=8f +1 =X + Y2 = C2 + ZD2

with
X=C=1 (mod 4); and H is the group of octic residues (mod p). We

will explicitly characterize the sets of semiexceptional and exceptional
primes q. The cases q =2 and q > 2 are considered in Theorems 13

and 14, respectively.

From (1.1), m 1is the octic period

f
g8v
(5.1) n = Z s
VI p

where g 1is a primitive root (mod p). For Tt =o¢ i define n; = T(M)
g
and Pi = PT, The octic period polynomial +(z), the Ny and Pi’ and

the discriminant D(¥) = PiP§P§P4 are explicitly computed in [6]. From

these computations, we have
(5.2) P, = p28YD",

(5.3) 16(ny + My -1y = MMy * My - Ny - M)

%

p+XVE + (200 + 2xvp) V2,

5.4 Mg *Mp* My ¥Mg =My ~ Mz~ Mg~y = V5
and

2
(5.5) 2mg +my - My ~mg) =P X VP

Let @ denote the ring of integers in Q(n). The symbol Q will

again be used for a prime ideal in 6 dividing q® . Define
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1, if q is quartic (mod p),

(5.6) N =
-1, otherwise.
Theorem 13. For q = 2,
(5.7) D(¥) is odd iff 2|f and N =-1;
(5.8) Y(z) has a zero (mod 2) iff N = 1,
(5.9) 2 is exceptional iff 2 1is quartic but not octic (mod p).
(5.10) 2 1is semiexceptional iff either 2 1is quartic but not octic

(mod p) or ZIf, N = -1.

Proof. In Cases 1, 2, and 3 below, we will prove, respectively, that
(5.11) if 2|f, N = -1, then 2/D(¥);

(5.12) if 2J/f, N = -1, then 2|D(¥) but ¥(z) has no zero (mod 2);
and

(5.13) if N =1, then V¥(2) has a zero (mod 2).

Theorem 13 followsfrom (5.11) - (5.13), with the aid of (3.5) and

(3.8).

Case 1. 2|€, N = -1,

Assume that 2|D(¥). Then ZIPi for some i, 1 =i =< 4. For some
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choice of Q, QICnO - m;). Since A € M, it follows from (3.13) that
cq(Q) = Q. Therefore, since N = -1, Olmj - ni+j) for every even j. In
particular, this yields Q[(no -m,) if 1 is even. Thus 2|P4 if 2]i.
However, by [2, Theorems 3.15 and 3.17], 2|D and 4]]Y. Therefore P,
is odd by (5.2), so i is odd. Consequently

Qlfﬂo Tyt T, - Mg + My - Mg + Mg - n7), »which contradicts (5.4).
Case 2. 2/f, N = -1.

By [2, Theorems 3.15 and 3.17], 4|Y and 4|D. Thus P, 1is even

4
by (5.2}, so 2|D(¥).

Now' suppose that ¥(z) has a zero (mod 2). Since N = -1, it follows

from (3.5) that 2|p2. Then by (3.4),
(5.14) 2[tny - ny) (g - M3

It is well known [20,(3)] that
7

(5.15) Vlmsy = ;2;:0(u, k-mgmn, if 4fu,

where (x,y)8 denotes a cyclotomic number (mod p) of order 8. By (5.14)

and (5.15),
7

(5.16) 0=tng - )y -ng) = ;EE:OCknk (mod 2),

where

(5.17) G = (1,K)g + (L,k -2)4 - (3.K)g - (Lk - Dg -
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By (5.16), Ck is even for each k, so ZIC4. However, the table of values
of (x,y)8 given in [19, pp. 116-117] shows that C4=(X - C)/8, which is
odd by [2, Theorems 3.14 and 3.16]. This contradiction proves that

V{z) has no zero (mod 2).
Case 3. N=1

By [2, Theorem 3.17], 8|Y, so P4 is even by (5.2). Consequently

¥(z) has a zero {(mod 2) by (3.5).

Theorem 14. Let q > 2. Then

(5.18) q 1is exceptional iff q|DY and q is quartic but not octic
(mod p),

and

(5.19) q 1is semiexceptional iff q{DY and q is mot octic (mod p).

Proof. We proved (5.18) in [6, Theorem 3]. To prove (5.19), first
suppose that qIDY. Then by (5.2), th4, so qID(W). Conversely,
suppose that q is semiexceptional. It remains to prove that q/DY.

If q|P4, then q|DY. Thus-suppose that q|Pi for some i, 1 =1 =3,
We know that q is quadratic, otherwise G = M, which contradicts
Theorem 8. If N = -1, then the proof of Theorem 13, Case 1, shows that
q]P4, so q|DY. Finally, assume that N = 1. First assume that qIPZ,
so Ql(n0 - nz) for some choice of Q. Since oq(Q) =Q and N =1,

it follows that Ql(no ST, v, - n6). Then by (5.5), q divides

(p + XVp) (p - X\/E) = pY2, s0 q]Y. Finally, assume that q]Plps.

Then Q]Cno - nl)(no - ns) for some choice of Q, so
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Qg -y +my -y - mg + My - M), Thus by (5.3), Q divides
2
@ + XVP? - @°+ 2pxvp) = pX@ - p? = Y2, so q|Y.

6. Some corrections to the literature

In [5}, the argument after (20) should be applied with e = pA¢(m)
instead of e = pA. In [3], the right side of the congruence in (4.9)
should be multiplied by (2/p). In {19, p. 117], the cyclotomic numbers
(1,5), (1,6), (7,5), and (7,6) equal (0,3), (1,3, (1,3), and (1,7),
féspectively, not (1,3), (0,3), (1,6), and (1,3}, as given in the table.
In {21, (12)], replace +a by -a. On line 12 of [16, p. 297],

replace pa’l

by p; also, lines 17 - 18 should be replaced by an
assertion equivalent to Corollary 10 of this paper. In the formulas for
QOCY) and Ql(y) in [14, p. 4041, dinsert -15 before the bracketl: also,
in the formula for Ql(y), the coefficient of p2 in braces should be

8X (3)+8X (~3)-8X(-1)-3.
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