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PERIOD POLYNOMIALS FOR GENERALIZED CYCLOTOMIC PERIODS 

Ronald J. Evans* 

The theory of cyclotomic period polynomials is developed for general 

periods of an arbitrary modulus, extending known results for the Gauss 

periods of prime modulus. Primes dividing the discriminant of the 

period polynomial are investigated, as are those primes dividing values 

of the period polynomial. 

i. Introduction and notation 

Let n and s be relatively prime positive integers. Write 

~n = exp(2~i/n). Let G = G n be the group of ~(n) reduced residues 

(mod n) and let H be an arbitrary subgroup of index e in G. For 

c ~c(~s ) = ~s" C E G, define ~c E Gal(~C~ns)/~(~s) ) by ~ = ~n ' 

Let r denote the product of the distinct prime factors of n, 

r 
or twice that, according as 8 ~ n or 81n. Choose a E Z[~sn], a / O. 

We can now define the %eneralized eriod 

(1.1) n = ~ ~hCa~n ) 
h E H 

If a = 1 and H is cyclic, then D is the cyclotomic period studied 

for prime n by Gauss in 1801 and for general n by Kummer [12] in 

1856. 
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2 EVANS 

In t h e  case  a = 1, Diamond, Ger th ,  and Vaa l e r  

beautiful result that ~ ~ 0 iff 

[4] have proved the 

(1 .2)  no n o n t r i v i a l  e lement  o f  H i s  e 1 (mod r ) .  

(For example, (1.2) holds if n is squarefree. An example for prime 

power n is given in Corollary i0.) In Theorem 5, this result is proved 

r 
f o r  g e n e r a l  nonzero  a ( ~ [ ~ n s ] .  

In  [5] ,  i t  was proved  f o r  c y c l i c  H t h a t  i f  ~ ~ 0, then  ~ has 

degree  e = IG/Ht ove r  ~(~s ) .  This  now f o l l o w s  f o r  g e n e r a l  H by 

Theorem 6. Consequen t ly  f o r  ~ ~ 0 and s = 1, t he  minimal po lynomia l  

o f  ~ ove r  ~ has t h e  form 

e 

(1.3) ~(z) = I I  Cz- ~i(~]), 
i = l  

where t h e  ~ i ( ~ )  a re  t h e  d i s t i n c t  c o n j u g a t e s  o f  ~.  

We c a l l  %(z) t h e  p e r i o d  po lynomia l  o f  D. I t s  d i s c r i m i n a n t  i s  denoted  

by D(~).  

For pr ime n ,  t he  p e r i o d  po lynomia l  o f  ~] has been e x p l i c i t l y  

computed f o r  a l l  v a l u e s  o f  e ~ 5 (see  [ 3 ] ) ,  f o r  e = 6 [18A], and f o r  

e = 8 [6] .  Gurak [7 ] ,  [8] and the  Lehmers [17] ,  [18] have r e c e n t l y  

s t u d i e d  the  beg inn ing  c o e f f i c i e n t s  o f  t he  p e r i o d  po lynomia l  in  t he  case  

t h a t  n i s  l a r g e  in  comparison to  f = ]HI. In o rde r  to  apply t h e i r  

r e s u l t s  f o r  g e n e r a l  p e r i o d s ,  Theorem 6 i s  needed.  

Theorem 4 shows t h a t  i f  (1 .2)  ho lds  and t 2 an ( in  t he  r i n g  o f  

a l g e b r a i c  i n t e g e r s )  f o r  a g iven  r a t i o n a l  pr ime t ,  t h e n  ~ ~ Vc(~) 

(mod t )  f o r  a l l  c ( G - H. This  r e s u l t  i s  needed in  our  subsequen t  

investigations in Theorem 8 of prime factors of the discriminant D(~). 
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EV~J]S 3 

Note that Theorem 4 is easy to prove when n is prime, since then 

n2 n-l a E s ) and the set ~n' ~ .... '~n is a relative integral basis 

for Q(~sn ) over ~(~s). The argument for general n is considerably 

more complicated, as the proof of Theorem 4 shows. 

In the sequel, q denotes any (rational) prime not dividing na. 

We often view q 

for some h E H. 

Suppose that 

b e ~  if 

q[D(~), then q 

as an element of G; e.g., q E H means q ~ h (mod n) 
i 

(1 .2)  ho lds  and s = 1. The prime q i s  s a i d  t o  

q ~ H and ~ (z )  has a ze ro  (mod q ) .  I f  q ~ H and 

i s  s a i d  t o  b e ~ .  Theorem 7, (3 .8)  

shows that exceptional primes are semiexceptional. In particular, there 

are only finitely many exceptional primes for each fixed pair a, n. On 

the other hand, semiexceptional primes needn't be exceptional. For 

example, with a = I, n = 73, e = IG/HI = 8, q = 3, we have 

D(%) = 34254737 [20, p. 442] and 3 ~ H, since 3 is not octic (mod 73); 

thus 3 is semiexceptional. However, 3 is not exceptional because %(z) 

has no zero (mod 3) [20,(39]. 

In w and w the exceptional and semiexceptional primes are 

explicitly determined for prime n in the cases e = 4 and e = 8. The 

case e = 6 is discussed in [18A]. For all other values of e ~ 8, no 

such primes exist, by Corollary 9. The determination of exceptional and 

semiexceptional primes for e = 4 was first accomplished by Sylvester 

[24], [26], but his proof (see [25]) uses the erroneous assumption that, 

for general e, semiexceptional primes are exceptional. 

The primary purpose of this paper is to prove Theorems 7 and 8. In 

the case that n is prime, much of Theorem 7 was proved by Kummer 

[II, p. 197]. (Note Well's remarks about Kumaner's paper in [13, pp. 4, 955].) 

I. Schur [23] anticipated part of (3.8) for general n. In the case that 

n is prime, Sylvester [24], [26] stated (5.6) without proof. Also for 
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EVANS 

[21, p. 22] gave (3.7) and applied it to give resi- 

e = 3, 4. As is indicated in the examples at the end 

Corollaries 9 and I0 have been proved by 

and more recently by D. H. and E. Lehmer 

w we list a few corrections to literature quoted in this 

2. 

n~ 

Periods 

In the sequel, if 

and write 

n > i, let p be the largest prime factor of 

(2.1) n = pam, with p 2 m, a ~ I. 

Write 

(2.2) r = rOP0, 

= 2 = where P0 4 if n = ~ 8, and P0 = p otherwise. Note that r 0 is 

the product of the distinct prime factors of m, or twice that, according 

as s 2 m or Slm. 

Lemma i. Suppose that x, k ~ Z with p 2 k, and that pBN(x - I) 

B ~ i, but B > 1 when p = 2. Then 

A+B (xkP A 
P II - l) for each integer A ~ O. 

where 

Proof. The proof follows easily by induction on A. 
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EVANS 

Lemma 2.  Le t  x ( Z ,  x e 1 (mod r ) ,  and  

d > 0 and  some p r i m e  t s u c h  t h a t  t 2 1 n ,  

X ~ 1 (rood n ) .  

5 

Then f o r  some 

( 2 . 3 )  x d ~ 1 (mod n / t )  and  x d ~ 1 (mod n ) .  

P r o o f .  The r e s u l t  i s  t r u e  f o r  n ~ 4 ,  s o  s u p p o s e  t h a t  n > 4 .  

p r o c e e d  b y  i n d u c t i o n  on t h e  n u m b e r  o f  d i s t i n c t  p r i m e  f a c t o r s  o f  

We 

n. 

Case  1. p a l ( x  - 1 ) .  

S i n c e  x ~ 1 (mod r 0 )  and  x ~ 1 (mod m) ,  t h e  i n d u c t i o n  h y p o t h e s i s  

y i e l d s  some d > 0 and  some p r i m e  t s u c h  t h a t  t21m,  x d e t (mod m / t ) ,  

and  x d ~ ! (mod m). Thus ( 2 . 3 )  h o l d s  f o r  t h i s  p a i r  d , t .  

Case  2.  p a  ~ (x - 1 ) .  

S i n c e  x ~ 1 (mod r ) ,  we h a v e  pBl[(x - 1 ) ,  w h e r e  a > B ~ 1 and  

B > 1 when p = 2.  S i n c e  p i s  t h e  l a r g e s t  p r i m e  f a c t o r  o f  n ,  

p ~ ~ ( m ) .  D e f i n e  d = ~ (m)p  A, w h e r e  A = a - B - 1 .  No te  t h a t  A t 0 .  

By Lemma 1, p a - l l l ( x d  - 1 ) .  A l s o  x d ~ 1 (mod m) s i n c e  @(m) l d .  

T h e r e f o r e  ( 2 . 3 )  h o l d s  w i t h  t = p .  F i n a l l y  n o t e  t h a t  p 2 i n  s i n c e  

a > B > _ l .  

Lemma 3.  S u p p o s e  t h a t  ( 1 . 2 )  h o l d s  and  G = H. Then  ~ = ~ a .  

Proof. Since (1.2) holds and G = H, reduction (mod r) maps C = G 
n 

isomorphically onto G r. Thus ~(r) = ~(n), so r = n. In particu]ar, 

n i s  s q u a r e f r e e  and  a ( Z [ ~ s ] .  T h e r e f o r e ,  f rom ( 1 . 1 ) ,  

xEG xEG 
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6 EVAN S 

E X 
The Ramanujan sum ~n equa l s  A(n) [1,  Theorem 8 . 6 ] ,  where 

x ~ G  
i s  t h e  Moebius f u n c t i o n .  As n i s  s q u a r e f r e e ,  ~(n) = + 1, so 

7]=+ a. 

Theorem 4. Suppose that no nontrivial element of H is m 1 (mod r). 

Let t be a prime with t 2 ha. Then 

(2.49 ~ ~ ~c(~) (mod t )  for all c E G - H. 

Proof. The theorem is true for n 5 4, so let n > 4. 

induction on the number of distinct prime factors of n. 

subgroup I c H defined by 

We proceed by 

Consider the 

(2.s) I = {x E H : x - 1 (mod pa)}. 

Reduction (mod m) maps I isomorphically onto a subgroup J c G m- 

Write 

[2 .6)  

k 

H = U xiI' 
i 1 

a disjoint union of cosets with x I = i. Then 

( 2 . 7 3  R : = cr a ( v l )  = o" a (a)~h ~ha 

m+p h E H h(m+p ) p 

k k 

i =  1 
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EVANS 7 

where 

(2.8) 6 = x ~ I  gX(am+pa(a)~m).  

For w , Gm, define ~w ' Gal(~(~ns)/~(~spa)) 

by 

(2.9) ~w(~m ) = ~m ' ~w spa = ~ a" 
sp 

Then 

(2.10) 6 = ~ "~x(Cy a(a)~m) 
x ~ J X m+p 

Thus 6 i s  a g e n e r a l i z e d  pe r iod  o f  the  type  in  (1 .1 ) ,  with the  r o l e s  

o f  ~,  n,  G, H, a ,  s ,  r p layed  by 5,  m, Gm, J ,  g a ( a ) ,  sp a r0 ,  
m+p 

r e s p e c t i v e l y .  Fur thermore ,  i t  fo l lows  from (1.2)  t h a t  no n o n t r i v i a l  

element o f  the  subgroup J c G i s  ~ 1 (mod r 0 ) .  The re fo re ,  by induc-  
m 

t i o n  h y p o t h e s i s ,  

(2.11) ww(6) ~ 5(mod t )  f o r  a l l  w E C m - J .  

If J / Gm, it follows from (2.11) that 

(2.12) 5 ~ 0 (mod t ) .  

In  f a c t ,  s i n c e  t 2 a,  Lemma 3 shows t h a t  

J = G . 
m 

For i ~ i ~ k, write 

(2.12) a l s o  holds  when 

(2.13)  x i = PoSi + r i ,  cx i = PoS~ + r~ (0 < r i , r  ~ < p0 ) .  
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8 EVANS 

We proceed to show that 

(2.14) ry .... r k are distinct and r{ ..... r~ are distinct. 

Assume for the purpose of contradiction that x i ~ x. (Rod p0 ) for some 
J 

-I 
i, j with i # j. Then x : = xix j m I (Rod p0 ). On the other hand, 

x ~ 1 (Rod pC), since the cosets in (2.6) are distinct. Thus 

pB[ l (x  - 1) w i t h  1 _< B < ~ ,  and  B > 1 when  p = 2.  

By Lemma i, 

~-B 
(2.15) x p _-- i (mod p=) . 

Since x ~(r) m i (mod r) and x ~ H, (1.2) yields 

(2.16) X O ( r )  --- 1 (mod p ~ ) .  

~-B 
Since p is the largest prime factor of n, the exponents p and 

,(r) in (2.15) and (2.16) are relatively prime. This yields the 

contradiction x - 1 (mod p~). Therefore, the assumption x i - xj (mod p0 ) 

is false, and consequently (2.14) holds. 

Suppose that 'q = Oc(~). (Rod t) for some c E G. To prove (2.4), 

it must be shown that c E H. By (2.7), 

k k 

x i  = R -= (8)~ t )  
( 2 . 1 7 )  ~ x . ( 5 ) ~  ~ ~c  (R) = ~ c x .  " 

i =  1 1 p = 1 x p 

By ( 2 . 1 7 )  a n d  ( 2 . 1 3 ) ,  
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k k 

c ~ )  ~ # ~  %c~)~ ~ ~ = ~ ~ %c~)~ ~mo~ ~) 

' P0-1 c o m p r i s e  a l l  o r  p a r t  o f  a r e l a t i v e  i n t e g r a l  The e l e m e n t s  ~ a" ~2a . . . .  "~ a 
P P P 

(p0) 
b a s i s  f o r  Q sn o v e r  ~ ~sn  " Thus ,  i n  v i e w  o f  (2 .14 )  and ( 2 . 1 8 ) ,  

t h e r e  i s  a f i x e d  v a l u e  o f  i such  t h a t  r~  = r 1 and 

( 2 . 1 9 )  ~ p 0 s l  a (6) ~ ~ p0s~ ~ o (5) (mod t ) .  
a x 1 a cx. 

P P 

Note that x I = i, r I = i, and s I = 0. Thus the left side of (2.19) 

equals 6. Define 

(2 .20 )  = �9 § i. d : = cx i PoSi 

Then since r~ = r I = I, 

so 

(2 19) yields 6 e ~dal- �9 Cd(6 ) (mod t ) ,  

P 

~l~d 
( 2 . 2 1 )  Cd(5 ) ~ 6 (mod t ) .  

P 

Assume f o r  t h e  p u r p o s e  o f  c o n t r a d i c t i o n  t h a t  d ~ 1 (mod p a ) .  Then by 

(2 .20) ,  pB]](1 - d) f o r  some B w i t h  1 5 B < a ,  and B > 1 when p = 2. 

Define 

( 2 . 2 2 )  d A = d ~(m)pA (A >_ 0 ) .  

Fix A = a - B - I. By Lemma I, 

(2.23) p a - 1 ] l  (d A _ I), 
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10 

consequent  ly 

EVi~/~ S 

(2.24)  mp a-1 [(a A - 1) . 

Applying a d successively ~(m)p A - 1 times to the members of (2.21), 

we obtain 

l-d A 
% (mod t ) .  (2.25) A(6) - 6~ 

P 

By ( 2 . 8 ) ,  6 ~ Q(~Pns ) ,  so by (2 .24) ,  adA(6) = 6. T h e r e f o r e  (2.25) becom 

l-d A 
(2.26)  6 ~ 6~p~ (mpd t ) ,  

By (2.26) and (2.23), t[6(l - ~p), so t15 p. This is impossible since 

t ~ p and t ~ 6 by (2.12). Therefore 

(2.27) d ~ I (mod p~). 

By (2.27)  and ( 2 . 21 ) ,  

(2.28) Od(6) ~ 6 (mod t). 

Reduct ion  (mod m) maps d to  an e lement  y ~ G m. By (2.27) and 

(2.9), 

(2.29) ~y(8) = Od(8).  

From (2.28) and (2.29), 

(2.50) ~y(6) -= 6 (rood t ) .  
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EVANS 1 1 

In view of (2.11) and (2.30), y E J. Thus, by the definitions of J 

and y, d - h (mod m) for some h E I. Since also d - 1 =- h (mod p ), 

it follows that d = h (mod n). Therefore d 6 H, so by (2.20) and 

(2.6), c E H, as desired. 

Theorem 5. No nontrivial element of H is -= 1 (rood r) iff ~ ~ 0. 

Proof. Suppose that (1.2) holds. If G = H, then ~ ~ 0 by Lemma 3. 

If G / H, then ~ ~ 0 by Theorem 4. 

Conversely, suppose that (1.2) fails to hold. By Lemma 2, 

(2.3) holds for some x E H and integers d, t with t prime such 

that t2]n. Define u = n/t and K = {h E H : h ~ 1 (mod u)}. Write 

(2.31) H = U xvK 

v 

a union of disjoint cosets. By (2.3), K contains the nontrivial 

element h x d Since h - 1 (mod u) and tlu, we have h t -- . ~ 1 

(mod n). Thus h, h 2,...,h t are t distinct elements of K. Moreover, 

K contains no other elements; for if K had more than t elements, then 

two such elements k I and k 2 would satisfy (k I l)/u - (k 2 l)/u 

(mod t), whence k I = k 2 (mod n). lqlus K = {h i : 1 _< i _< t}. Write 

h i = 1 + w.u. The w. run through a complete residue system (mod t) 
1 1 

as i runs from 1 to t, so 

t 

= 0. 
= 1 ~t 

Consequently, from (2.31), 
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1 2 EVANS 

(2.32) T] --- 

t 

k; = ~; 

t wi) 
E ~ iE1 v n = <t 

=0, 

where the second equality of (2.32) holds because 

t 

< a X a~-. n 
i = v 

h i = l (rood u). 

The___ orem 6. If ~ # O, then ~ has degree e = IG/H] over Q(Ks). 

Proof. Suppose that ~ ~ 0. Then (1.2) holds by Theorem 5. Therefore 

Theorem 4 can be applied to show that ~ # Oc(~) for each c E G - H. 

It is clear from (I.i) that ~ = Oc(~) for c ( H. Thus ~ is fixed 

in Gal(@(Knd)/Q(Ks] ) so E has by exactly IHI automorphisms ~c 

degree e over ~(Ks). 

3. Exceptional and semiexceptional primes 

Throughout the sequel, q is a prime with 

such that (1.2) holds, so ~ # 0; s = I; and 

group of G generated by H and q. 

q ~ na; H is chosen 

M = <H,q > is the sub- 

We identify the elements c ( G with the elements 

o c E Gal(Q~n)/~) , and similarly the elements of G/H 

corresponding Galois group. When an element of G or 

as an automorphism, it will be denoted by either ~ or 

polynomial @(z) in (1.3) can be written as 

(3.1) 

with those in the 

G/H' is to be viewed 

~. Thus the period 

For each ~ ( G, define 
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EVAN S 1 3 

(3.2) P = 

where N denotes the norm from Q(~]) to Q. The discriminant D(~) of 

the period polynomial ~(z) equals 

(3.33 D(~) = H p 
I ~ n: ( G/H 

For prime n, explicit formulas for D(~) are known for small e. See 

[14] for e ~ 4; [22] for e = 5; [18A] for e = 6; and [6] for e = 8. 

Let @ denote the ring of integers in Q(Q). The symbol Q will be 

reserved for a prime ideal of @ dividing q@ . 

Theorem 7. The prime q has the following properties. 

(3.4) If q[D(@), e.g., if q is semiexceptional, then 

\ - . . '  q [M/H[[  ql ~(n ~Cn~, and V~ for each ~ E G such that qlP T' 
o ( G/M 

{ 3 . 5 ) ~ .  I f  9(z) has a zero-(mod q ) ,  e . g . ,  i f  q i s  e x c e p t i o n a l ,  then  

ql l [ ~(n - ~C~3) and q IM/HI[P, f o r  each T ~ M. Converse ly ,  i f  
a ( G/M 

q[P. ~ for ~ = ~q, then ~(z) has a zero (rood q). 

(3.6] If q E H, then ~(z) has a zero (mod qk) for any k > 0. 

(3.7) If q ~ D(~), then q ( H iff r has a zero (rood q]. 

(3.8) If q is exceptional, then q[D(~) and q is semiexceptional. 

Proof. From (3.3], we see that (3.5) implies (3.8]. Together (3.6) 

and (3.8) imply (3.7). It remains to prove (3. 4) - (3.6). This will 
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14 EVANS 

be done in Cases 1 - 3, r e s p e c t i v e l y .  

By Theorem 6, 

(3.9) H = Gal(~C~n)l~(~]) ) 

and 

C3.10) G/H = Gal ((~('q)/@.). 

For any f i e l d  K with ~ c K c O(~n),  l e t  Dq(K) denote  the  decompos i t ion  

group f o r  q i n  K, and l e t .  fq(K) denote  i t s  o rde r .  We have [10, p.  104] 

c~.1,) 0q(~c~o)) <oq > = GaiC~C~n)~Z) 

for t h e  decomposition field Z. By (3 .9)  - (3.11~, we have 

(3.12) M = < H,q > = GaI(Q(~n)/Z n ~(D)) 

and 

Case I. qlD{~) �9 

By (3.3), qlP for some ~ E G - H. By (3.2), 

(314) Qt(~ ~(~) 

for some choice of Q. By (3.10) and (3.13), 
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(3.15) 

By (3.14) and (3 .15) ,  

EVANS 

@q = ~ ~(Q). 

o ~ G/M 

15 

(3.16) q ~ a(~-~(~)) . 
let E G/M 

Since f q ( ~ ( ~ ) )  = IM/HI by c3.1s), i t  f o l l ows  by t ak ing  norms i n  

(3.14) that 

(3.17) qlM/HI v.  

Now (3.4) follows by (3.16) and (3.17). 

Case 2A. ~(z) has a zero (mod q). 

Here q divides ~(u) = N(u - ~) for some u ~ Z, so 

(3.18) Q (u - n) 

for some choice of Q. By (3.13), ~(Q) = Q for all ~ E M. Thus, 

application of ~ in (3.18) shows that (3.14) holds for all z ( M. 

The proof of Case 1 now shows that (3.16) and (3.17) hold for all 

E M. This proves the first part of (3.5). 

Case 2B. qlP for z = Oq. 

We have 
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1 6 EVANS 

(3.19) ~q - ~ ah(a~n)q -"~(n) (rood q) . 
hEH 

Since q]P, we have Q(~- ~(N))for some choice of Q. Together with 

(3.19), this yields 

(3.20) QI O]q - ~q)' 

Now, 

q -I 

(3.21) ~]q - D - l l 03- k) (mod q), 
k=O 

l 
so by (3.20), Q[(~ - k) for some integer k. Thus q divides 

N(k - ~) = @(k). This proves the second part of (3.5). 

Case 3. q E H. 

Since q E H, the group in (3.9) contains that in (3.11), so 

Z ~ ~(~). Thus q splits completely in ~(~). For any choice of 0, it 

follows that Q is a first degree prime, that is, N(Q) = q. Thus, for 

any k > 0, the ring O/Q k has N(Q k) = qk elements, and there is a ring 

isomorphism 

(3.22) O/Q k ~ s 

By (3.22), ~ ~ u (mod Qk) for some u E g, so qk = N(Qk) 

~(u) = N(u -~). This proves (3.6). 

divides 

Theorem 8. If q is semiexceptional, then G # M. 

2 3 2  
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Proof. Suppose that q is semiexceptional and G : M. Then by (3.4), 

~1 - "C0]) (rood q) for some • E G - H. 

This contradicts Theorem 4. 

Corollary 9. If e = IG/H[ is prime, then there are no semiexceptional 

(or exceptional) primes, 

Proof. Suppose that q is semiexceptional and e is prime. Then 

H < < H,q ) = M = G, which contradicts Theorem 8. Thus, if e is prime, 

no primes are semiexceptional (or exception~l, by [3.8)). 

Corollary I0. Let n = p for any odd prime p, with a ~ I, and let 

dl( p - I). Let H be the group of pa-ld-th powers (mod n). (Note that 

(1.2) holds.) If qID(~), then (ind q, pa-ld) > i, where ind q denotes 

the index of q with respect to any primitive root (mod n). 

P r o o f .  Suppose t h a t  q[D(~) and ( ind  q,  p a - l d )  = I .  Then q i s  semi-  

exceptional and G = < H,q) = M, which contradicts Theorem 8. 

Ex_~ples. 

In the three examples 5elow, 

a_>l. 

a 
n = p for an odd prime p, with 

2 
I. Let n = p and let H be the group of p-th powers (mod n). 

Then there are no semiexcept'ional or exceptional primes, by Corollary I0. 

This was proved for a = 1 by the Lehmers [16, Theorems 14 and iS]. 
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2. Let n = p~ with a > i, and let H be the group of pe-l-th 

powers [mod n). Then all semiexeeptional primes, if any, are p-th 

powers (mod n], by Corollary I0; c.f. [16, p. 297]. 

~. Let n = p = ef + 1 and let H be the group of (nonzero) e-th 

power residues (mod p), with e prime. Then there are no semiexceptional 

or exceptional primes. This special case of Corollary 9 was proved for 

a = 1 by E. Lehmer [22, p. 375]. A generalization involving Kloosterman 

sums is given in [15, p. 108]. 

4. Exceptional and semiexceptionalprimes for e = 4 

In this section, a = i; n = p = 4f + 1 = X 2 + y2 with X ~ 1 

(mod 4); and H is the group of quartic residues (mod p). We will 

explicitly characterize the sets of exceptional and semiexeeptional 

primes q. The eases q = 2 and q > 2 are considered in Theorems i! 

and 12, respectively. For ~he most part, the results in these theorems 

were stated without proof by Sylvester [24], [25], [26]. 

From (I.I), ~ is the quartic period 

f 

(4.1) n = K~4v , 
v = l  

where g is a primitive root (mod p). For ~ = ~ i' write H i = r(~) 
g 

~nd Pi=P~. By [2, Theorem 3.11], the four conjugates of ~], namely 

~0' ~I' ~2' and ~3" have the form 

+ 2• I 'i-v -I +_ + 

The following well known formulae for the quartic period pol~nomial %(z) 

and its discriminant D(%) can be obtained directly from (4.2): 
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(4.3) ~(z) : z 4 + z 3 + z2(-2p + ( -1) f (3-p)) /8 

+ z(1 + 2pX-p-2p( -1) r  + (1 + 8pX-4pX 2 -2p +5p 2 -4(-1)f(p  + p2))/256 ' 

and 

(4.4) D(~) = P~P2 with P2 = pY2/4 and P l= -py2 /16+  p 2 ( 1 -  ( -1)f ) /8 .  

Theorem II. We have 

(4.5) f is even iff D(~) is even, 

and 

(4.6) f is even iff ~(z) has a zero (mod 2). 

Moreover, the following are equivalent: 

(4.7) 2 is exceptional; 

(4.8) 2 is semiexceptional; 

(4.9) is quadratic but not quartic (mod p); 

(4.10) 4HY. 

Proof. Suppose that f is odd. Than (21 =-i , so M = G. Thus D(%) 

is odd by Theorem 8. Then (3.5) implies that ~(z) has no zero (mod 2). 

Suppose now that f is even. Then ~ = 1 and 41Y by [2, Theorem 

3.17]. Since P2 = pY2/4 by (4.4), P2 is even. Therefore, 21D(~ ). 
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Moreover, by (3.5), ~(z) has a zero (mod 2). This dompletes the proof oI 

(4.5) and (4.6). 

By (3.8), (4.7) implies (4.8). Assume (4.8). Then 2[D(~), so 

21f by (4.5). Since moreover 2 is not quartic (mod p) by (4.8), it 

follows that (4.9) holds. The equivalence of (4.9) and (4.10) can 

be seen from [2, Theorem 3.17]. Finally, assume (4.9). Then 21f, so 

#(z) has a zero (mod 2) by (4.6). This gives (4.7). 

Theorem 12. Let q > 2. There are no odd semiexceptional primes if f 

is even. If f is odd, then the following are equivalent: 

(4.11) q is semiexceptional; 

C~.12) q is exceptional; 

(4.13) q ~ 3 (mod 4) and qIY. 

Proof. In [6, Appendix], it was proved that there are no odd semiexceptiona] 

primes when f is even, and it was also proved that (4.12) and (4.13) are 

equivalent. By (3.8), (4.12) implies (4.1!). Finally, suppose (4.11) 

holds, with 2 2 f. We will deduce (4.13). Since qlD(%), q divides Pl 

or P2" If qIPl, then qI(4p - Y2)/16 by (4.4). In this event, E. Lehme~ 

[20, Theorem III] proved that q is quartic (mod p), which contradicts 

(4.11). Thus qlP2, so by (4.4), qlY. If q ~ 1 (mod 4), then q would be 

quartic by the biquadratic reciprocity law [9], so q ~ 3 (mod 4). 
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5. Exceptional and semiexceptional primes for e = 8 

In this section, a = i; n = p = 8f + 1 = X 2 + y2 = C 2 + 2D 2 with 

X m C ~ I (mod 4); and H is the group of octic residues (mod p). We 

will explicitly characterize the sets of semiexceptional and exceptional 

q = 2 and q > 2 are considered in Theorems 13 primes q. The cases 

and 14, respectively. 

From (1.1), is the octic period 

f 
8v 

(s .1)  ~ = ~g 
V= 1 P " 

where g is a primitive root (mod p). For T : o i" define ~i = T(~) 
g 

and P. = P . The octic period polynomial $(z~ the ~i and P. and 
i "~ ~ I' 

222 
the discriminant D(~/) = PlP2P3P4 are explicitly computed in [6]. From 

these computations, we have 

(5 .2)  P4 = P2~y2D4' 

CS.3) 16 (~ I0  + "q4 - "q l  - "q5 ) ( ' qO  + r14 - r i 3  - TI7)  

= p + X%/p+ (2p 2 + 2pX~/~) I / 2 ,  

{S.43 ~0 + ~2 + ~4 + ~6 - ~I - ~3 - q S - ~7 = V~p ; 

and 

( 5 . 5 )  2 ( ~  0 + n4 - n2 - ~6  ) 2  = p + X %/~ . 

Let  O denote  t he  r i n g  o f  i n t e g e r s  in ~ (~ ) ,  The symbol 

again be used for a prime ideal in 0 dividing qO . Define 

Q will 
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(5 .6 )  

i 

N = I i, if q is quartic (mod p), 

-I, otherwise. 

Theorem 13. For q = 2, 

(5.7) D(~/) is odd iff 2If and N =-I; 

(5.8) ~(z) has a zero (mod 2) iff N = 1. 

(5.9) 2 is exceptional iff 2 is quartic but not octic (mod p). 

(5.1o) 2 is semiexceptional iff either 2 is quartic but not octic 

(mod p) or 22f, N = -i. 

Proof. In Cases I, 2, and 3 below, we will prove, respectively, that 

(5 .11)  i f  2 I f ,  N = -1 ,  then  2~D(~/); 

(5.12) if 2~f, N = -I, then 2[D(~) but ~(z) has no zero (mod 2); 

and 

(5.13) if N = I, then ~(z) has a zero (rood 2). 

Theorem 13 follows from (5.11) - (5.13), with the aid of 

(3.8). 

(3.5) and 

Case I. 2If, N = -I. 

Assume that 21D(~). Then 2IP i for some i, 1 ~ i ~ 4. For some 
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choice of Q, QJ(n0 - Hi)" Since ~q ~ M, it follows from (3.13) that 

aq(Q) = Q. Therefore, since N = -I, 01~j - Hi+ j ) for every even j. In 

particular, this yields QI(~ 0 - ~4 ) if i is even. Thus 21P 4 if 21i. 

However, by [2, Theorems 3.13 and 3.17], 211D and 411Y. Therefore P4 

is odd by (5.2), so i is odd. Consequently 

QI(~o - HI + ~2 - ~3 + ~4 - ~s + ~6 - D7 )' "which contradicts (5.4). 

Case 2. 22f, N = -I. 

By [2, Theorems 3.15 and 3.17], 4]Y and 41D. Thus P4 is even 

by (5.2), so 2[D(~). 

Now suppose that r has a zero (mod 2). Since N = -i, it follows 

from (3.5) that 21P 2. Then by (3.4), 

(5.14) 2J ('r10 - ~2 ] (~]i - ~q3 )" 

It is well known [20,(3)] that 

7 

(5.15] Dream+ u = ~ (u, k - m) 8 ~k' if 4~u, 
k= 0 

where (x,Y)8 denotes a cyclotomic number (nod p) of order 8. By (5.14) 

and (S. 153, 

7 

(5.16) 0 _--(n o - n2)(nl - -Q3 ) = k~oCk'rlk= (mod 2), 

where 

( 5 . 1 7 )  C k = ( 1 , k )  8 + ( 1 , k  - 2 ) 8  - ( 3 , k ) 8  - ( 1 , k  - 1 ) 8  . 
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By (5.16), C k is even for each k, so 21C 4. However, the table of values 

of (x,Y)8 given in [19, pp. 116-117] shows that C 4 =(X - C)/8, which is 

odd by [2, Theorems 3.14 and 3.16]. This contradiction proves that 

~z) has no zero (mod 2). 

Case 3. N = 1 

By [2, Theorem 3.17], 81Y, so P4 is even by (5.2). Consequently 

~(z) has a zero (mod 2) by (3.5). 

Theorem 14. Let q > 2. Then 

(s.18) 

(mod p), 

q is exceptional if( qlDY and q is quartic but not octic 

and 

(S.19) q is semiexceptional if( qlDY and q is not octic (mod p). 

Proof. We proved (5.18) in [6, Theorem 3]. To prove (5.19), first 

suppose that qIDY. Then by (5.2), qIP4, so qlD[~). Conversely, 

suppose that q is semiexceptional. It remains to prove that qIDY. 

If qIP4, then qlDY. Thus-suppose that qlP i for some i, 1 ~ i ~ 3. 

We know that q is quadratic, otherwise G = M, which contradicts 

Theorem 8. If N = -I, then the proof of Theorem 13, Case I, shows that 

qlP4, so qlDY. Finally, assume that N = i. First assume that qlP2, 

so QI(~ 0 - ~2 ) for some choice of Q. Since ~q(Q) = Q and N = I, 

it follows that QI(~0 - ~2 + ~4 - ~6 )" Then by (5.5), q divides 

(p + X%/p)(p - X%/~p) = py2 so qlY. Finally, assume that qlPlP 3. 

Then QI(~ 0 - ~I)(~0 - ~3 ) for some choice of Q, so 
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Q J(rl0 - 331 + rt4 - "q5 )(rl0 - TI3 + N4 - N7 )" Thus by ( 5 . 3 ) ,  

(p + X~/~) 2 - (2p2+ 2pXx~p) = pX 2 - p2 = _py2, so qIY. 

Q divides 

6. Some corrections to the literature 

In [S], the argument after (20) should be applied with e = pA~(m) 

A 
instead of e = p . In [5], the right side of the congruence in (4.9) 

should be multiplied by (2/p). In [19, p. 117], the cyclotomic numbers 

( 1 , 5 ) ,  ( 1 , 6 ) ,  ( 7 , 5 ) ,  and (7 ,6)  equa l  ( 0 , 3 ) ,  ( 1 , 3 ) ,  ( 1 , 3 ) ,  and ( 1 , 7 ) ,  

r e s p e c t i v e l y ,  no t  ( 1 , 3 ) ,  ( 0 , 3 ) ,  ( 1 , 6 ) ,  and ( 1 , 3 ) ,  as  g iven  i n  t h e  t a b l e .  

In  [21,  ( 1 2 ) ] ,  r e p l a c e  +a by  - a .  On l l n e  12 o f  [16., p .  297] ,  

replace p by p; also, lines 17 - 18 should be replaced by an 

assertion equivalent to Corollary I0 of this paper. In the formulas for 

Qo(y) and Ql(y) in [14, p. 404], insert -15 before the bracket]; also, 

in the formula for Ql(y), the coefficient of p2 in braces should be 

8X (3)+8X (-3)- 8X (-1)-3. 
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