POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS WHOSE ZEROS HAVE MODULUS ONE*

RONALD EVANS ${ }^{\dagger}$ and JOHN GREENE \ddagger

Abstract

Define $p(z)=\prod_{j=0}^{n-1}\left(z-e^{i(\theta+\alpha j)}\right)\left(z-e^{-i(\theta+\alpha j)}\right)$ for $\alpha>0$ and $\theta \geq 0$ with $\pi / 2-(n-1) \alpha / 2 \leq \theta \leq \pi-(n-1) \alpha / 2$. It is proved that if $0<\alpha<\pi / n$, then the $2 n+1$ coefficients of $p(z)$ are all positive. It is also proved that if for some point θ, all coefficients of $p(z)$ are nonnegative, then each coefficient is an increasing function of θ in a neighborhood of this point. A similar result is conjectured for more general polynomials $p(z)$.

Key words. orthogonal polynomials, q-ultraspherical polynomials, absolutely monotonic polynomials

AMS(MOS) subject classifications. 33A65, 30C15

1. Introduction. For

$$
\begin{equation*}
\alpha>0 \quad \text { and } \quad \theta \geq 0, \tag{1.1}
\end{equation*}
$$

consider the monic polynomial $p(z)$ of degree $2 n$ whose zeros consist of the n equally spaced points

$$
\begin{equation*}
\exp (i(\theta+\alpha j)), \quad 0 \leq j \leq n-1, \tag{1.2}
\end{equation*}
$$

along with their n complex conjugates, i.e.,

$$
\begin{equation*}
p(z)=\prod_{j=0}^{n-1}\left(z-e^{i(\theta+\alpha j)}\right)\left(z-e^{-i(\theta+\alpha j)}\right) . \tag{1.3}
\end{equation*}
$$

We assume throughout that the variable θ in (1.3) is restricted to the interval

$$
\begin{equation*}
\pi / 2-(n-1) \alpha / 2 \leq \theta \leq \pi-(n-1) \alpha / 2 . \tag{1.4}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\pi / 2 \leq \theta+(n-1) \alpha / 2 \leq \pi, \tag{1.5}
\end{equation*}
$$

so that the geometric mean of the n zeros in (1.2) lies in the second quadrant. Condition (1.5) automatically holds, for example, if each of the n zeros in (1.2) has Argument $\in(0, \pi)$ and the coefficient of z in $p(z)$ is positive; this is easily seen from (2.12) and (2.17). When (1.5) holds, the geometric mean of the n zeros in (1.2) is closer to -1 than to +1 , and it moves (together with at least half of the zeros of $p(z)$) towards -1 along the unit circle as θ increases.

[^0]The coefficients of $p(z)$ are not necessarily increasing functions of θ, even if each of the n zeros in (1.2) has Argument $\in(0, \pi)$ (in which case each of the n quadratic factors in (1.3) has increasing coefficients). For example, if $n=3, \alpha=5 \pi / 12$, then the coefficient of z^{3} in $p(z)$ is negative and decreasing at $\theta=\pi / 8$, while $\pi / 8$ is in the interval (1.4). However, the following theorem holds for all n. The proof, given in $\S 3$, depends on properties of q-ultraspherical polynomials discussed in $\S 2$.

Theorem 1. If for some nonnegative $\theta=\theta_{0}$ in the interval (1.4), all coefficients of $p(z)$ are nonnegative, then they are each increasing functions of θ for $\theta_{0} \leq \theta<$ $\pi-(n-1) \alpha / 2$. Except for the coefficients 1 of the leading and constant terms, the coefficients are in fact strictly increasing, unless $\alpha=2 \pi / n$.

For $\alpha=2 \pi / n$, we have

$$
p(z)=z^{2 n}-2 \cos (\theta n) z^{n}+1
$$

which has nonnegative coefficients for $\pi /(2 n) \leq \theta \leq \pi / n$, but if $n>1$, the coefficient of z is zero, which is not strictly increasing. This formula for $p(z)$ is proved in $\S 3$ (see (3.10)).

Consider for the moment the general polynomial

$$
\begin{equation*}
P(z)=\prod_{j=0}^{n-1}\left(z-e^{i\left(\theta+a_{j}\right)}\right)\left(z-e^{-i\left(\theta+a_{j}\right)}\right) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta \geq 0, \quad 0=a_{0}<a_{1}<\cdots<a_{n-1} \tag{1.7}
\end{equation*}
$$

The polynomial $P(z)$ reduces to $p(z)$ when $a_{j}=j \alpha, 0 \leq j \leq n-1$. In view of Theorem 1, we might ask if nonnegativity of the coefficients of $P(z)$ for some $\theta=\theta_{0}$ always implies that the coefficients are increasing for $\theta \geq \theta_{0}$, when θ is restricted to the interval

$$
\begin{equation*}
\pi / 2-\left(a_{1}+\cdots+a_{n-1}\right) / n \leq \theta \leq \pi-\left(a_{1}+\cdots+a_{n-1}\right) / n \tag{1.8}
\end{equation*}
$$

The answer is no. For example, if $n=3, a_{1}=\pi / 2, a_{2}=7 \pi / 12$, then the coefficients of $P(z)$ are all positive for $\pi / 4<\theta<23 \pi / 36$, yet the coefficients of z^{2}, z^{3}, z^{4} are each decreasing at $\theta=2$. However, we believe the following.

Conjecture. If the coefficients of $P(z)$ are all nonnegative for some $\theta=\theta_{0} \geq 0$, then they are each increasing functions of θ on the interval $\theta_{0} \leq \theta<\pi-a_{n-1}$.

For convenient application of Theorem 1, we would like to have a simple necessary condition for the nonnegativity of the coefficients of $p(z)$. This is given in Theorem 2.

Theorem 2. Suppose that

$$
\begin{equation*}
0<\alpha<\pi / n \tag{1.9}
\end{equation*}
$$

Then each coefficient of $p(z)$ is positive (and hence increasing in θ, by Theorem 1).
This theorem was motivated by the fact that for sufficiently small α, all zeros of $p(z)$ are closer to -1 than to +1 (because of (1.5)), and so all coefficients of $p(z)$ are positive. The question is how small α must be.

For $n>1$, the upper bound in (1.9) is best possible, i.e., if $\alpha>\pi / n$, the coefficients of $p(z)$ cannot all be positive on the interval (1.4). If $\alpha \geq 2 \pi / n$, there is no θ
in the interval (1.4) for which all coefficients of $p(z)$ are positive. If $\pi / n \leq \alpha<2 \pi / n$, the coefficients of $p(z)$ are all positive only on a subinterval

$$
\begin{equation*}
r_{\alpha}<\theta<\pi-(n-1) \alpha / 2 \tag{1.10}
\end{equation*}
$$

of the interval (1.4). These remarks will be proved in $\S 4$. Also in $\S 4$ we prove Theorem 2 and the following related result.

Theorem 3. Let $0<\alpha<\pi / n$. Then all coefficients of

$$
\begin{equation*}
p(u, v):=\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(1+u e^{i \alpha j}+v e^{-i \alpha j}\right) \tag{1.11}
\end{equation*}
$$

are positive, i.e.,

$$
\begin{equation*}
p(u, v)=\sum_{\substack{0 \leq r, s \leq n \\ r+s \leq n}} a_{r s} u^{r} v^{s}, \quad a_{r s}>0 \tag{1.12}
\end{equation*}
$$

(The variable j in (1.11) ranges over halves of odd integers if n is even.)
As an application of Theorem 2, we give in $\S 5$ a short proof of Theorem 4 below in the special case

$$
\begin{equation*}
f(z)=\left(z^{m k}-1\right) /\left(z^{k}-1\right), \tag{1.13}
\end{equation*}
$$

where m, k are positive integers.
Theorem 4. Let $f(z)$ denote a monic polynomial of degree N with nonnegative coefficients and with zeros $z_{1}, z_{2}, \cdots, z_{N}$. For fixed $t \geq 0$, write

$$
\begin{equation*}
f_{t}(z)=\prod_{\substack{1 \leq \leq \leq N \\\left|\operatorname{Arg} z_{j}\right|>t}}\left(z-z_{j}\right) \tag{1.14}
\end{equation*}
$$

Then if $f(z) \neq f_{t}(z)$, all coefficients of $f_{t}(z)$ are positive.
Theorem 4 had been open for several years until a proof was found recently by Barnard et al. [2].

In the special cases $f(z)=z^{N}+1$ or $f(z)=1+z+\cdots+z^{N}$, we can say a bit more about the polynomials $f_{t}(z)$ in (1.14), namely, the following theorem [4].

Theorem 5. If $f(z)=z^{N}+1$ or $f(z)=1+z+\cdots+z^{N}$, and if $f_{t}(z) \neq f(z)$, then $f_{t}(z)$ is a strictly unimodal polynomial. (In particular, all coefficients of $f_{t}(z)$ are ≥ 1.)

If $f(z)$ is given by (1.13), it is not generally true that $f_{t}(z)$ is unimodal when $f_{t}(z) \neq f(z)$.
2. The coefficients of $p(z)$ in terms of q-ultraspherical polynomials. We will use the following additional notation throughout:

$$
\begin{gather*}
q=e^{i \alpha} \tag{2.1}\\
\beta=\theta+(n-1) \alpha / 2-\pi / 2
\end{gather*}
$$

and

$$
\begin{equation*}
x=\sin \beta \tag{2.3}
\end{equation*}
$$

Observe that (1.5) is equivalent to

$$
\begin{equation*}
0 \leq \beta \leq \pi / 2 \tag{2.4}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
0 \leq x \leq 1, \quad \frac{d x}{d \theta} \geq 0 \tag{2.5}
\end{equation*}
$$

In order to relate $p(z)$ to q-ultraspherical polynomials (see (2.12)-(2.13)), we begin by replacing j by $j+(n-1) / 2$ in (1.3) to obtain

$$
\begin{equation*}
p(z)=\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(z-e^{i(\beta+\alpha j+\pi / 2)}\right)\left(z-e^{-i(\beta+\alpha j+\pi / 2)}\right) \tag{2.6}
\end{equation*}
$$

Since the range of values of j in (2.6) is symmetric about zero, we have

$$
\begin{align*}
p(z) & =\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(z-e^{i(\beta+\alpha j+\pi / 2)}\right)\left(z-e^{-i(\beta-\alpha j+\pi / 2)}\right) \\
& =\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(z^{2}-2 z q^{j} \cos (\beta+\pi / 2)+q^{2 j}\right) \tag{2.7}\\
& =\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(z^{2}+2 z q^{j} \sin \beta+q^{2 j}\right)
\end{align*}
$$

Replace j by $-j$ and multiply each factor by $q^{2 j}$ to obtain

$$
\begin{equation*}
p(z)=\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(z^{2} q^{2 j}+2 z x q^{j}+1\right) \tag{2.8}
\end{equation*}
$$

Note that the coefficients of $p(z)$ are symmetric about the middle, as

$$
\begin{equation*}
z^{2 n} p(1 / z)=p(z) \tag{2.9}
\end{equation*}
$$

and the leading and constant coefficients of $p(z)$ are 1 for all θ, α.
The generating function for the q-ultraspherical polynomials $C_{k}(x ; t \mid q)$ is [1, eq. (3.4), p. 179]

$$
\begin{equation*}
\sum_{k=0}^{\infty} C_{k}(x ; t \mid q) w^{k}=\prod_{k=0}^{\infty} \frac{\left(1-2 t w x q^{k}+t^{2} w^{2} q^{2 k}\right)}{\left(1-2 w x q^{k}+w^{2} q^{2 k}\right)}, \quad 0<q<1 \tag{2.10}
\end{equation*}
$$

In particular, with $t=q^{-n}$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} C_{k}\left(x ; q^{-n} \mid q\right) w^{k}=\prod_{k=-n}^{-1}\left(1-2 w x q^{k}+w^{2} q^{2 k}\right) \tag{2.11}
\end{equation*}
$$

The polynomials $C_{k}\left(x ; q^{-n} \mid q\right)$ are well defined by (2.11) for $q=e^{i \alpha}$. Replace w by $-z q^{(n+1) / 2}$ in (2.11) and use (2.8) to see that

$$
\begin{equation*}
p(z)=\sum_{k=0}^{2 n} E_{k}\left(x ; q^{-n} \mid q\right) z^{k} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{k}:=E_{k}(x)=E_{k}\left(x ; q^{-n} \mid q\right)=(-1)^{k} q^{k(n+1) / 2} C_{k}\left(x ; q^{-n} \mid q\right) \tag{2.13}
\end{equation*}
$$

The $C_{k}(x ; t \mid q)$ satisfy the recurrence relation [1, eq. (1.1), p. 176]

$$
\begin{equation*}
2 x\left(1-t q^{k}\right) C_{k}(x ; t \mid q)=\left(1-q^{k+1}\right) C_{k+1}(x ; t \mid q)+\left(1-t^{2} q^{k-1}\right) C_{k-1}(x ; t \mid q) \tag{2.14}
\end{equation*}
$$

for $k \geq 1$, with

$$
\begin{equation*}
C_{0}(x ; t \mid q)=1, \quad C_{1}(x ; t \mid q)=2 x(1-t) /(1-q) \tag{2.15}
\end{equation*}
$$

In view of (2.1) and (2.13)-(2.15), the E_{k} satisfy the recurrence

$$
\begin{align*}
E_{k}= & 2 x \frac{\sin ((n+1-k) \alpha / 2)}{\sin (k \alpha / 2)} E_{k-1} \\
& +\frac{\sin ((2 n+2-k) \alpha / 2)}{\sin (k \alpha / 2)} E_{k-2} \quad(k \geq 2) \tag{2.16}
\end{align*}
$$

with

$$
\begin{equation*}
E_{0}=1, \quad E_{1}=2 x \frac{\sin (n \alpha / 2)}{\sin (\alpha / 2)} \tag{2.17}
\end{equation*}
$$

3. Proof of Theorem 1. Theorem 1 is trivial for $n=1$, so let $n>1$. For brevity, write

$$
\begin{equation*}
A_{k}=\frac{\sin ((n+1-k) \alpha / 2)}{\sin (k \alpha / 2)}, \quad B_{k}=\frac{\sin ((2 n+2-k) \alpha / 2)}{\sin (k \alpha / 2)}, \quad k \geq 1 \tag{3.1}
\end{equation*}
$$

so by (2.16),

$$
\begin{equation*}
E_{k}=2 x A_{k} E_{k-1}+B_{k} E_{k-2}, \quad k \geq 2 \tag{3.2}
\end{equation*}
$$

By hypothesis, for some x_{0} with $0 \leq x_{0}<1$,

$$
\begin{equation*}
E_{k}\left(x_{0}\right) \geq 0 \quad \text { for } 0 \leq k \leq 2 n \tag{3.3}
\end{equation*}
$$

By (2.9), it suffices to show that the polynomials $E_{k}(x)$ are strictly increasing on $x_{0}<x<1$ for $1 \leq k \leq n$.

Case 1. $\alpha<2 \pi / n$. In this case,

$$
\begin{equation*}
A_{k}>0 \quad \text { for } 1 \leq k \leq n \tag{3.4}
\end{equation*}
$$

In particular, the leading coefficient of $E_{k}(x)$ is positive for each $k, 1 \leq k \leq n$.
Suppose there is an integer m with $2 \leq m \leq n$ such that

$$
\begin{equation*}
B_{m}<0 \tag{3.5}
\end{equation*}
$$

and choose the maximal such m. By (3.1),

$$
\begin{equation*}
B_{k}<0 \quad \text { for } 2 \leq k \leq m . \tag{3.6}
\end{equation*}
$$

By (3.2) and Favard's theorem [3, Thm. 4.4, p. 21], $E_{1}, E_{2}, \cdots, E_{m}$ are orthogonal polynomials with respect to a positive-definite operator. Thus we can apply the theorem on separation of zeros [3, Thm. 5.3, p. 28] to conclude that the zeros of E_{1}, \cdots, E_{m} are all real and simple, and that a zero of E_{k-1} lies strictly between every two consecutive zeros of $E_{k}, 2 \leq k \leq m$.

We proceed to prove by induction on k that if $1 \leq k \leq m$, then the largest zero of E_{k} is $\leq x_{0}$. This holds for $k=1$ since $E_{1}=2 A_{1} x$ and $0 \leq x_{0}$. Let $k>1$. By induction hypothesis, the largest zero of E_{k-1} is $\leq x_{0}$, so by separation of zeros, x_{0} exceeds the second largest zero of E_{k}. For x between the largest and second largest zeros of $E_{k}, E_{k}(x)$ is negative. Thus, by (3.3), the largest zero of E_{k} is $\leq x_{0}$, and the induction is complete.

It follows for $1 \leq k \leq m$ that

$$
\begin{equation*}
E_{k}(x)=c_{k} \prod_{j=1}^{k}\left(x-\alpha_{j k}\right) \tag{3.7}
\end{equation*}
$$

with $c_{k}>0$ and $\alpha_{j k} \leq x_{0}(1 \leq j \leq k)$. Thus $E_{k}(x)$ is strictly increasing on $x_{0}<x<1$ for $1 \leq k \leq m$.

If there is no integer m with $2 \leq m \leq n$ for which (3.5) holds, set $m=1$. It remains to prove that $E_{k}(x)$ is strictly increasing on $x_{0}<x<1$ for $n \geq k>m$. This follows from (3.2), since $A_{k}>0$ and $B_{k} \geq 0$.

Case 2. $\alpha=2 \pi / n$. In this case, by (2.16) and (2.17), $E_{1}(x)=E_{2}(x)=\cdots=$ $E_{n-1}(x)=0$. Thus by (2.9) and (2.12),

$$
\begin{equation*}
p(z)=z^{2 n}+E_{n} z^{n}+1 \tag{3.8}
\end{equation*}
$$

It is easily seen from (1.3) that

$$
\begin{equation*}
p(1)=\left(e^{i \theta n}-1\right)\left(e^{-i \theta n}-1\right)=2-2 \cos (\theta n) \tag{3.9}
\end{equation*}
$$

By (3.8) and (3.9), $E_{n}=-2 \cos (\theta n)$, so

$$
\begin{equation*}
p(z)=z^{2 n}-2 \cos (\theta n) z^{n}+1 \tag{3.10}
\end{equation*}
$$

For $\pi /(2 n) \leq \theta \leq \pi / n$, the coefficients of $p(z)$ are nonnegative and they are increasing functions of θ.

Case 3. $\alpha>2 \pi / n$. In this case, $x_{0}>0$ by (2.2) and (2.3). Moreover, by (1.1) and (1.5), we may suppose that

$$
\begin{equation*}
2 \pi / n<\alpha<2 \pi /(n-1) \tag{3.11}
\end{equation*}
$$

By (2.17) and (3.11),

$$
\begin{equation*}
E_{1}\left(x_{0}\right)=2 x_{0} \sin (n \alpha / 2) / \sin (\alpha / 2)<0 \tag{3.12}
\end{equation*}
$$

This contradicts (3.3), so Case 3 is vacuous.

4. Proofs of Theorems 2 and 3.

Proof of Theorem 2. Let $0<\alpha<\pi / n$. By (2.9) and (2.12), it suffices to prove

$$
\begin{equation*}
E_{k}>0, \quad 0 \leq k \leq n \tag{4.1}
\end{equation*}
$$

This follows for $k=0,1$ by (2.17). For $2 \leq k \leq n$, all sines in (3.1) are positive, so

$$
\begin{equation*}
A_{k}>0, \quad B_{k}>0 \quad \text { for } 2 \leq k \leq n \tag{4.2}
\end{equation*}
$$

Thus (4.1) follows by (3.2) and induction on k.
Proof of Theorem 3. Let $0<\alpha<\pi / n$. The proof of (4.1) actually yields the stronger result

$$
\begin{equation*}
E_{k}=\sum_{i=0}^{M} b_{i k} x^{i}, \quad 0 \leq k \leq 2 n \tag{4.3}
\end{equation*}
$$

with

$$
\begin{array}{ll}
b_{i k}>0, & \text { if } i \equiv k(\bmod 2), \tag{4.4}\\
b_{i k}=0, & \text { otherwise }
\end{array}
$$

where

$$
\begin{equation*}
M=\min (k, 2 n-k) \tag{4.5}
\end{equation*}
$$

Thus, by (2.8) and (2.12),

$$
\begin{equation*}
p(z)=\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(z^{2} q^{j}+2 z x+q^{-j}\right)=\sum_{k=0}^{2 n} \sum_{i=0}^{M} b_{i k} x^{i} z^{k} \tag{4.6}
\end{equation*}
$$

Replace x by $x /(2 z)$ to get

$$
\begin{equation*}
\sum_{k=0}^{2 n} \sum_{i=0}^{M} b_{i k} 2^{-i} x^{i} z^{k-i}=\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(z^{2} q^{j}+x+q^{-j}\right) \tag{4.7}
\end{equation*}
$$

Replace z^{2} by z, then x by x^{-1}, and multiply by x^{n} to get

$$
\begin{equation*}
\sum_{k=0}^{2 n} \sum_{i=0}^{M} b_{i k} 2^{-i} x^{n-i} z^{(k-i) / 2}=\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(z x q^{j}+1+x q^{-j}\right) \tag{4.8}
\end{equation*}
$$

Replace z by z / x to get

$$
\begin{equation*}
\sum_{k=0}^{2 n} \sum_{i=0}^{M} b_{i k} 2^{-i} x^{n-(i+k) / 2} z^{(k-i) / 2}=\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(z q^{j}+1+x q^{-j}\right) \tag{4.9}
\end{equation*}
$$

Now (1.12) follows easily from (4.9), completing the proof of Theorem 3.
We close this section by proving the remarks made in $\S 1$ between the statements of Theorems 2 and 3.

Let $n>1$. Then the upper bound π / n in (1.9) is best possible. For, if α is slightly larger than π / n, then $E_{2}<0$ for sufficiently small x, since

$$
\begin{equation*}
E_{2}=4 x^{2} \frac{\sin (n \alpha / 2) \sin ((n-1) \alpha / 2)}{\sin (\alpha / 2) \sin (\alpha)}+\frac{\sin (n \alpha)}{\sin (\alpha)} . \tag{4.10}
\end{equation*}
$$

If $\alpha \geq 2 \pi / n$, there is no θ in the interval (1.4) for which all coefficients of $p(z)$ are positive, by (3.11) and (3.12). Finally, suppose that

$$
\begin{equation*}
0<\alpha<2 \pi / n \tag{4.11}
\end{equation*}
$$

Then all coefficients of $p(z)$ are positive on a small interval (1.10), i.e., for x sufficiently close to 1 . To see this, it suffices to show that when $x=1$ (and (4.11) holds), all coefficients of $p(z)$ are positive.

By (2.8), when $x=1$,

$$
\begin{equation*}
p(z)=\prod_{j=(1-n) / 2}^{(n-1) / 2}\left(q^{j} z+1\right)^{2} \tag{4.12}
\end{equation*}
$$

so

$$
\begin{equation*}
p(z)=\left(\sum_{\nu=0}^{n} C(n, \nu) z^{\nu}\right)^{2} \tag{4.13}
\end{equation*}
$$

where the $C(n, \nu)$ are central Gaussian coefficients (see [5, p. 449]). By (4.11) and Theorem 3 of [5, p. 449], all of the $C(n, \nu)$ are positive. Thus, by (4.13), all coefficients of $p(z)$ are positive when $x=1,0<\alpha<2 \pi / n$.
5. Application to Theorem 4. Let $f(z), f_{t}(z)$ be given by (1.13) and (1.14), and suppose that $f(z) \neq f_{t}(z)$. We will use Theorem 2 to show that all coefficients of $f_{t}(z)$ are positive.

Case 1. $t<2 \pi / k$. We have

$$
\begin{equation*}
f(z)=g(z) / h(z) \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
g(z)=\frac{z^{m k}-1}{z-1}, \quad h(z)=\frac{1-z^{k}}{1-z} \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
f_{t}(z)=g_{t}(z) / h_{t}(z) \tag{5.3}
\end{equation*}
$$

However, in Case 1, $h_{t}(z)=h(z)$, so by (5.3),

$$
\begin{equation*}
f_{t}(z)=g_{t}(z) / h(z)=\left(g_{t}(z)(1-z)\right)\left(1+z^{k}+z^{2 k}+\cdots\right) . \tag{5.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
d=\operatorname{degree}\left(g_{t}(z)\right) . \tag{5.5}
\end{equation*}
$$

By Theorem 5 with $N=m k, g_{t}(z)$ is strictly unimodal, so all terms of $g_{t}(z)(1-z)$ of degree $\leq d / 2$ have positive coefficients. Therefore, by (5.4), all terms of $f_{t}(z)$ of degree $\leq d / 2$ have positive coefficients. However, $f_{t}(z)$ has degree $d-(k-1) \leq d$ by (5.4), so since the coefficients of $f_{t}(z)$ are symmetric about the middle one, they are all positive.

Case 2. $t \geq 2 \pi / k$. If m is even, say $m=2 M$, then

$$
\begin{equation*}
f(z)=\frac{z^{M k}-1}{z^{k}-1} \cdot\left(z^{M k}+1\right) \tag{5.6}
\end{equation*}
$$

Applying Theorem 5, we could then deduce the result by induction on m. Thus assume that m is odd, so -1 is not a zero of $f(z)$. We have

$$
\begin{equation*}
f(z)=\prod_{r=1}^{m-1} A^{(r)}(z) \tag{5.7}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{(r)}(z)=\prod_{\substack{0<\nu<m k / 2 \\ \nu \equiv \eta(\bmod m)}}\left(z-e^{2 \pi i \nu / m k}\right)\left(z-e^{-2 \pi i \nu / m k}\right) \tag{5.8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
f_{t}(z)=\prod_{r=1}^{m-1} A_{t}^{(r)}(z) \tag{5.9}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{t}^{(r)}(z)=\prod_{\substack{m k t / 2 \pi<\nu<m k / 2 \\ \nu \equiv r(\bmod m)}}\left(z-e^{2 \pi i \nu / m k}\right)\left(z-e^{-2 \pi i \nu / m k}\right) . \tag{5.10}
\end{equation*}
$$

For any fixed r, the zeros of $A_{t}^{(r)}(z)$ on the upper half of the unit circle can be written in the form

$$
\begin{equation*}
\exp \left(i\left(\theta_{r}+\alpha j\right)\right), \quad 0 \leq j \leq n_{r}-1 \tag{5.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{r}>t \geq 2 \pi / k=\alpha \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{r}+\alpha\left(n_{r}-1\right)<\pi<\theta_{r}+\alpha n_{r} \tag{5.13}
\end{equation*}
$$

Therefore $A_{t}^{(r)}(z)$ has the same form as $p(z)$ in (1.3), and furthermore,

$$
\begin{equation*}
\pi / 2<\theta_{r}+\left(n_{r}-1\right) \alpha / 2<\pi \tag{5.14}
\end{equation*}
$$

as in (1.5). Since, moreover, $0<\alpha<\pi / n_{r}$, Theorem 2 implies that all coefficients of $A_{t}^{(r)}(z)$ are positive. Thus all coefficients of $f_{t}(z)$ are positive by (5.9).

Acknowledgment. The authors are very grateful to Richard Askey for helpful ideas supplied at the Bateman Conference in Allerton Park, April 1989.

REFERENCES

[1] R. Askey and M. Ismail, The Rogers q-ultraspherical polynomials, in Approximation Theory III, E. W. Cheney, ed., Academic Press, New York, 1980, pp. 175-182.
[2] R. Barnard, W. Dayawansa, K. Pearce, and D. Weinberg, Polynomials with nonnegative coefficients, Proc. Amer. Math. Soc., to appear.
[3] T. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[4] R. Evans and P. Montgomery, Some unimodal polynomials whose zeros are roots of unity, Amer. Math. Monthly, 97 (1990), pp. 432-433.
[5] I. J. Schoenberg, On the zeros of the generating functions of multiply positive sequences and functions, Ann. of Math., 62 (1955), pp. 447-471.

[^0]: *Received by the editors August 1, 1989; accepted for publication (in revised form) August 21, 1990.
 \dagger Department of Mathematics, C-012, University of California, San Diego, La Jolla, California 92093.
 \ddagger Department of Mathematics and Statistics, University of Minnesota, Duluth, Minnesota 55812. The work of this author was supported in part by National Science Foundation grant DMS-8801131.

