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POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS WHOSE
ZEROS HAVE MODULUS ONE*’

RONALD EVANSf AND JOHN GREENE$

n-1 (z-ei(+aj) i(o+aj)) for > 0 and 0 _> 0 withAbstract. Define p(z)- 1-Ij=o (z- e- o

r/2 (n 1)/2 <_ 0 <_ (n- 1)a/2. It is proved that if 0 < a < r/n, then the 2n + 1 coefficients
of p(z) are all positive. It is also proved that if for some point 0, all coefficients ofp(z) are nonnegative,
then each coefficient is an increasing function of 0 in a neighborhood of this point. A similar result
is conjectured for more general polynomials p(z).

Key words, orthogonal polynomials, q-ultraspherical polynomials, absolutely monotonic poly-
nomials

AMS(MOS) subject classifications. 33A65, 30C15

1. Introduction. For

(1.1) a>0 and 0_>0,

consider the monic polynomial p(z) of degree 2n whose zeros consist of the n equally
spaced points

(1.2) exp(i(0 + aj)), 0 _< j _< n 1,

along with their n complex conjugates, i.e.,

(1.3)
n-1

p(z) H (z (z
j=O

We assume throughout that the variable 0 in (1.3) is restricted to the interval

(1.4) r/2- (n- 1)a/2 _< 0 <_ r- (n- 1)c/2.

Equivalently,

(1.5) :r/2 _< 0 + (n- 1)c/2 _< r,

so that the geometric mean of the n zeros in (1.2) lies in the second quadrant. Condi-
tion (1.5) automatically holds, for example, if each of the n zeros in (1.2) has Argument
E (0, ) and the coefficient of z in p(z) is positive; this is easily seen from (2.12) and
(2.17). When (1.5) holds, the geometric mean of the n zeros in (1.2) is closer to -1
than to +1, and it moves (together with at least half of the zeros of p(z)) towards -1
along the unit circle as increases.
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1174 RONALD EVANS AND JOHN GREENE

The coefficients of p(z) are not necessarily increasing functions of 0, even if each
of the n zeros in (1.2) has Argument E (0, r) (in which case each of the n quadratic
factors in (1.3) has increasing coefficients). For example, if n 3, a 5r/12, then
the coefficient of z3 in p(z) is negative and decreasing at r/8, while r/8 is in the
interval (1.4). However, the following theorem holds for all n. The proof, given in 3,
depends on properties of q-ultraspherical polynomials discussed in 2.

THEOREM 1. Iffor some nonnegative o in the interval (1.4), all coe[ficients
of p(z) are nonnegative, then they are each increasing functions of for o

_
0 <- (n- 1)a/2. Except for the coefficients 1 of the leading and constant terms, the

coejficients are in fact strictly increasing, unless a 2r/n.
For a- 2r/n, we have

p(z) Z2n 2 cos(On)zn + 1,

which has nonnegative coefficients for /(2n) <_ <_ r/n, but if n > 1, the coefficient
of z is zero, which is not strictly increasing. This formula for p(z) is proved in 3 (see

Consider for the moment the general polynomial

n--1

(1.6) P(z) H (Z ei(O+ad)) (Z e-i(O+ad))
j=0

where

(1.7) 0 >_ 0, 0- ao al an-1.

The polynomial P(z) reduces top(z) when aj ja, 0

_
j _< n-1. In view of

Theorem 1, we might ask if nonnegativity of the coefficients of P(z) for some 0 00
always implies that the coefficients are increasing for 0 >_ 00, when 0 is restricted to
the interval

(1.8) r/2 (al +... + an-) /n

_
0

_
(al +... + an-) In.

The answer is no. For example, if n 3, al /2, a2 7r/12, then the coefficients
of P(z) are all positive for /4 < < 23r/36, yet the coefficients of z2, z3, z4 are each
decreasing at 0- 2. However, we believe the following.

CONJECTURE. If the coefficients of P(z) are all nonnegative for some 0 Oo >_ O,
then they are each increasing functions of 0 on the interval Oo

_
0 < - an-1.

For convenient application of Theorem 1, we would like to have a simple necessary
condition for the nonnegativity of the coefficients of p(z). This is given in Theorem 2.

THEOREM 2. Suppose that

(1.9) 0 < a < /n.

Then each coefficient of p(z) is positive (and hence increasing in O, by Theorem 1).
This theorem was motivated by the fact that for sufficiently small a, all zeros of

p(z) are closer to -1 than to +1 (because of (1.5)), and so all coefficients of p(z) are
positive. The question is how small a must be.

For n > 1, the upper bound in (1.9) is best possible, i.e., if a > r/n, the coeffi-
cients of p(z) cannot all be positive on the interval (1.4). If a >_ 2r/n, there is no 0
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POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS 1175

in the interval (1.4) for which all coefficients of p(z) are positive. If r/n <_ a < 2r/n,
the coefficients of p(z) are all positive only on a subinterval

(1.10) r, < 0 < 7r-(n- 1)a/2

of the interval (1.4). These remarks will be proved in 4. Also in 4 we prove Theorem
2 and the following related result.

THEOREM 3. Let 0 < < r/n. Then all coe]ficients of

(1.11) p(u,v) "=

(n--l)/2

II
j=(1-n)/2

(1 + ueiJ + ve-iJ

are positive, i.e.,

(1.12) p(u, v) E arsurvs’ ars > O.
O<_r,s<_n

(The variable j in (1.11) ranges over halves of odd integers if n is even.)
As an application of Theorem 2, we give in 5 a short proof of Theorem 4 below

in the special case

(1.13) f(z) (z’ 1)/(zk 1),

where m, k are positive integers.
THEOREM 4. Let f(z) denote a monic polynomial of degree N with nonnegative

coefficients and with zeros zl, z2,..., ZN. For fixed t >_ O, write

(1.14) ft(z) H (z- zj).

Then if f(z) ft(z), all coefficients of ft(z) are positive.
Theorem 4 had been open for several years until a proof was found recently by

Barnard et al. [2].
In the special cases f(z) zN + 1 or f(z) 1 + z +... + zN, we can say a bit

more about the polynomials ft(z) in (1.14), namely, the following theorem [4].
THEOREM 5. If f(z) zN -- 1 or f(z) 1 + z +... + zN, and if ft(z) f(z),

then ft(z) is a strictly unimodal polynomial. (In particular, all coefficients of ft(z)
are >_ 1.)

If f(z) is given by (1.13), it is not generally true that ft(z) is unimodal when
f (z) # f(z).

2. The coefficients of p(z) in terms of q-ultraspherical polynomials. We
will use the following additional notation throughout:

(2.1) q ei,

0 + (n 1)a/2 7r/2,
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1176 RONALD EVANS AND JOHN GREENE

and

(2.3) x sin.
Observe that (1.5) is equivalent to

(2.4) 0 </ < r/2,

which implies that

dx
(2.5) 0 < x < 1,

dO
> O.

In order to relate p(z) to q-ultraspherical polynomials (see (2.12)-(2.13)), we
begin by replacing j by j + (n- 1)/2 in (1.3) to obtain

(2.) (z)
(-1)/2

II
j=(1--n)/2

(z e(z+-+-/2)) (z

Since the range of values of j in (2.6) is symmetric about zero, we have

(n-)/2

j=(1--n)/2

(n--l)/2

j=(1--n)/2

(z 2zq co(Z + /) + q:)

(n--l)/2

II
j=(1--n)/2

(Z2 -f- 2zqJ sin + q2j).

Replace j by -j and multiply each factor by q2j to obtain

(2.s) p(z)
(n-)/2

j=(1--n)/2

(z2q2j + 2zxqJ + 1).

Note that the coefficients of p(z) are symmetric about the middle, as

(2.9) z2np(1/Z) p(z),

and the leading and constant coefficients of p(z) are 1 for all 0, a.
The generating function for the q-ultraspherical polynomials Ck(x; tlq is [1, eq. (3.4),. 179]

(2.10) Ck(x; tlq)wk H (1 2twxqk + t2w2q2k)

k=0 k=0
(1 2wxqk + w2q2k

0 < q < 1.
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POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS 1177

In particular, with t- q-n,

(2.11) E Ck(x; q-nlq)wk H (1 2wxqk A- w2q2k).
k=0 k=-n

The polynomials Ck(x; q-nlq are well defined by (2.11) for q ei. Replace w by
-zq(n+l)/2 in (2.11) and use (2.8) to see that

2n

(2.12) p(z) Ek (x; q-nlq zk,
k=0

where

Ek :-- Ek(x)- Ek (x; q-nlq --(--1)kqk(n+l)/2Ck (X; q-nlq

The Ck(x; tlq satisfy the recurrence relation [1, eq. (1.1), p. 176]

(2.14) 2x(1--tqk)Ck(x;tlq)- (1--qk+l)Ck+l(x;tlq)+(1--t2qk-1)Ck_l(x;tlq)

for k > 1, with

(2.15) C0(x; tlq 1, C1 (x; tlq 2x(1 t)/(1 q).

In view of (2.1) and (2.13)-(2.15), the Ek satisfy the recurrence

(2.16)
Ek 2x

sin((n + 1 k)a/2)
Ek-1sin(ka/2)

+ sin((2n + 2 k)a/2)Ek-2
sin(kc/2)

(k > 2)

with

sin(ha/2)(2.17) Eo 1, E 2x sin(a]2)

3. Proof of Theorem 1. Theorem 1 is trivial for n 1, so let n > 1. For
brevity, write

sin ((n + 1 k)a/2) sin ((2n + 2- k)a/2)(3.1) Ak= Bk= k>_l,
sin(ka/2) sin(ka/2)

so by (2.16),

(3.2) Ek 2xAkEk_ + BkEk-2, k > 2.

By hypothesis, for some x0 with 0 < x0 < 1,

(3.3) Ek(xo)>O for0<k<2n.

By (2.9), it suffices to show that the polynomials Ek(x) are strictly increasing on

x0<x<lforl<k<n.
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1178 RONALD EVANS AND JOHN GREENE

Case 1. ( < 2r/n. In this case,

(3.4) Ak>O forl_<k_<n.

In particular, the leading coefficient of Ek(x) is positive for each k, 1 _< k < n.
Suppose there is an integer m with 2 _< m _< n such that

(3.5) Bm< O,

and choose the maximal such m. By (3.1),

(3.6) Bk<O for2_<k<m.

By (3.2) and Favard’s theorem [3, Thm. 4.4, p. 21], El, E2,... ,Em are orthogonal
polynomials with respect to a positive-definite operator. Thus we can apply the theo-
rem on separation of zeros [3, Thm. 5.3, p. 28] to conclude that the zeros of El,..., Em
are all real and simple, and that a zero of Ek-1 lies strictly between every two con-
secutive zeros of Ek, 2 <_ k < m.

We proceed to prove by induction on k that if 1 < k < m, then the largest zero
of Ek is _< x0. This holds for k 1 since E1 2Alx and 0 _< x0. Let k > 1. By
induction hypothesis, the largest zero of Ek-1 is <_ x0, so by separation of zeros, x0
exceeds the second largest zero of Ek. For x between the largest and second largest
zeros of E, E(x) is negative. Thus, by (3.3), the largest zero of Ek is < x0, and the
induction is complete.

It follows for 1 < k < m that

(a.7)
k

1-[
j--1

with Ck > 0 and cjk < x0 (1 < j < k). Thus Ek(x) is strictly increasing on x0 < x < 1
for 1 <k<m.

If there is no integer m with 2 < m _< n for which (3.5) holds, set m 1. It
remains to prove that Ek(x) is strictly increasing on x0 < x < 1 for n >_ k > m. This
follows from (3.2), since Ak > 0 and Bk > O.

Case 2. a 2r/n. In this case, by (2.16) and (2.17), El(x) E2(x)
En-l(X)- 0. Thus by (2.9) and (2.12),

p(z) z2n + Enz + 1.

It is easily seen from (1.3) that

(3.9) p(1) (ein 1)(e-in 1) 2 2 cos(On).

By (3.8) and (3.9), E, -2 cos(0n), so

(3.10) p(z) Z2n 2 Cos(On)zn -- 1.

For r/(2n) < 0 _< r/n, the coefficients of p(z) are nonnegative and they are increasing
functions of 0.
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POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS 1179

Case 3. a > 2r/n. In this case, x0 > 0 by (2.2) and (2.3). Moreover, by (1.1)
and (1.5), we may suppose that

By (2.17) and (3.11),

(3.12) E1 (x0) 2x0 sin(na/2)/sin(a/2) < 0.

This contradicts (3.3), so Case 3 is vacuous.

4. Proofs of Theorems 2 and 3.

Proof of Theorem 2. Let 0 < a < r/n. By (2.9) and (2.12), it suffices to prove

(4.1) Ek > 0, 0 _< k _< n.

This follows for k 0, 1 by (2.17). For 2 <_ k _< n, all sines in (3.1) are positive, so

(4.2) Ak>0, Bk>0 for2<_k<_n.

Thus (4.1) follows by (3.2) and induction on k.
Proof of Theorem 3. Let 0 < a < r/n. The proof of (4.1) actually yields the

stronger result

M

(4.3) Ek E bikxi’ 0 <_ k <_ 2n,
i--0

with

bik > O, ifik(mod2),
(4.4)

bik 0, otherwise,

where

(4.5) M min(k, 2n- k).

Thus, by (2.8) and (2.12),

(n--l)/2 2n M

(4.6) p(z) H (z2qy + 2zx + q-Y) EE bikxizk"
j--(1--n)/2 k--0 i----0

Replace x by x/(2z) to get

2n M (n-l)/2

(4.7) EE bik2-ixizk-i H (z2qj + X + q-Y).
k--0 i----0 j--(1-n)/2

Replace z2 by z, then x by x-1, and multiply by xn to get

2n M (n-l)/2

(4.8) II
k--0 i--0 j--(1-n)/2

zxqY + 1 + xq-Y
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1180 RONALD EVANS AND JOHN GREENE

Replace z by z/x to get

2n M (n-l)/2

(4.9) EE b’a2-’x-(’+k)/2z(k-’)/2 H (zqi + 1 + xq-i).
=0 =0 =(-)/2

Now (1.12) follows easily from (a.9), completing the proof of Theorem 3.
We close this section by proving the remarks made in 1 between the statements

of Theorems 2 and 3.
Let n > 1. Then the upper bound 7/n in (1.9) is best possible. For, if a is

slightly larger than 7/n, then E2 < 0 for sufficiently small x, since

sin(nc/2) sin((n(4.10) E2 4x2
sin((/2) sin(c)

sin(nc)
sin(a)

If ( _> 2r/n, there is no 0 in the interval (1.4) for which all coefficients of p(z) are
positive, by (3.11) and (3.12). Finally, suppose that

(4.11) 0 < c < 2/n.

Then all coefficients of p(z) are positive on a small interval (1.10), i.e., for x sufficiently
close to 1. To see this, it suffices to show that when x 1 (and (4.11) holds), all
coefficients of p(z) are positive.

By (2.8), when x 1,

(n-1)/2

(4.12) p(z)- I-I (qYz + 1) 2,
j--(1--n)/2

SO

(4.13)
p----0

where the C(n, ) are central Gaussian coefficients (see [5, p. 449]). By (4.11) and
Theorem 3 of [5, p. 449], all of the C(n, ,) are positive. Thus, by (4.13), all coefficients
of p(z) are positive when x 1, 0 < ( < 2w/n.

5. Application to Theorem 4. Let f(z), ft(z) be given by (1.13) and (1.14),
and suppose that f(z) = ft(z). We will use Theorem 2 to show that all coefficients of
ft(z) are positive.

Case 1. t < 2w/k. We have

(5.1) f(z) g(z)/h(z),

where

zmk 1 1 Zk
h(z)

1 z

so

(5.3) ft(z) gt(z)/ht(z).
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POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS 1181

However, in Case 1, ht(z) h(z), so by (5.3),

(5.4) ft(z) gt(z)/h(z) (gt(z)(1 z))(1 + zk + z2k +...).

Let

(5.5) d degree (gt(z)).

By Theorem 5 with N mk, gt(z) is strictly unimodal, so all terms of gt(z)(1-z)
of degree _< d/2 have positive coefficients. Therefore, by (5.4), all terms of ft(z) of
degree _< d/2 have positive coefficients. However, ft(z) has degree d- (k- 1) _< d by
(5.4), so since the coefficients of ft(z) are symmetric about the middle one, they are
all positive.

Case 2. t >_ 2r/k. If m is even, say rn 2M, then

ZMk 1
(zMk + 1).(5.6) f(z)

zk 1

Applying Theorem 5, we could then deduce the result by induction on m. Thus assume
that m is odd, so -1 is not a zero of f(z). We have

m--1

(5.7) f(z) l-I A(r) (z),

where

(5.8) A()(z) H
O<u<mk/2
v=r(mod m)

Thus,

m--1

(5.9) ft(z) II A) (z),
r=l

with

(5.10) A)(z) H (z-e2i/’k) (z--e-2i/mk)
mkt/2r < <mk/2

v--r(mod m)

For any fixed r, the zeros of A) (z) on the upper half of the unit circle can be written
in the form

(5.11) exp(i(O,. + aj)), 0 _< j <_ n,. 1,

where

(5.12) 0. > t >_ 2r/k- a

and

(5.13) 0,. + a(n. 1) < < 0,. + an..
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1182 RONALD EVANS AND JOHN GREENE

Therefore Ar) (z) has the same form as p(z) in (1.3), and furthermore,

(5.14) zr/2 < Or + (nr- 1)a/2 < r

as in (1.5). Since, moreover, 0 < a < r/nr, Theorem 2 implies that all coefficients of

Ar) (z) are positive. Thus all coefficients of ft(z) are positive by (5.9).
Acknowledgment. The authors are very grateful to Richard Askey for helpful

ideas supplied at the Bateman Conference in Allerton Park, April 1989.
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