AN ASYMPTOTIC FORMULA FOR A SUM OF PRODUCTS OF POWERS

BY
RONALD J. EVANS

1. Introduction. Fix an integer $r \geq 2$ and positive numbers b_{1}, \ldots, b_{r}. Write $\sigma=b_{1}+\cdots+b_{r}$ Let $t \in \mathbb{Z}, k \in \mathbb{N}$. In this note we evaluate the constant A (when it exists) for which

$$
\begin{equation*}
k^{1-\sigma-r} \sum j_{1}^{b_{1}} \cdots j_{r}^{b_{r}} \rightarrow A \quad(k \rightarrow \infty), \tag{1}
\end{equation*}
$$

where the sum is over all vectors

$$
\begin{equation*}
\left(j_{1}, \ldots, j_{r}\right) \in \mathbb{N}^{r}, \quad \text { with } \quad j_{1}+\cdots+j_{r} \equiv t(\bmod k) \quad \text { and } \quad 1 \leq j_{i} \leq k . \tag{2}
\end{equation*}
$$

We also obtain upper and lower bounds for the sum in (1).
If t is allowed to vary with k, one cannot generally expect an asymptotic constant A to exist. However, if t is so restricted that t / k approaches a limit α as $k \rightarrow \infty$, then A does exist and we evaluate it in terms of Bernoulli polynomials $B_{v}(\alpha)$. In the case $t=0, b_{1}=\cdots=b_{r}=1$, our formula (1) reduces essentially to that in [2].
2. Notation. If not otherwise indicated, a summation \sum is over the vectors in (2). The Bernoulli polynomials $B_{\nu}(x)$ are defined by

$$
\frac{w e^{w x}}{e^{w}-1}=\sum_{\nu=0}^{\infty} \frac{B_{\nu}(x)}{\nu!} w^{\nu} \quad(0<|w|<2 \pi)
$$

For $\nu \geq 2,0 \leq x \leq 1$, these polynomials have the following Fourier expansions [1, p. 267]:

$$
B_{\nu}(x)=-\frac{2 \nu!}{(2 \pi i)^{\nu}} \sum_{j=1}^{\infty} \frac{\cos 2 \pi j x}{j^{\nu}}, \quad \text { if } 2 \mid \nu
$$

and

$$
B_{\nu}(x)=-\frac{2 i \nu!}{(2 \pi i)^{\nu}} \sum_{j=1}^{\infty} \frac{\sin 2 \pi j x}{j^{\nu}}, \quad \text { if } \quad 2 \nmid \nu .
$$

For $b>0, j \in \mathbb{Z}$, define

$$
\begin{equation*}
C(b, j)=\int_{0}^{1} x^{b} e^{2 \pi i j x} d x \tag{3}
\end{equation*}
$$

Received by the editors August 11, 1977.

For non-zero j, integration by parts yields

$$
\begin{equation*}
C(b, j)=\frac{1}{2 \pi i j}-\frac{b}{2 \pi i j} \int_{0}^{1} x^{b-1} e^{2 \pi i j x} d x . \tag{4}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
|C(b, j)| \leq 1 / \pi|j| . \tag{5}
\end{equation*}
$$

In the case $b \in \mathbb{N}$, repeated use of (4) shows that

$$
\begin{equation*}
C(b, j)=P_{b}(-1 / 2 \pi i j) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{b}(x)=-\sum_{m=0}^{b-1} \frac{b!}{(b-m)!} x^{m+1} . \tag{7}
\end{equation*}
$$

For $b_{1}, \ldots, b_{r} \in \mathbb{N}$, denote the polynomial $\prod_{i=1}^{r} P_{b_{i}}(x)$ by $\sum_{\nu=r}^{\sigma} e_{\nu} x^{\nu}$.
Define

$$
J=\left\{j \in \mathbb{Z}: 1 \leq|j| \leq\left[\frac{k-1}{2}\right]\right\} .
$$

3. Upper and lower bounds. Theorem 1. Fix $r \geq 2$ and positive numbers b_{1}, \ldots, b_{r} Let $t \in \mathbb{Z}, k \in \mathbb{N}$. Then as $k \rightarrow \infty$,

$$
M_{r} \leq \lim \inf k^{1-\sigma-r} \sum j_{1}^{b_{1}} \cdots j_{r}^{b} \leq \lim \sup k^{1-\sigma-r} \sum j_{1}^{b_{1}} \cdots j_{r_{r}^{r}}^{b} \leq N_{r}
$$

where

$$
M_{r}=\frac{\Gamma\left(b_{1}+1\right) \Gamma\left(b_{2}+1\right)}{\Gamma\left(b_{1}+b_{2}+2\right)} \prod_{i=3}^{r}\left(b_{i}+1\right)^{-1}
$$

and

$$
N_{r}=\left(b_{1}+b_{2}+1\right)^{-1} \prod_{i=3}^{r}\left(b_{i}+1\right)^{-1}
$$

Proof. First suppose that $r=2$. Let $L(m)$ denote the least positive residue of $m(\bmod k)$. Then

$$
\sum j_{1}^{b_{1} j_{2}^{b_{2}}}=\sum_{j=1}^{k} j^{b_{1}} L^{b_{2}}(t-j) .
$$

Since the sequence $L(t-1), L(t-2), \ldots, L(t-k)$ is a permutation of $1,2, \ldots, k$, it follows that

$$
\begin{equation*}
\sum_{i=1}^{k} j^{b_{1}}(k+1-j)^{b_{2}} \leq \sum j_{1}^{b_{1}} j_{2}^{b_{2}} \leq \sum_{j=1}^{k} j^{b_{1}+b_{2}} . \tag{8}
\end{equation*}
$$

As $k \rightarrow \infty$, the rightmost member of (8) is asymptotic to $k^{b_{1}+b_{2}+1} N_{2}$ and the
leftmost is asymptotic to

$$
\int_{0}^{k+1} x^{b_{1}}(k+1-x)^{b_{2}} d x \sim k^{b_{1}+b_{2}+1} M_{2}
$$

Therefore, the result follows from (8) in the case $r=2$.
Now let $r>2$ and suppose that the theorem holds for $r-1$ in place of r. We have

$$
\sum j_{1}^{b_{1}} \cdots j_{r}^{b}=\sum_{j=1}^{k} j^{b} \sum^{*} j_{1}^{b_{1}} \cdots j_{r-1}^{b_{r-1}}
$$

where the sum \sum^{*} is over all vectors $\left(j_{1}, \ldots, j_{r-1}\right) \in \mathbb{N}^{r-1}$ with $j_{1}+\cdots+j_{r-1} \equiv$ $t-j(\bmod k)$ and $1 \leq j_{i} \leq k$. Applying the induction hypothesis to \sum^{*} and using the fact that

$$
\sum_{j=1}^{k} j^{b_{r}} \sim \frac{k_{r}^{b+1}}{b_{r}+1}
$$

the theorem follows.
In case (1) holds, Theorem 1 says that $M_{r} \leq A \leq N_{r}$. It is proved in [2] that $A=2^{-r}-B_{r}(0) / r!$ in the case $t=0, b_{1}=\cdots=b_{r}=1$. This example shows that in general M_{r} cannot be replaced by the larger number $\prod_{i=1}^{r}\left(b_{i}+1\right)^{-1}$, nor can N_{r} be replaced by the smaller number $\prod_{i=1}^{r}\left(b_{i}+1\right)^{-1}$.
4. Lemmas. Lemma 2. Let $g_{u}(x)(1 \leq u \leq r)$ be complex valued functions, and set

$$
f_{u}(x)=\sum_{n=1}^{k} g_{u}(n) x^{n}
$$

Write

$$
F(x)=\prod_{u=1}^{r} f_{u}(x)
$$

Then

$$
\sum g_{1}\left(j_{1}\right) \cdots g_{r}\left(j_{r}\right)=k^{-1} \sum_{j=1}^{k} e^{-2 \pi i j t / k} F\left(e^{2 \pi i j / k}\right)
$$

Proof. We may assume $0 \leq t<k$. Write

$$
F(x)=\sum_{m=0}^{k r} c_{m} x^{m} \quad \text { and } \quad a_{s}=\sum_{\substack{0 \leq m \leq k r \\ m=s(\bmod k)}} c_{m} \quad(0 \leq s<k) .
$$

Let $V=\left\{e^{2 \pi i j / k}: j=1,2, \ldots, k\right\}$. For each $v \in V$,

$$
v^{-t} F(v)=v^{-t} \sum_{m=0}^{k r} c_{m} v^{m}=\sum_{s=0}^{k-1} a_{s} v^{s-t} .
$$

Since

$$
\sum_{v \in V} v^{s-t}=\left\{\begin{array}{lll}
0, & \text { if } & s \neq t \\
k, & \text { if } & s=t
\end{array}\right.
$$

we have

$$
\sum_{v \in V} v^{-t} F(v)=k a_{t}=k \sum g_{1}\left(j_{1}\right) \cdots g_{r}\left(j_{r}\right)
$$

QED

We remark that if $t=1$ and the g_{u} are taken to be primitive characters $(\bmod k)$ such that $g_{1} \cdots g_{u}$ is non-principal, then Lemma 2 yields the well known formula for r-fold Jacobi sums in terms of Gauss sums; see [4, p. 100].

Lemma 3. For each $b \in \mathbb{N}$ and $j \in J$,

$$
\sum_{n=1}^{k} n^{b} e^{2 \pi i n j / k}=k^{b+1} C(b, j)+0\left(k^{b}\right)
$$

where the implied constant depends only on b.
Proof. Curiously, the result does not seem to be readily deducible from the Euler-Maclaurin summation formula, so we utilize complex analysis. Taking b th derivatives in the identity

$$
\sum_{n=1}^{k} e^{z n}=\left(e^{k z}-1\right)\left(1-e^{-z}\right)^{-1}
$$

we have

$$
\sum_{n=1}^{k} n^{b} e^{z n}=\sum_{m=0}^{b}\binom{b}{m}\left(e^{k z}-1\right)^{(b-m)}\left(\frac{1}{1-e^{-z}}\right)^{(m)}
$$

Restrict z to the annulus $0<|z|<\pi$. We have the Laurent expansion

$$
\left(1-e^{-z}\right)^{-1}=z^{-1}+d_{0}+d_{1} z+d_{2} z^{2}+\cdots
$$

Hence

$$
\left(\frac{1}{1-e^{-z}}\right)^{(m)}=(-1)^{m} m!z^{-m-1}+0(1)
$$

where the implied constant depends only on m. Hence

$$
\sum_{n=1}^{k} n^{b} e^{z n}=\left(e^{k z}-1\right)\left(\frac{1}{1-e^{-z}}\right)^{(b)}+\sum_{m=0}^{b-1}\binom{b}{m} k^{b-m} e^{k z}\left(-m!(z)^{-m-1}+0(1)\right) .
$$

Setting $z=2 \pi i j / k$ with $j \in J$, we have the desired result, in view of (6).
Lemma 4. Assume that $t / k \rightarrow \alpha$ as $k \rightarrow \infty$. Then for each $\nu \geq 2$,

$$
\lim _{k \rightarrow \infty} \sum_{j=1}^{[(k-1) / 2]} \frac{e^{2 \pi i j t / k}}{(2 \pi i j)^{\nu}}=\sum_{j=1}^{\infty} \frac{e^{2 \pi i j \alpha}}{(2 \pi i j)^{\nu}}
$$

Proof. Put $N=(t / k-\alpha)^{-1}$ (if $\left.t / k=\alpha, N=\infty\right)$. Let $k \rightarrow \infty$. Then $N \rightarrow \infty$ and

$$
\begin{aligned}
\sum_{j=1}^{[(k-1) / 2]} \frac{e^{2 \pi i t / t k}}{(2 \pi i j)^{\nu}} & =\sum_{j=1}^{N} \frac{e^{2 \pi i j t / k}}{(2 \pi i j)^{\nu}}+o(1)=\sum_{j=1}^{N} \frac{\exp (2 \pi i j \alpha+0(j / N))}{(2 \pi i j)^{\nu}}+o(1) \\
& =\sum_{j=1}^{N} \frac{e^{2 \pi i j \alpha}}{(2 \pi i j)^{\nu}}+\sum_{j=1}^{N} 0\left(\frac{1}{j N}\right)+o(1) \rightarrow \sum_{j=1}^{\infty} \frac{e^{2 \pi i j \alpha}}{(2 \pi i j)^{\nu}} .
\end{aligned}
$$

QED
5. Asymptotic formula. Theorem 5. Fix $r \geq 2$ and $b_{1}, \ldots, b_{r} \in \mathbb{N}$. Let t and k be integers such that $0 \leq t<k$ and $t / k \rightarrow \alpha$ as $k \rightarrow \infty$. Then as $k \rightarrow \infty$,

$$
\sum j_{1}^{b_{1} \cdots j_{r_{r}}^{b} \sim A k^{\sigma+r-1},}
$$

where

$$
A=\prod_{i=1}^{r}\left(b_{i}+1\right)^{-1}-\sum_{\nu=r}^{\sigma} \frac{e_{\nu}}{\nu!} B_{\nu}(\alpha)
$$

Proof. By Lemma 2,

The rightmost sum is asymptotic to $k^{b_{u}+1} /\left(b_{u}+1\right)$ when $j=k$, and it is equal to $0\left(k^{b_{u}}\right)$ when $j=k / 2$. Thus,

$$
\sum j_{1}^{b_{1}} \cdots j_{r^{r}}^{b} \sim k^{\sigma+r-1} \prod_{i=1}^{r}\left(b_{i}+1\right)^{-1}+k^{\sigma+r-1} H
$$

where

$$
H=k^{-\sigma-r} \sum_{j \in J} e^{-2 \pi i j t / k} \prod_{u=1}^{r} \sum_{n=1}^{k} n^{b_{u}} e^{2 \pi i n j / k}
$$

It remains to show that

$$
H \rightarrow-\sum_{\nu=r}^{\sigma} \frac{e_{\nu}}{\nu!} B_{\nu}(\alpha) \quad \text { as } \quad k \rightarrow \infty .
$$

By Lemma 3 and (5),

$$
H=k^{-\sigma-r} \sum_{j \in J} e^{-2 \pi i j t / k}\left\{k^{\sigma+r} \prod_{u=1}^{r} C\left(b_{u}, j\right)+0\left(\frac{k^{\sigma+r-1}}{j^{r-1}}\right)\right\}
$$

where the implied constant depends only on b_{1}, \ldots, b_{r}. Thus,

$$
H=\left\{1+0\left(\frac{\log k}{k}\right)\right\} \sum_{j \in J} e^{-2 \pi i \mathrm{it} / k} \prod_{u=1}^{r} C\left(b_{u}, j\right) .
$$

Therefore, by (6) and (7),

$$
\begin{aligned}
& H=\left\{1+0\left(\frac{\log k}{k}\right)\right\} \sum_{j \in J} e^{-2 \pi i j t / k} \sum_{\nu=r}^{\sigma} e_{\nu}\left(\frac{-1}{2 \pi i j}\right)^{\nu} \\
&=\left\{1+0\left(\frac{\log k}{k}\right)\right\} \sum_{\nu=r}^{\sigma} e_{\nu} e^{[(k-1) / 2]} \sum_{j=1}^{2 \pi i j t / k}+(-1)^{\nu} e^{-2 \pi i j t / k} \\
&(2 \pi i j)^{\nu}
\end{aligned} .
$$

By Lemma 4,

$$
H \rightarrow \sum_{\nu=r}^{\sigma} e_{\nu} \sum_{j=1}^{\infty} \frac{e^{2 \pi i j \alpha}+(-1)^{\nu} e^{-2 \pi i j \alpha}}{(2 \pi i j)^{\nu}}=-\sum_{\nu=r}^{\sigma} \frac{e_{\nu}}{\nu!} B_{\nu}(\alpha) .
$$

Corollary 6. Under the hypotheses of Theorem 5,

$$
\sum j_{1} \cdots j_{r} \sim k^{2 r-1}\left(2^{-r}+(-1)^{r+1} B_{r}(\alpha) / r!\right)
$$

and

$$
\sum\left(j_{1} \cdots j_{r}\right)^{2} \sim k^{3 r-1}\left(3^{-r}+(-1)^{r+1} \sum_{n=0}^{r}\binom{r}{n} 2^{n} B_{n+r}(\alpha) /(n+r)!\right)
$$

Corollary 7. Fix $r \geq 2$. Let $k \in \mathbb{N}$ tend to ∞. Then

$$
\sum_{\substack{1 \leq j_{i} \leq 2 k \\\left(j_{1}+\cdots+j_{r}\right) / k o d d}} j_{1} \cdots j_{r} \sim(2 k)^{2 r-1}\left(2^{-r}+(-1)^{r+1} B_{r}\left(\frac{1}{2}\right) / r!\right)
$$

For $h_{1}, \ldots, h_{r} \in \mathbb{N}$, let $A=A\left(h_{1}, \ldots, h_{r}\right)$ be as in Theorem 5. Let $A^{\prime}\left(h_{1}, \ldots, h_{r}\right)$ be obtained from $A\left(h_{1}, \ldots, h_{r}\right)$ by replacing α by $1-\alpha$. For $b_{1}, \ldots, b_{r}>0$, define

$$
B=B\left(b_{1}, \ldots, b_{r}\right)=\sum_{h_{1}=0}^{\infty} \cdots \sum_{h_{r}=0}^{\infty}(-1)^{h_{1}+\cdots+h_{r}}\binom{b_{1}}{h_{1}} \cdots\binom{b_{r}}{h_{r}} A^{\prime}\left(h_{1}, \ldots, h_{r}\right) .
$$

Since $\left|A^{\prime}\left(h_{1}, \ldots, h_{r}\right)\right|<1$ by Theorem 1 and since

$$
\sum_{h=0}^{\infty}\binom{b}{h}
$$

converges absolutely for $b>0$ [3, p. 90], the r-fold series for B converges absolutely.

The following theorem extends Theorem 5.
Theorem 8. Fix $r \geq 2$ and $b_{1}, \ldots, b_{r}>0$. Let $t \in \mathbb{Z}, k \in \mathbb{N}, 0 \leq t<k$, and $t / k \rightarrow \alpha$ as $k \rightarrow \infty$. Then as $k \rightarrow \infty$,

$$
\sum j_{1}^{b_{1}} \cdots j_{r}^{b} \sim B k^{\sigma+r-1} .
$$

Proof. Let \sum^{\prime} be obtained from \sum by replacing t by $-t$. Then

$$
\begin{aligned}
\sum j_{1}^{b_{1} \cdots j_{r} b_{r}} & =\sum^{\prime}\left(k-j_{1}\right)^{b_{1} \cdots\left(k-j_{r}\right)^{b}} \\
& =k^{\sigma+r-1} \sum_{h_{1}=0}^{\infty} \cdots \sum_{h_{r}=0}^{\infty}(-1)^{h_{1}+\cdots+h_{r}}\binom{b_{1}}{h_{1}} \cdots\binom{b_{r}}{h_{r}} k^{1-r-\left(h_{1}+\cdots+h_{r}\right)} \sum^{\prime} j_{1}^{h_{1}} \cdots j_{r}^{h_{r}} .
\end{aligned}
$$

We have

$$
\begin{equation*}
\sum j_{1}^{b_{1}} \cdots j_{r}^{b}=k^{\sigma+r-1} B+k^{\sigma+r-1} \sum_{h_{1}=0}^{\infty} \cdots \sum_{h_{r}=0}^{\infty}(-1)^{h_{1}+\cdots+h_{r}}\binom{b_{1}}{h_{1}} \cdots\binom{b_{r}}{h_{r}} \theta, \tag{9}
\end{equation*}
$$

where

$$
\theta=\theta\left(k, t, h_{1}, \ldots, h_{r}\right)=k^{1-r-\left(h_{1}+\cdots+h_{r}\right)} \sum_{j}^{\prime} j_{1}^{h} \cdots j_{r_{r}}^{h_{-}}-A^{\prime}\left(h_{1}, \ldots, h_{r}\right) .
$$

By Theorem $1,|\theta|$ is bounded by an absolute constant. Since also $\theta \rightarrow 0$ as $k \rightarrow \infty$, it follows that the r-fold series in (9) approaches 0 as $k \rightarrow \infty$. Thus (9) yields the desired result.

References

1. T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, N.Y., 1976.
2. B. C. Berndt, Problem 226, Canadian Math. Bull. 19 (1976), 250-251.
3. E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, N.Y., 1965.
4. K. Ireland and M. Rosen, Elements of number theory, Bogden and Quigley, Tarrytown-onHudson, 1972.

Department of Mathematics

University of California at San Diego
La Jolla, California 92093

