
PURE GAUSS SUMS OVER FINITE FIELDS

RONALD J. EVANS

Abstract. New classes of pairs e,p are presented for which the Gauss sums
corresponding to characters of order e over finite fields of characteristic p are pure,
i.e., have a real power. Certain pure Gauss sums are explicitly evaluated.

§1. Introduction. Stickelberger [7] showed in 1890 that if — 1 is a power of p
(mod e), then all Gauss sums over finite fields of characteristic p corresponding to
characters of all orders dividing e are real. Baumert, Mills and Ward [1, Theorems 1
and 4] recently proved the converse, using the theory of cyclotomic periods. In §3, we
give a short variant of their proof, via Jacobi sums.

Call a Gauss or Jacobi sum pure if some non-zero, integral power of it is real.
The main purpose of this paper is to present (see §4) classes of pairs e, p for which
— 1 is not a power of p (mod e) but the Gauss sums of order e over finite fields of
characteristic p are pure. Such pairs do not exist when e is a prime power (see
Theorem 2), but they exist for example when e is twice a power of a prime congruent
to 7 (mod 8). Some pure Gauss sums are explicitly evaluated in §5.

Chowla and Mordell each showed in 1962 that Gauss sums (modp) of order
e > 2 are never pure. For some more recent papers dealing with pure Gauss sums,
see Evans [3] and Kubert and Lang [6, §3].

§2. Preliminaries. In the sequel, fix e > 2, let p be prime, r ^ 1, and e (pr — 1).
Write q = pr.

The finite field GF(q) contains an element gr of multiplicative order q — 1. Let
C = exp(2ni/n). Define a character y = yr on GF(q) by y(gr) = Ce- Define Gauss
and Jacobi sums over GF(q) of orders dividing e as follows.

G(yJ) = Gr(yJ) = £ yj(*)Cp
w,

where T(a) = ot" + ap2 +... + apr, and

J(u, v) = Jr(u, v) =
( J )

The following formulae are well known [5, pp.91-93, 132-133]. For j # 0 (mode),

G{yi)G{yi) = t{-\)q, \q~^2G{y!)\ = 1 ; (1)

J(0,0) = <af-2, J(j, -j)= -yJ(-\), J(O,j) = J(j,O) = - 1 ; (2)

and

^Sp (3)
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It follows from (1) and (3) that

Ge(z) = Z ( - D « FI ^ ( l , v ) . (4)
v = 1

We shall use the Hasse-Davenport theorem [5, p. 147] which states that, if n | r,
e | (pn- 1), and gn = ^ »/«>"-'», then

Gr(lr)= - ( - G n ( z J ) r / " . (5)
We have

( 1 , if p = I(mod4),
G,(z) = - ( - * > 1 / 2 ) r when e = 2, where ip = (6)

{ i, if p s 3 (mod4).

In particular, Gauss sums of order ^ 2 are pure. Formula (6) was proved by Gauss
for r = 1, and it follows for general r by (5).

By (1), G(x) is pure, if, and only if, q'il2G(x) is a root of unity. Thus, by
[3, Theorem 4],

r

G(x) is pure, if, and only if, for each b prime to e, £ {(bpv/e)) = 0, (7)
V = 1

where, as usual,

f x - M - 1 / 2 , i fx^Z,

{ 0, otherwise,

and where [x] denotes the greatest integer ^ x. Taking b = 1 in (7), we see that

= r/2 (mod 1), if G(x) is pure . (8)
(p-l)e

For an elementary proof of (8), see [3, p. 345], but please correct the misprint "2 J r"
on the first line of [3, Cor. 3] to read "2 r". It follows from (8) that

has order
2, if 2 / r,

I 1, if 2 | r,
, if G(x) is pure , (9)

where z|CF(p) denotes the restriction of % to GF(p).
The cyclotomic number (/J, k)r of order e over GF(q) is denned to be the number

of a in GF(q) such that x(a/gh
r) = z((a + l)/s(r) = 1- The numbers (h,k)r are related

to Jacobi sums by the following easily proved double finite Fourier series relations
[4, p. 324]:

x"(-\)J(u,v) = C£ *£ (h,k)rC
h

e"
+kv, (10)

/i = 0 Jc=O

and

e2(h,k)r =e2( \ *
u = 0 u =
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§3. Real Gauss sums of all orders dividing e.

THEOREM 1. Given e, p and r, with e > 2, e \ {pr— 1), the following are equivalent.

— 1 is a power of p (mode). (12)

— 1 is a power p' (mod e), and for minimal such t > 0 and s = r/2t,

M - i y s + s + 1, if2\e,2l(p'+l)/e,
p~rl2Gr(x

j) =
{ ( - l ) s + 1 , otherwise,

for allj # 0 (mode). (13)

X {{bf/e)) = OforallbeZ. (14)
V = 1

Gr(yj) is pure for allj £ Z . (15)

Jr(u, v) is pure for all u, v e Z . (16)

Proof The equivalence of (12) and (13) is well known [7, §§3.6, 3.10]. The
equivalence of (14) and (15) follows easily from (7). The equivalence of (15) and (16)
follows from (2)-(4). Trivially (13) implies (15). It remains to show that (16) implies
(12).

Define the following sets of ordered pairs with entries (mod e):

L= {(u,v):u,v,u + v ^ 0 (mod e )} ;

M = {(h,k):h,k,h-k # 0 (mode)} ; and

N = {(h,k):(h,k)£M u ( 0 , 0 ) } .

Assume that (16) holds. Without loss of generality, there exists 9 = ± 1 independent
of u, v such that

J r ( u , v) = 6 p r l 2 , f o r a l l ( u , v ) e L , (17)

otherwise replace r by an appropriate multiple of r and employ the Hasse-
Davenport theorem. We may assume r is minimal such that (17) holds for some
9 = +1 . Assume that (12) is false. We shall show that there exist n e Z and 91 = +1
such that r = 2n, e | ( p " - l ) , and Jn{u, v) = ^p" ' 2 for all {u,v)eL. This will
contradict the minimality of r.

By (17), p"2 £ Q(Ce) n Q(C4p) c Q(i), so p " 2 e Z and r = In. By (2), (11) and

e2(l,2)r = pr+l+29prl2.

Therefore (l,2)r = (pn + 9)2/e2 and, since (12) is false, 6 = - 1 and e | (p"-l) . By
(17) and the Hasse-Davenport theorem, Jz{u, v) = p" for all (u, u) £ L, so

Jn(u,v) = e(u,v)p"12 for all (u,v)eL, whe re e(u, u) = ± 1 . (18)

It remains to show that all Jn(u, v) in (18) are equal.
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By (18), p"12 e Q(£e) n Q(£4p) <= Q(0. so n is even. By (18) and (4) with n in place
of r, Gn(xn) is pure. Thus by (9), yJ-\) = 1. Now from (2), (11) and (18),

e2{h,k)n = pn + \+p"l2Y(h,k) for all (h, k) e M (19)

a n d e2(h,k)n = pn + l-e + p"l2Y(h,k) for all (h, k) e N , (20)

where Y(h,k) = ̂ Ju,VK;—. (21)

By (19)-(21), the algebraic integers Y(h,k) are in fact rational integers satisfying
\Y(h,k)\ < e2.

First consider the Y(h, k) with (h, k) e M. By (19), they are all congruent to each
other (mode2). Moreover, they are all even, since

Y(h,k)= X C;hu~kv = 2 (mod2) .

Thus if e is odd, these Y(h, k) are congruent to each other (mod 2e2), so they are all
equal. Suppose now that e is even. As {h, k)e M, one of (h + e/2, k), (h, k + e/2) and
(h + e/2, k + e/2) is in M. Say the latter is in M; the argument proceeds similarly in
the other cases. Then

= 0 (mod e2/2),

and the left sum has fewer than e2/2 terms, so it vanishes. Thus

\Y(h,k)\ =
{U,V)EL

2{

< e2/2,

Therefore, all the Y(h, k) with (h,k)e M are equal.
Similarly, we see that all Y(h, k) with (h,k) e N are equal. It then follows from

(19) and (20) that all (h, k)n with (h,k)eM are equal, and all (h, k)n with (h,k)eN
are equal. Therefore, by (10), all Jn(u, v) with (u, v) e L are equal.

It would be nice to have an elementary proof of the equivalence of (12) and (14).
Of course (12) trivially implies (14) since (( — x)) = — ((x)).

§4. Pure Gauss sums of order e. Theorem 1 showed that — 1 is a power of
p(mode), if, and only if, G(%J) is pure for al l ) . Theorem 2 below shows that, if e is a
prime power, then in fact — 1 is a power of p (mod e), if, and only if, G(y) is pure.

THEOREM 2. Suppose that e is a prime power and that G(x) is pure. Then — 1 is a
power of p (mode).

Proof. By the Hasse-Davenport theorem, we may assume that r is the order of
p (mode). We have 2 | r, otherwise (8) yields the contradiction 2 || e. If 2 | e , then
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e [ (pr/2 + 1), since e \ (pr — 1) and e / (pr/2 — 1). Finally, suppose that e is a power of 2.
By (8), e\(prl2 + \)W, where W = {pr/2-1 )/(p-1). We must have e |(pr / 2 + l);
otherwise 21 W, so 4 | ( p r / 2 - l ) , so 2| | (pr / 2 + l), so e/2\W, so e\{pr'2-\), a
contradiction.

The condition that e be a prime power in Theorem 2 cannot be dropped. In
Corollaries 4 and 5, we exhibit pairs e, p for which — 1 is not a power of p (mode)
and G(y) is pure.

The following notation will be used. If m > 0, p J m, let om(p) denote the order of
p (mod m) and let <p> (mod m) denote the group of om(p) powers of p (mod m). Thus
p is a primitive root (mod m), if, and only if, om(p) = (/>(m).

THEOREM 3. Suppose that e = DE with (D, E) = 1 and (oD(p), oE(p)) = 1. Then
G(y) is pure, if any of the following three conditions is satisfied.

oD(p) = (f)(D) and d e <p> (mod E)for some prime S\ D . (22)

— 1 ̂  <p> (modi)), 2oD(p) = 0(D), 5 e </?> (mod£) /o r some
prime <) | D, and all of this holds with D and E interchanged . (23)

2|je, 2 + e/2^<p> (mod£>), 2oD(p) = 0(D), - 1 or d is in
(mod E) for some prime 5 j D, and all of this holds with D and E
interchanged. (24)

Proof. By the Hasse-Davenport theorem, we may assume that r = oe(p). By
(7), it is to be shown that £ ' = , ((bpv/e)) = 0, for each b prime to e. Write £„.,, to
denote summation over n with 0 < n < e, (n, e) = 1. We have

£ ((bpVe)) = - T- + I n/e,
v = I Z n • e

njb e <p>(modf)

so it suffices to show that

s = x n = er/2 •
n * e

nib e <p>(modf)

If m > 0, p | m, define Gm to be the group of Dirichlet characters (mod m) which
map p to 1. One can regard Gm as the character group on Rm/<p>, where Rm is the
group of (p(m) reduced residues (mod m). Thus |GJ = <j>{m)/om(p). Since
(£>,£) = (oD(p),oE{p)) = 1, we can regard Ge as the internal direct product of GD

and GE. Thus each A e Ge can be uniquely written in the form A = \\ik, where
i/>eGD,/.eG£.

By definition of S,

S = |Ger
1 X " I A(n/b) = S1+S2,

n * e AeGf

where

n * e 1 ,t A t Gf n * e

It remains to show that St = er/2 and S2 = 0.
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First, letting /j, denote the Moebius function, we have

£ « Z
0 < n < e d\n,4\e d\e 0 < k < e/d

Since \Ge\ = <b(e)jr, it follows that St = er/2.
Next, if \Ge\ = 1, then Sj = 0 and the proof is complete. Therefore suppose that

\Ge\ > 1, and choose A ^ 1 in Ge. We must show that Xln)cPA(n)H = 0> or,
equivalently, that

X M«)w = 0, (25)

where \}i is a character (mod D), A is a character (mod £), t/>(p) = !(/>) = 1, and not
both X and i/' are trivial.

We first dispense with the case i// = 1, i.e., we show that

= 0 . (26)

In view of (22)-(24), — 1 or d is in <p> (mod£) for some prime 3 dividing D. Thus
k{-\) = 1 or A((5) = 1. If A ( - l ) = l . then

and (26) follows. If i(<5) = 1, then letting Do denote the largest factor of D prime to
3, we have

0 < n < e 0 < k < eld 0 < k < c,« j = 1
i51 n, (n. Do) = I (fc, Do) = ' l {k,D0) = \

Z M * + T A * + f ) = S *<»)«. (27)
j = 1 0 < it < p/(j

(k,D0) = 1 (n. Do)

where the second equality holds because

Z W) = o.
0 < k < e/S
(k, D0) = 1

Subtraction of the left sum from the right in (27) yields (26). Thus (26) is proved.
If (22) holds, then \GD\ = 1, so \\i is trivial, and (25) follows from (26). Therefore

assume that (23) or (24) holds. If either \\i or / is trivial, then, by symmetry in D and
E, (25) follows from (26). Thus assume that both A and \\i are non-trivial. In view of
(23), (24) and symmetry, \GE\ = \GD\ = 4>{D)loD(p) = 2, so X and ip are quadratic.

Assume that (23) holds. Then A ( - l ) = iA(-l) = - 1 , so AI /T( -1) = 1. Thus
)n equals its negative, and (25) follows.
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Finally, assume that (24) holds. Since 2 || e, we can define a non-trivial character
A' (mod e/2) by

if 2 | n .

By (24), A'(2) = ( - 1 ) ( - 1 ) = 1. Thus (cf. (27)),

X A'(n)n = 2 £ A'(fc)fc = £ A'(n)n.
0 < H < C 0 < /< < t?/2 0 < n < e

Subtraction of the left sum from the right yields £„»,. A'(n)n = 0, and (25) follows.

The corollaries below illustrate Theorem 3.

COROLLARY 4. For a fixed pair e, p, G(y) is pure and — 1 ^ <p> (mode), if either
of the following conditions holds.

e = 2E, where E is odd and divisible by a prime c = 1 (mod 8), p
is a square (mod c), and 2 e <p> (mod E) [for example, take p = 2
(mod£)). (28)

e = 6mE, where 5 is an odd prime, m^\,E>2,b\E,pisa
primitive root (mod dm), and p = 5 = 1 (mod E). (29)

Proof. If (29) holds, - 1 £ <p> (mod e) since p = 1 (mod E) and £ > 2. If (28)
holds, then — 1 $ <p> (mod e) because p is a square (mod c) while — 1 is not.

If (28) holds, then (22) is satisfied with D ~ S = 2, so G(/) is pure by Theorem 3.
If (29) holds, then (22) is satisfied with D = 5m, so G(x) is pure.

The next corollary provides specific examples in which e = BF is a small multiple
of F = cm, where c is an odd prime, c J B, m ^ 1, and p is either a primitive root
(mod F), in which case we write p = G (mod F), or the square of a primitive root
(mod F), in which case we write p = G2 (mod F).

COROLLARY 5. For a fixed pair e, p as above, G(/) is pure and — 1 ^ <p> (mode),
if any of the following conditions holds.

e = 2F, c = 1 (mod 8), p = G2 (modF). (30)

e = 3F, c = 11 (mod 12), p E G2 (modF), p = 2(mod3) . (31)

e = 4F, c = 7(mod8), p = G2 (modF), p = 3(mod4) . (32)

e = 5F, c = 11 or 19 (mod20), p = G2 (modF), p = ± 2 ( m o d 5 ) . (33)

e = 6F, c = 7, 11 or 23 (mod24), p s G2 (modF), p = 5 (mod6). (34)

e = 6F, c = 1 or 13 (mod24), p = G2 (modF), p s 1 (mod6). (35)

e = 6F, c s 5 or 13 (mod24), p = G (modF), p = 5 (mod6). (36)
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Proof. If one of (30)-(34) holds, then —1 ^ <p> (mode) since p is a square
(mode) while — 1 is not. If (35) holds, — 1 £ <p> (mode) since p = 1 (mod6). If (36)
holds and —\=pa (mod e), then a is odd because p = 5 (mod 6), but a is even
because — 1 is a square (mod c) while p is not; thus — 1 $ <p> (mod e).

If (36) holds, then (22) is satisfied with D = 6 = 2, E = IF, so G(*) is pure by
Theorem 3. If (35) holds with c = 1 (mod 24), then (23) is satisfied with D = 6,
E = F, where <5 = 2 is the relevant divisor of D. If (35) holds with c = 13 (mod 24),
then (24) is satisfied with D = 6, E — F, where <5 = 3 is the relevant divisor of D.
Thus G(x) is pure if (35) holds. If one of (30)-(34) holds, then (22) is satisfied with
D = B, E = F, so G(x) is pure.

Numerical examples. Let F denote the set of pairs e, p for which G(x) is pure
and — 1 ̂  <p> (mod e). If the pair e, p is in F, so is e, p' for any prime p' = p (mod e),
and we will not distinguish between e,p and e,p. There are 58 pairs e, p in V with
e < 60. They correspond to twelve values of e, namely e = 14,20,21,28,30,33,39,
42, 46, 52, 55 and 57. All 58 pairs can be found through Theorem 3, most often via
(22), but a few times via (23) and (24). The first 14 pairs in V are given in the
following table.

e

p (mod e)

14

9,11

20

13,17

21

10,19

28

11,23

30

17,23

33

5,14,20,26

For a pair e, p in V, oe(p) ^ 3 (see [3, p. 346]). One might ask: for which fixed
values of r = oe(p) do there correspond infinitely many pairs e, p in VI

§5. Evaluations of certain pure Gauss sums.

LEMMA 6. / / G(y) is pure, then 0 = q~ll2G(%) satisfies 92d = 1, where

Proof. Let v be 1 or 2 according as 2 / e or 2 e. By (8), 2 [ r when 2 / e. Thus, by
the definition of 6, 0" e Q(fpe). Therefore, 92pe = 1. By (4), fl1*1 e Q(Q, so 02<>2 = 1.
Since (2pe, 2e2) = 2e,

62e = 1 . (37)

Let a satisfy a s p (mode), a= 1 (modp). Define aa e Gal (Q(Cpe)/Q) by
ffa(Cpe) = Cpe- Then

<7aG(Z) = ?(a)G(za) = G{X") = G(x") = G(X).

Therefore <ra(0
2) = 02. On the other hand, by (37), aa(0

2) = 62a = 02p, so
02(p-n = L Together with (37), this implies that 02d = 1.

THEOREM 7. Suppose that e = BF, (B, F) = 1, B > \, F = cm, m ^ 1, c is an
odd prime, p # 1 (mod c), and G(/J, G(yF) are pure. Then G(y) = G(yf), where
H = F~l (modB).
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Proof. Write 1F = 1 — £F. For each n e GF(q), x(n) = x(n)FH (mod/f), so

G(x) = G(x
FH)(modlF). (38)

Since G(xFH) is an algebraic conjugate of the pure Gauss sum G{y/), we can write

G(x) = 6ql<2, G(xfH) = sq112, (39)

where 9 and e are roots of unity. By (38) and (39), 9 = E (mod XF), so since F = cm,

0/e = CF f°r some integer n . (40)

By Lemma 6 with B in place of e, e2B = 1. Since 2(e, p— 1) divides 2B, Lemma 6
gives 62B = 1, so (0/e)2B = 1. By (40), CfB = 1, so F | n; (40) and (39) now yield the
desired result.

We now apply Theorem 7 to evaluate, for example, some pure Gauss sums that
arose in the last section.

COROLLARY 8. Suppose that e = IE = 2 Y[kt= i c|"', where m,-^ 1, the ci are
distinct odd primes, (E,p—\) = 1, and 2 e <p> (mod£), e.g., take p = 2 (mod£).
ThenG(x)= - ( - i p ) Y / 2 .

Proof. Write e = BF with F = c^k. Since (22) holds with D = 2, G{x) is pure by
Theorem 3. Similarly, G ( / ) is pure. By Theorem 7, G(x) = G{xFH), where H = F1

(mod B). Iterating this process k times, we ultimately find that G{x) = G(xE), so by
(6), G(x)= -(-ijq1'2.

Note that Corollary 8 provides an evaluation of G(x) when (30) holds. Corollary
9 below evaluates G(x) when (31), (32), (33), (34) or (36) holds. Finally, (35) is
considered in Theorem 10.

COROLLARY 9. According as (31), (32), (33), (34) or (36) holds,
-q'li2G(x) = ( - l ) r / 2 , ( - i r ( p " 3 ) / 8 , ( - l ) r / 4 , ( - l ) r ( p - 5 ) / 8 o r 1.

Proof. In all five cases, —1 e </>> (modi?), where e = BF, so G{xF) is pure by
Theorem 1. Thus Theorem 7 may be applied to yield G(x) = G(xFH). Applying (13)
with, say, B, x, y in place of e, t, s, we therefore obtain

f l , if2|B, 2l(px+\)/B,
-q-ll2G(x) =

{ ( - I f , otherwise.

The result now easily follows; for example, if (36) holds, then B = 6, x = 1, y = r/2
and 4 | r, since 4 | o£(p), so — q~ll2G(x) = 1.

THEOREM 10. Let AF = 1 - £ F . 7/(35) /IOWS, t/ien G(x) = 9qU2 for the twelfth root
of unity 6 satisfying

" 3 (mo<Uf), (41)
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where \j/ is the cubic character (modp) defined by ^/(gf~i)l{p '') = £3, and J(\j/) is the
Jacobi sum

a (modp)

Proof. By Lemma 6, 6 = q~ll2G(yJ is a twelfth root of unity. Since F = I
(mod 6), x(n) = x{n)F (mod l f ) for each n e GF(q), so

By (5) with n = 1,

where Q is a character (mod p) of order 6 defined by
(43),

Oq112 = ( - i r ' (G?(Q))'/3 (mod XF).

(42)

(43)

= £6.By(42)and

(44)

Note that 3 | r since 3 | oF(p). From [2, Theorem 3.1], G\(Q) = p1/2J2(i/0A'p, where
\j/ = Q2 and ip is denned in (6). Thus (41) follows from (44).

Numerical example. Suppose that e = 42, p — 67, r — 3. By (41),
6 = q~1/2G(x) satisfies

6 = —2iJ2(ij/) (modl 7 ) .

U s i n g [ 2 , T h e o r e m 3 . 4 ] , w e s e e t h a t J{\p) = (-5 + 9 e i ^ / 3 ) / 2 , w h e r e e = ± 1 . T h u s
= 1 +ei^/3 = 2Cb (modl7), so 6 = — it^.

The author is grateful to Neal Olander for his valuable assistance in efficient
Fortran programming.
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