RESIDUACITY OF PRIMES

RONÁLD EVANS

ABSTRACT. Let q, p be distinct primes with p = ef + 1. A variant of the Kummer-Dedekind theorem is proved for Gaussian periods, which shows in particular that q is an e-th power (mod p) if and only if the Gaussian period polynomial of degree e has e (not necessarily distinct) linear factors (mod q). This is applied to give a simple criterion in terms of the parameters in the partitions $p = 8f + 1 = X^2 + Y^2 = C^2 + 2D^2$ for an odd prime q to be an octic residue (mod p). Some consequences and a generalization of an analogous quartic residuacity law (proved by E. Lehmer in 1958) are also given.

1. Introduction. Throughout, let p and q be distinct primes with p = ef + 1. In [8], E. Lehmer gave elegant criteria for an odd prime q to be an e-th power residue (mod p), for e = 3, 4. The result given for e = 4 was essentially the following theorem.

THEOREM 1.1. Let p be a prime $\equiv 1 \pmod{4}$ and write

(1.1)
$$p = \mathbf{X}^2 + \mathbf{Y}^2, \quad \mathbf{X} \equiv 1 \pmod{4}$$

Then an odd prime $q \neq p$ is quartic (mod p) if and only if

(1.2)
$$\left(\frac{(2/p)}{q}\right) = 1, q | \mathbf{Y}, \text{ or } \left(\frac{2(2/p)(p + \mathbf{X}s)}{q}\right) = 1, q \in \mathbf{Y},$$

where s is any integer satisfying $p \equiv s^2 \pmod{q}$, and (2/p) is the Legendre symbol.

In view of the congruence $(p+\mathbf{Y}s)(2p+2\mathbf{X}s) \equiv (p+\mathbf{X}s+\mathbf{Y}s)^2 \pmod{q}$, one can replace (1.2) by the equivalent condition

(1.3)
$$\left(\frac{2(2/p)}{q}\right) = 1, q | \mathbf{X}, \text{ or } \left(\frac{(2/p)(p + \mathbf{Y}s)}{q}\right) = 1, q * \mathbf{X}.$$

AMS Subject classification: Primary 11A15, 11T21; Secondary 11T06. Received by the editors on January 22, 1987.

 $\begin{array}{c} \text{Copyright $\widehat{\otimes}$1989 Rocky Mountain Mathematics Consortium} \\ 1069 \end{array}$

R. EVANS

In §2, we apply Theorem 1.1 to answer some questions posed in [10] and to extend some results given in [6, 9]. In §3, we prove an extension of Theorem 1.1 which also slightly generalizes a result of Williams, Hardy, and Friesen [14]. Our proof in §3 is considerably shorter than that in [14], at the expense of being less elementary.

The main results of this paper are Theorems 4.1 and 5.1. Theorem 5.1 is the counterpart of Theorem 1.1 for e = 8. It gives a simple criterion in terms of the parameters in the partitions $p = 8f + 1 = \mathbf{X}^2 + \mathbf{Y}^2 = \mathbf{C}^2 + 2\mathbf{D}^2$ for an odd prime $q \neq p$ to be an octic residue (mod p). Special cases have been given by von Lienen [11]. The proof of Theorem 5.1 is based on the fact that a prime $q \neq p$ is an *e*-th power (mod p) if and only if the Gaussian period polynomial of degree e has e (not necessarily distinct) linear factors over $\mathbf{GF}(q)$. This fact is a special case of Theorem 4.1.

2. Applications of Theorem 1.1. Throughout this section, p is a prime $\equiv 1 \pmod{4}$ such that (1.1) holds, q is an odd prime $\neq p$, and s is an integer such that $p \equiv s^2 \pmod{q}$. If, further, $p \equiv 1 \pmod{8}$, write

(2.1)
$$p = \mathbf{C}^2 + 2\mathbf{D}^2, \quad \mathbf{C} \equiv 1 \pmod{4}.$$

In [10, p. 478], E. Lehmer asks for a characterization of the (odd prime) divisors of C and D which are quartic (mod p). This is given in the following theorem.

THEOREM 2.1. Suppose that $p \equiv 1 \pmod{8}$. If $q | \mathbf{D}$, then q is quartic $(\mod p)$ if and only if

(2.2)
$$q|\mathbf{Y} \text{ or } \left(\frac{2p+2\mathbf{X}\mathbf{C}}{q}\right) = 1.$$

If $q|\mathbf{C}$, then q is quartic (mod p) if and only if

(2.3)
$$q|\mathbf{Y} \text{ or } \left(\frac{2p+2\mathbf{X}\mathbf{D}\sqrt{2}}{q}\right) = 1,$$

where $\sqrt{2}$ denotes any square root of $2 \pmod{q}$ (which exists since $p \equiv 2\mathbf{D}^2 \pmod{q}$).

PROOF. Choose s to be C or $\mathbf{D}\sqrt{2}$ according to whether $q|\mathbf{D}$ or $q|\mathbf{C}$, and use (1.2). \Box

A direct proof of the following theorem was solicited by E. Lehmer in [10, p. 478].

THEOREM 2.2. Suppose that $p \equiv 1 \pmod{8}$ and q divides $\mathbb{C}^4 - p \star^2$ or $4\mathbb{D}^4 - p\mathbb{Y}^2$. Then q is quartic $(\mod p)$.

PROOF. All congruences in this proof are $(\mod q)$. If $q|\mathbf{Y}$, then q is quartic by (1.2), so let $q \neq \mathbf{Y}$. Suppose that $q|\mathbf{X}$. If $q|\mathbf{C}^4 - p\mathbf{X}^2$, then $q|\mathbf{C}$ and $\mathbf{Y}^2 \equiv p \equiv 2\mathbf{D}^2$ so that (2/q) = 1. If $q|(4\mathbf{D}^4 - p\mathbf{Y}^2)$, then $4\mathbf{D}^4 \equiv \mathbf{Y}^4$ so that $\mathbf{Y}^2 \equiv \pm 2\mathbf{D}^2$. If the plus sign is valid, then (2/q) = 1, otherwise $\mathbf{Y}^2 \equiv -2\mathbf{D}^2 = \mathbf{C}^2 - p \equiv \mathbf{C}^2 - \mathbf{Y}^2$ so that $2\mathbf{Y}^2 \equiv \mathbf{C}^2$, and again (2/q) = 1. Therefore, if $q|\mathbf{X}$, then (2/q) = 1, so q is quartic by (1.3). It remains to consider the case $q\mathbf{X} \neq \mathbf{Y}$.

Suppose first that $q|(4\mathbf{D}^4 - p\mathbf{Y}^2)$. If $q|\mathbf{C}$, then $p^2 \equiv 4\mathbf{D}^4 \equiv p\mathbf{Y}^2$ and so $q|\mathbf{X}$. Thus $q \neq \mathbf{C}$. For some choice of $s \equiv \sqrt{p}, s\mathbf{Y} \equiv -2\mathbf{D}^2$, so $p + s\mathbf{Y} \equiv \mathbf{C}^2 \neq 0$. Thus q is quartic by (1.3).

Finally, suppose that $q|(\mathbf{C}^4 - p\mathbf{X}^2)$. If $q|\mathbf{D}$, then $p^2 \equiv \mathbf{C}^4 \equiv p\mathbf{X}^2$, giving $q|\mathbf{Y}$. Thus $q \neq \mathbf{D}$. For some choice of $s \equiv \sqrt{p}, s\mathbf{X} \equiv -\mathbf{C}^2$, and then $2p + 2s\mathbf{X} \equiv 4\mathbf{D}^2 \equiv 0$. Thus q is quartic by (1.2). \Box

Special cases of the next two theorems were given by the Lehmers. D.H. and E. Lehmer [6] obtained the special cases t = 1, k = 1, -3 of Theorem 2.3 by looking at cyclotomic resultants. E. Lehmer [9] obtained the special case t = 0, k = 3 of Theorem 2.4.

THEOREM 2.3. Suppose that $q \neq \mathbf{Y}$ and $(t^2 + k^2p - 2(2/p)p)^2 \equiv 4p(\mathbf{X} - kt)^2 \pmod{q}$ for some integers k, t. Then q is quartic $(\mod p)$.

PROOF. For some choice of $s \equiv \sqrt{p} \pmod{q}$,

$$2s(2/p)(\mathbf{X} - kt) \equiv -2(2/p)p + t^2 + k^2 p \pmod{q}.$$

Thus

$$(2/p)(2p+2s\mathbf{X}) \equiv 2(2/p)skt + t^2 + k^2p \equiv (ks+t(2/p))^2 (\mathrm{mod}\,q).$$

The members of this congruence are nonzero $(\mod q)$, otherwise $0 \equiv (2p + 2s\mathbf{X})(2p - 2s\mathbf{X}) \equiv 4p\mathbf{Y}^2 \pmod{q}$. Thus q is quartic by (1.2). \Box

THEOREM 2.4. Suppose that $q \neq \mathbf{X}$ and $(t^2 + k^2p - (2/p)p)^2 \equiv p(\mathbf{Y} - 2kt)^2 \pmod{q}$ for some integers k, t. Then q is quartic $(\mod p)$.

PROOF. For some choice of $s \equiv \sqrt{p} \pmod{q}$,

$$s(2/p)(\mathbf{Y}-2kt)\equiv -(2/p)p+t^2+k^2p(\mathrm{mod}\,q).$$

Thus,

$$(2/p)(p+s\mathbf{Y}) \equiv 2(2/p)skt + t^2 + k^2p \equiv (ks + t(2/p))^2 (\text{mod } q)$$

The members of the above congruence are nonzero (mod q), otherwise $0 \equiv (p + s\mathbf{Y})(p - s\mathbf{Y}) \equiv p\mathbf{X}^2 \pmod{q}$. Thus q is quartic by (1.3). \Box

3. Extension of Theorem 1.1. Throughout this section, let q be an odd prime and let $\varepsilon = (-1)^{(q-1)/2}$. Let m be a squarefree positive integer $\neq 0 \pmod{q}$ such that $s = \sqrt{m}$ exists $(\mod q)$, and let \mathbf{M} denote the largest odd factor of m. Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be pairwise relatively prime integers such that $\mathbf{A} > 0, q \neq \mathbf{ABC}, 2 \neq \mathbf{B}$, and $\mathbf{A}^2 = m(\mathbf{B}^2 + \mathbf{C}^2)$. Observe that any odd prime p dividing \mathbf{A} satisfies $p \equiv 1 \pmod{4}$, since $\mathbf{B}^2 + \mathbf{C}^2 = \mathbf{A}^2/m \equiv 0 \pmod{p}$. Thus $\mathbf{M} \equiv 1 \pmod{4}$.

Let x, y, and z denote the number of primes p dividing **M** for which $q^{(p-1)/4} \equiv \mathbf{C}/\mathbf{B}, -\mathbf{C}/\mathbf{B}$, and $-1 \pmod{p}$, respectively. In the case that every prime factor of m is a square $(\mod q)$, we have x = y = 0 and Theorem 3.1 below reduces to the result [14, p. 257] of Williams, Hardy, and Friesen. Taking $m = p, \mathbf{A} = p, \mathbf{B} = \mathbf{X}, \mathbf{C} = \mathbf{Y}$, with $p, \mathbf{X}, \mathbf{Y}$ as in (1.1), we see that Theorem 3.1 implies Theorem 1.1 in the case $q * \mathbf{XY}$.

THEOREM 3.1. We have

$$\left(\frac{2\mathbf{A}+2\mathbf{C}s}{q}\right) = \left(\frac{\mathbf{A}+\mathbf{B}s}{q}\right) = (-1)^{(8z+4x-4y+(q-1)(M+q)+(m-1)(q-\varepsilon))/8}$$

Our proof of Theorem 3.1 depends on the well-known properties (3.1)-(3.4) listed below for the quartic residue symbol $\chi_{\alpha}(\beta)$ defined as in [4, p. 122] for $\alpha, \beta \in \mathbb{Z}[i]$ with $(\alpha, 2\beta) = 1, \alpha * 1$.

(3.1)
$$\chi_{\alpha}(\beta)\chi_{\overline{\alpha}}(\overline{\beta}) = 1$$
 [4, p. 122];

(3.2)
$$\chi_{\alpha}(\beta) = 1, \text{ if } \alpha, \beta \in \mathbf{Z} \quad [\mathbf{4}, \text{ p. 122}];$$

(3.3)
$$\chi_q(1+i) = i^{(q-\varepsilon)/4}$$
 [4, p. 136];

(3.4)
$$\chi_{\beta}(\alpha) = \chi_{\alpha}(\beta)(-1)^{bd/4}, \quad \text{if } a, b, c, d \in \mathbb{Z} \text{ are}$$

chosen such that $\alpha = a + bi$ and $\beta = c + di$ are primary.

(Recall that $\alpha = a + bi$ is primary is a is odd, b is even, and $a + b \equiv 1 \pmod{4}$.) Formula (3.4) is a version of the law of quartic reciprocity [4, p. 123].

To facilitate the proof of Theorem 3.1, we prove the following lemma.

LEMMA 3.2. For
$$a, b \in \mathbb{Z}, \chi_q^2(a + bi) = \left(\frac{a^2 + b^2}{q}\right)$$
.

PROOF. If $q \equiv -1 \pmod{4}$, then q is prime in $\mathbf{Z}[i]$, so

$$\chi_q^2(a+bi) \equiv (a+bi)^{(q^2-1)/2} \equiv \left((a+bi)^q(a+bi)\right)^{(q-1)/2}$$
$$\equiv ((a-bi)(a+bi))^{(q-1)/2} \equiv \left(\frac{a^2+b^2}{q}\right) (\mod q)$$

and the result follows. If $q \equiv 1 \pmod{4}$, then $q = \alpha \overline{\alpha}$ for some primary $\alpha, \overline{\alpha} \in \mathbb{Z}[i]$, so, by (3.1),

$$\begin{split} \chi_q^2(a+bi) &= \chi_\alpha^2(a+bi)\chi_{\overline{\alpha}}^2(a+bi) = \chi_\alpha^2(a+bi)\chi_\alpha^2(a-bi) \\ &= \chi_\alpha^2(a^2+b^2) \equiv (a^2+b^2)^{(q-1)/2} \equiv \Big(\frac{a^2+b^2}{q}\Big) (\operatorname{mod} \alpha), \end{split}$$

and the result follows.

PROOF OF THEOREM 3.1. Since

$$2(\mathbf{A} + \mathbf{B}s)(\mathbf{A} + \mathbf{C}s) \equiv (\mathbf{A} + \mathbf{B}s + \mathbf{C}s)^2 \not\equiv 0 \pmod{q},$$

the first equality is proved.

Without loss of generality, we now fix the signs of **B** and **C** so that $\mathbf{B} + \mathbf{C} \equiv 1 \pmod{4}$ or $\mathbf{B} \equiv \mathbf{C} \equiv 1 \pmod{4}$ according to whether **C** is even or odd. Define

$$\alpha = \begin{cases} B + iC, & \text{if } 2|C, \\ (B + iC)/(1 + i), & \text{if } 2 \neq C. \end{cases}$$

Then α is primary and

(3.6)
$$\alpha \overline{\alpha} = M A^2 / m^2 \equiv 1 \pmod{2}.$$

Let p be any odd prime divisor of **A**. Write $p = \pi \overline{\pi}$ for distinct primary primes $\pi, \overline{\pi} \in \mathbf{Z}[i]$. We may suppose that $\pi | \alpha$ (otherwise interchange π and $\overline{\pi}$).

We proceed by evaluating $\chi_q(\alpha)$ in two different ways. First, by (3.6),

- -

(3.7)
$$\chi_q(\alpha) = \prod_{q|M} (\chi_q(\pi)) \cdot \prod_{p^k ||A/m} (\chi_q(\pi^{2k})).$$

By Lemma 3.2,

$$\Pi_{p^k||A/m}(\chi_q^{2k}(\pi)) = \Pi_{p^k||A/m}\left(\frac{p}{q}\right)^k = \left(\frac{A/m}{q}\right) = \left(\frac{A}{q}\right),$$

since A > 0. By (3.4), for each p|M,

$$\chi_q(\pi) = \chi_{q\varepsilon}(\pi) = \chi_{\pi}(q\varepsilon),$$

since $q\varepsilon$ is primary. Since

$$\Pi_{p|M}(\chi_{\pi}(\varepsilon)) = \varepsilon^{(M-1)/4} = (-1)^{(q-1)(M-1)/8},$$

(3.7) becomes

(3.8)
$$\left(\frac{A}{q}\right)\chi_q(\alpha) = (-1)^{(q-1)(M-1)/8} \prod_{p|M}(\chi_{\pi}(q)).$$

For each p|M, $\chi_{\pi}(q) \equiv q^{(p-1)/4} (\mod \pi)$. Since $\pi|(B + iC), i \equiv C/B (\mod \pi)$; thus $\chi_{\pi}(q) = i, -i, -1$, or 1 depending on whether $q^{(p-1)/4} \equiv C/B, -C/B, -1$ or $1 (\mod p)$. Thus (3.8) becomes

(3.9)
$$\left(\frac{A}{q}\right)\chi_q(\alpha) = (-1)^{(q-1)(M-1)/8}i^{x-y}(-1)^z.$$

Next, since $A^2 = m(B^2 + C^2)$,

$$0 \equiv 2(As + Bm)(B + iC) - (A + sB + siC)^2 (\operatorname{mod} q).$$

Thus, by (3.2),

$$\chi_q(B+iC) = \chi_q^2(A+sB+siC).$$

Then, by Lemma 3.2,

(3.10)
$$\chi_q(B+iC) = \left(\frac{2A}{q}\right) \left(\frac{A+Bs}{q}\right)$$

Since $M \equiv 1 \pmod{4}$, we have $m \equiv 1 \text{ or } 2 \pmod{4}$ depending on whether C is even or odd. Thus, by (3.3) and (3.5),

(3.11)
$$\chi_q(B+iC) = \chi_q(\alpha)i^{(m-1)(q-\varepsilon)/4}.$$

Combining (3.9)-(3.11), we obtain

$$\left(\frac{A+Bs}{q}\right) = {\binom{2}{q}}i^{(m-1)(q-\varepsilon)/4}(-1)^{(q-1)(M-1)/8}i^{x-y}(-1)^z,$$

and the result follows. \square

4. Splitting of the period polynomial over $\mathbf{GF}(q)$. Let *n* be a squarefree positive integer, and write $\zeta_n = \exp(2\pi i/n)$. Let *G* be the group of $\phi(n)$ reduced residues $(\mod n)$ and let *H* be an arbitrary subgroup of index *e* in *G*. Thus, if *n* is prime, then *H* is the group of *e*-th power residues $(\mod n)$. For $c \in G$, define $\sigma_c \in \operatorname{Gal}(\mathbf{Q}(\zeta_n)/\mathbf{Q})$ by $\sigma_c(\zeta_n) = \zeta_n^c$. We sometimes identify *G* with the Galois group, as in (4.3) below. By [1, p. 218], the generalized Gaussian period

(4.1)
$$\eta = \sum_{h \in H} \sigma_h(\zeta_n)$$

is nonzero (since n is squarefree), and in fact η has degree e = |G/H| over **Q**. Thus, for $c \in G$,

(4.2)
$$\sigma_c(\eta) = \eta$$
 if and only if $c \in H$.

The minimal polynomial of η over \mathbf{Q} , viz.

(4.3)
$$\psi(x) = \prod_{\tau \in G/H} (x - \tau(\eta)),$$

is called the period polynomial of η , and its discriminant is denoted by $D(\psi)$.

Let q be a rational prime with q * n (q is not required to be odd in this section). Then q is unramified in $\mathbf{Q}(\zeta_n)$. Often q is viewed as an element of G; for example, $q \in H$ means $q \equiv h \pmod{n}$ for some $h \in H$. In view of (4.2), the Frobenius automorphism σ_q is trivial on $\mathbf{Q}(\eta)$ if and only if $q \in H$. Thus [5, p. 100]

(4.4) q splits completely in
$$\mathbf{Q}(\eta)$$
 if and only if $q \in H$.

It follows immediately from (4.4) and the Kummer-Dedekind factorization theorem [5, pp. 32, 33] that if $q * D(\psi)$, then $q \in H$ if and only if $\psi(x) \pmod{q}$ has *e* distinct linear factors. The following theorem shows that, whether $q|D(\psi)$ or not, $q \in H$ if and only if $\psi(x) \pmod{q}$ has *e* (not necessarily distinct) linear factors. For example, if n = 73, e =4, q = 2, then *q* divides $D(\psi) = 256X73^2$, *q* is in the set *H* of 4-th power residues (mod 73), and $\psi(x) = x(x+1)^3 \pmod{q}$ [1, (4.3), (4.4)]. (Please replace the misprint $-2p + (-1)^f (3-p)$ by $-2p(-1)^f + 3-p$ in [1, (4.3)].) On the other hand, if n = 37, e = 4, q = 3, then *q* divides $D(\psi) = 37^3X441$, *q* is not in the set *H* of 4-th powers (mod 37), and $\psi(x) = (x-1)^2(x^2+1) \pmod{q}$, so $\psi(x)$ has only two linear factors (mod *q*).

THEOREM 4.1. Let n be squarefree and let q be a prime with q * n. Let H be a subgroup of index e in the group G of reduced residues (mod n).

Define $\psi(x)$ as in (4.3). Let F denote the smallest positive integer for which $q^F \in H$. Then F equals the least common multiple of the degrees of the irreducible factors of $\psi(x) \pmod{q}$. In particular, $q \in H$ if and only if $\psi(x) \pmod{q}$ has e linear factors.

PROOF. Let R_K denote the ring of integers in $K = \mathbf{Q}(\eta)$. Let Q be a prime ideal dividing q in R_K . View $\mathbf{Z}/q\mathbf{Z}$ as a subfield of R_K/Q . By [13, p. 247], $F = |R_K/Q : \mathbf{Z}/q\mathbf{Z}|$. By (4.3), R_K/Q contains the splitting field of $\psi(x) \pmod{Q}$ (so the degree of each irreducible factor of $\psi(x) \pmod{q}$ divides F), and it remains to show that R_K/Q equals this splitting field.

Since *n* is squarefree, the elements $\sigma_c(\zeta_n)(c \in G)$ form a **Z**-basis for $\mathbf{Q}(\zeta_n)$. Taking the traces of these basis elements from $\mathbf{Q}(\zeta_n)$ down to *K*, we see [5, p.165] that $\tau_1(\eta), \ldots, \tau_e(\eta)$ form a **Z**-basis for *K*, where τ_1, \ldots, τ_e denote a complete set of coset representatives for *G/H*. In particular,

(4.5)
$$R_K = \mathbf{Z}[\tau_1(\eta), \dots, \tau_e(\eta)].$$

This proves that R_K/Q is the splitting field of $\psi(x) \pmod{Q}$. \Box

It would be interesting to determine the extent to which (4.5) holds for general integers n.

5. Criterion for octic residuacity. In this section we will apply Theorem 4.1 with e = 8 and n a prime $p \equiv 1 \pmod{8}$. Thus H is the group of octic residues \pmod{p} . Write

(5.1)
$$p = 8f + 1 = X^2 + Y^2 = C^2 + 2D^2, \quad C \equiv X \equiv 1 \pmod{4}.$$

It is well-known that 2 is octic $(\mod p)$ if and only if $Y \equiv 8f \pmod{16}$ [3, p. 111], [12]. In Theorem 5.1 below, we give a criterion for an *odd* prime $q \neq p$ to be octic $(\mod p)$. Corollaries 5.2, 5.3, and 5.4 illustrate the special cases q = 3, q = 5, q = 7, respectively. These and further cases $(q \leq 41)$ are considered by von Lienen [11, p. 114]. Corollary 5.5 shows that the result on octic residuacity in [7] can also be deduced from Theorem 5.1. THEOREM 5.1. Let p be a prime satisfying (5.1) and let q be an odd prime $\neq p$. Define $E = (-1)^f$. If q|Y, then q is octic (mod p) if and only if

(5.2)
$$\left(\frac{2EX(X+C)}{q}\right) = 1 \text{ or } \left(\frac{EX(X-C)}{q}\right) = 1.$$

If q * Y, then q is octic $(\mod p)$ if and only if (5.3) $s^2 \equiv p(\mod q), r^2 \equiv 2p - 2sX(\mod q), \text{ and } \left(\frac{2E(s-C)(2s+r)}{q}\right) = 1$

for some $s, r \in \mathbf{Z}$.

PROOF. From [2, p. 390], the eight zeros of $\psi(x)$ in $\mathbf{Q}(\eta)$ are

$$(-1 + S + R \pm \sqrt{U})/8, \ (-1 + S - R \pm \sqrt{V})/8, \ (-1 - S + R_1 \pm \sqrt{U_1})/8, \ (-1 - S - R_1 \pm \sqrt{V_1})/8,$$

where $S = \sqrt{p}, R = \sqrt{2p - 2SX}, R_1 = \sqrt{2p + 2SX},$

$$U = 2E(S - C)(2S + ENR), U_1 = 2E(S + C)(2S - ENR_1),$$

$$V = 2E(S - C)(2S - ENR), V_1 = 2E(S + C)(2S + ENR_1),$$

with N = 1 or -1 according to whether 2 is quartic or not $(\mod p)$. Therefore, by Theorem 4.1, q is octic $(\mod p)$ if and only if there exist integers s, r, r_1 such that

(5.4)
$$s^2 \equiv p \pmod{q}, \ r^2 \equiv 2p - 2sX \pmod{q}, \ r_1^2 \equiv 2p + 2sX \pmod{q}, \ \left(\frac{u}{q}\right) \ge 0, \ \left(\frac{u_1}{q}\right) \ge 0, \ \left(\frac{v}{q}\right) \ge 0, \ \text{and} \ \left(\frac{v_1}{q}\right) \ge 0,$$

where

(5.5)
$$u = 2E(s-C)(2s+ENr), \quad u_1 = 2E(s+C)(2s-ENr_1), \\ v = 2E(s-C)(2s-ENr), \quad v_1 = 2E(s+C)(2s+ENr_1).$$

Case 1. q|Y. First, (5.2) is equivalent to

(5.6)
$$\left(\frac{2EX(X+C)}{q}\right) \ge 0 \text{ and } \left(\frac{EX(X-C)}{q}\right) \ge 0,$$

because q + 2EX and

 $2(X+C)(X-C) = 2(X^2 - C^2) \equiv 2(p - C^2) \equiv (2D)^2 (\text{mod } q),$

Thus we must show that (5.4) and (5.6) are equivalent. By (5.1), the three congruences in (5.4) automatically hold with s = -X, r = 2X, and $r_1 = 0$. With this choice of s, r, r_1 , (5.5) yields u = 4EX(X + C)(1 - EN), v = 4EX(X + C)(1 + EN), and $v_1 = u_1 = 4EX(X - C)$. Thus (5.6) holds if and only if

(5.7)
$$\left(\frac{u}{q}\right) \ge 0, \quad \left(\frac{u_1}{q}\right) \ge 0, \quad \left(\frac{v}{q}\right) \ge 0, \text{ and } \left(\frac{v_1}{q}\right) \ge 0.$$

Case 2. q + Y. Here we must show that (5.3) and (5.4) are equivalent. Assume that (5.4) holds. We have $r^2r_1^2 \equiv 4pY^2 \not\equiv 0 \pmod{q}$. Clearly q cannot divide both s - C and s + C. Assume without loss of generality that $q \neq (s - C)$; otherwise, replace s by -s, which has the effect of interchanging r and r_1, u and u_1 , and v and v_1 . Then, since $uv \equiv 4(s - C)^2r_1^2 \not\equiv 0 \pmod{q}$, we have (uv/q) = 1; by (5.4), (u/q) = (v/q) = 1. This proves

(5.8)
$$\left(\frac{2E(s-C)(2s+r)}{q}\right) = 1,$$

so (5.3) follows.

Conversely, suppose that (5.3) holds. To prove (5.4), we must show that there exists an integer r_1 such that (5.7) holds and

(5.9)
$$r_1^2 \equiv 2p + 2sX \pmod{q}.$$

Choose $r_1 \equiv 2sY/r \pmod{q}$. Since

(5.10)
$$(2p+2sX)r^2 \equiv 4pY^2 \equiv r_1^2r^2 \not\equiv 0 \pmod{q},$$

(5.9) holds. It remains to prove (5.7). There are two subcases.

Subcases 2A. q|D. Here $s^2 \equiv p \equiv C^2 \pmod{q}$, so $s \equiv \pm C \pmod{q}$. By (5.8), $s \equiv -C \pmod{q}$. Thus, $u_1 \equiv v_1 \equiv 0 \pmod{q}$. By (5.10), $uv \equiv 4(s-C)^2 r_1^2 \neq 0 \pmod{q}$, so (uv/q) = 1. By (5.8), at least one of (u/q), (v/q) equals 1, so (u/q) = (v/q) = 1. This proves (5.7). Subcase 2B. $q \neq D$. Here $(s - C)(s + C) \equiv 2D^2 \not\equiv 0 \pmod{q}$, so by (5.10), $uv \equiv 4(s - C)^2 r_1^2 \not\equiv 0 \pmod{q}$ and $u_1 v_1 \equiv 4(s + C)^2 r^2 \not\equiv 0 \pmod{q}$. Moreover, $0 \not\equiv uu_1 \equiv 4D^2(r - r_1 + 2ENs)^2$. Thus

$$\left(\frac{uv}{q}\right) = \left(\frac{u_1v_1}{q}\right) = \left(\frac{uu_1}{q}\right) = 1.$$

By (5.8), (u/q) = 1 or (v/q) = 1, and so $(u/q) = (v/q) = (u_1/q) = (v_1/q) = 1$. This proves (5.7). \Box

COROLLARY 5.2. Let p be a prime satisfying (5.1). Then 3 is octic (mod p) if and only if 3|Y and $C \equiv EX \pmod{3}$, where $E = (-1)^f$.

COROLLARY 5.3. Let p be a prime satisfying (5.1). Then 5 is octic $(\mod p)$ if and only if 5|Y and $C \equiv X$ or $3X \pmod{5}$.

COROLLARY 5.4. Let p be a prime satisfying (5.1). Then 7 is octic (mod p) if and only if either 7|C, 7|Y, E = 1 or 7|C, 7|X, E = -1 or $7|X, C \equiv \pm (2+3E)Y \pmod{7}$ or $7|Y, C \equiv \pm (2-3E)X \pmod{7}$, where $E = (-1)^f$.

COROLLARY 5.5. ([7, Theorem 4]). Let p be a prime satisfying (5.1) with E = -1, X = -3C. Then any odd divisor q of $7p + C^2$ is octic (mod p).

PROOF. It suffices to consider the case when q is an odd prime $\neq p$. If q|Y, then q divides $7X^2 + C^2 = 64C^2$, so q divides -3C = X. Thus $q \neq Y$. Since $4C^2 \equiv -7D^2 \pmod{q}$, there exists an integer t such that $t^2 \equiv -7 \pmod{q}$. Thus there exists an integer s such that $s^2 \equiv p \pmod{q}$ and $C \equiv -st \pmod{q}$. Define r = s(t-3), so $r^2 \equiv 2p - 2sX \pmod{q}$. Then

$$2E(s-C)(2s+r) \equiv -2(s+st)(st-s) \equiv (4s)^2 \not\equiv 0 \pmod{q},$$

so q is octic (mod p) by Theorem 5.1.

REFERENCES

1. R.J. Evans, Period polynomials for generalized cyclotomic periods, Manuscripta Math. 40 (1982), 217-243.

2. ____, The octic period polynomial, Proc. Amer. Math. Soc. 87 (1983), 389-393.

3. R.H. Hudson and K.S. Williams, Extensions of theorems of Cunningham-Aigner and Hasse-Evans, Pacific J. Math. 104 (1983), 111-132.

4. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, N.Y., 1982.

5. G. Janusz, Algebraic Number Fields, Academic Press, N.Y., 1973.

6. D.H. Lehmer and E. Lehmer, Cyclotomic resultants, Math. Comp. 48 (1987), 211-216.

7. E. Lehmer, Period equations applied to difference sets, Proc. Amer. Math. Soc. 6 (1955), 433-442.

8. ——, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29.

9. -----, Problem 85:01, Western Number Theory Conference, Asilomar, 1985.

10. ____, On special primes, Pacific J. Math. 118 (1985), 471-478.

11. H. von Lienen, Primzahlen als achte Potenzreste, J. Reine Angew. Math. 266 (1974), 107-117.

12. G. Meyerson, (Review of [3]), Math. Reviews 84e, #10005.

13. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, PWN, Warsaw, 1974.

14. K.S. Williams, K. Hardy, and C. Friesen, On the evaluation of the Legendre symbol $\left(\frac{A+B\sqrt{m}}{n}\right)$, Acta Arith. 45 (1985), 255-272.

Department of Mathematics. University of California, San Diego. La Jolla, CA 92093