RESIDUACITY OF PRIMES

RONȦLD EVANS

Abstract

Let q, p be distinct primes with $p=e f+1$. A variant of the Kummer-Dedekind theorem is proved for Gaussian periods, which shows in particular that q is an e-th power $(\bmod p)$ if and only if the Gaussian period polynomial of degree e has $e($ not necessarily distinct) linear factors $(\bmod q)$. This is applied to give a simple criterion in terms of the parameters in the partitions $p=8 f+1=\mathbf{X}^{2}+\mathbf{Y}^{2}=\mathbf{C}^{2}+2 \mathbf{D}^{2}$ for an odd prime q to be an octic residue $(\bmod p)$. Some consequences and a generalization of an analogous quartic residuacity law (proved by E. Lehmer in 1958) are also given.

1. Introduction. Throughout, let p and q be distinct primes with $p=e f+1$. In [8], E. Lehmer gave elegant criteria for an odd prime q to be an e-th power residue $(\bmod p)$, for $e=3,4$. The result given for $e=4$ was essentially the following theorem.

THEOREM 1.1. Let p be a prime $\equiv 1(\bmod 4)$ and write

$$
\begin{equation*}
p=\mathbf{X}^{2}+\mathbf{Y}^{2}, \quad \mathbf{X} \equiv 1(\bmod 4) \tag{1.1}
\end{equation*}
$$

Then an odd prime $q \neq p$ is quartic $(\bmod p)$ if and only if

$$
\begin{equation*}
\left(\frac{(2 / p)}{q}\right)=1, q \mid \mathbf{Y}, \text { or }\left(\frac{2(2 / p)(p+\mathbf{X} s)}{q}\right)=1, q+\mathbf{Y} \tag{1.2}
\end{equation*}
$$

where s is any integer satisfying $p \equiv s^{2}(\bmod q)$, and $(2 / p)$ is the Legendre symbol.

In view of the congruence $(p+\mathbf{Y} s)(2 p+2 \mathbf{X} s) \equiv(p+\mathbf{X} s+\mathbf{Y} s)^{2}(\bmod q)$, one can replace (1.2) by the equivalent condition

$$
\begin{equation*}
\left(\frac{2(2 / p)}{q}\right)=1, q \mid \mathbf{X}, \text { or }\left(\frac{(2 / p)(p+\mathbf{Y} s)}{q}\right)=1, q+\mathbf{X} \tag{1.3}
\end{equation*}
$$

[^0]In $\S 2$, we apply Theorem 1.1 to answer some questions posed in [10] and to extend some results given in $[6,9]$. In $\S 3$, we prove an extension of Theorem 1.1 which also slightly generalizes a result of Williams, Hardy, and Friesen [14]. Our proof in $\S 3$ is considerably shorter than that in [14], at the expense of being less elementary.

The main results of this paper are Theorems 4.1 and 5.1. Theorem 5.1 is the counterpart of Theorem 1.1 for $e=8$. It gives a simple criterion in terms of the parameters in the partitions $p=8 f+1=$ $\mathbf{X}^{2}+\mathbf{Y}^{2}=\mathbf{C}^{2}+2 \mathbf{D}^{2}$ for an odd prime $q \neq p$ to be an octic residue $(\bmod p)$. Special cases have been given by von Lienen [11]. The proof of Theorem 5.1 is based on the fact that a prime $q \neq p$ is an e-th power $(\bmod p)$ if and only if the Gaussian period polynomial of degree e has e (not necessarily distinct) linear factors over GF (q). This fact is a special case of Theorem 4.1.
2. Applications of Theorem 1.1. Throughout this section, p is a prime $\equiv 1(\bmod 4)$ such that (1.1) holds, q is an odd prime $\neq p$, and s is an integer such that $p \equiv s^{2}(\bmod q)$. If, further, $p \equiv 1(\bmod 8)$, write

$$
\begin{equation*}
p=\mathbf{C}^{2}+2 \mathbf{D}^{2}, \quad \mathbf{C} \equiv 1(\bmod 4) \tag{2.1}
\end{equation*}
$$

In [10, p. 478], E. Lehmer asks for a characterization of the (odd prime) divisors of \mathbf{C} and \mathbf{D} which are quartic $(\bmod p)$. This is given in the following theorem.

Theorem 2.1. Suppose that $p \equiv 1(\bmod 8)$. If $q \mid \mathbf{D}$, then q is quartic $(\bmod p)$ if and only if

$$
\begin{equation*}
q \mid \mathbf{Y} \text { or }\left(\frac{2 p+2 \mathbf{X C}}{q}\right)=1 \tag{2.2}
\end{equation*}
$$

If $q \mid \mathbf{C}$, then q is quartic $(\bmod p)$ if and only if

$$
\begin{equation*}
q \mid \mathbf{Y} \text { or }\left(\frac{2 p+2 \mathbf{X D} \sqrt{2}}{q}\right)=1 \tag{2.3}
\end{equation*}
$$

where $\sqrt{2}$ denotes any square root of $2(\bmod q)($ which exists since $\left.p \equiv 2 \mathbf{D}^{2}(\bmod q)\right)$.

Proof. Choose s to be \mathbf{C} or $\mathbf{D} \sqrt{2}$ according to whether $q \mid \mathbf{D}$ or $q \mid \mathbf{C}$, and use (1.2).

A direct proof of the following theorem was solicited by E. Lehmer in [10, p. 478].

Theorem 2.2. Suppose that $p \equiv 1(\bmod 8)$ and q divides $\mathbf{C}^{4}-p \downarrow^{2}$ or $4 \mathbf{D}^{4}-p \mathbf{Y}^{2}$. Then q is quartic $(\bmod p)$.

Proof. All congruences in this proof are $(\bmod q)$. If $q \mid \mathbf{Y}$, then q is quartic by (1.2), so let $q+\mathbf{Y}$. Suppose that $q \mid \mathbf{X}$. If $q \mid \mathbf{C}^{4}-p \mathbf{X}^{2}$), then $q \mid \mathbf{C}$ and $\mathbf{Y}^{2} \equiv p \equiv 2 \mathbf{D}^{2}$ so that $(2 / q)=1$. If $q \mid\left(4 \mathbf{D}^{4}-p \mathbf{Y}^{2}\right)$, then $4 \mathbf{D}^{4} \equiv \mathbf{Y}^{4}$ so that $\mathbf{Y}^{2} \equiv \pm 2 \mathbf{D}^{2}$. If the plus sign is valid, then $(2 / q)=1$, otherwise $\mathbf{Y}^{2} \equiv-2 \mathbf{D}^{2}=\mathbf{C}^{2}-p \equiv \mathbf{C}^{2}-\mathbf{Y}^{2}$ so that $2 \mathbf{Y}^{2} \equiv \mathbf{C}^{2}$, and again $(2 / q)=1$. Therefore, if $q \mid \mathbf{X}$, then $(2 / q)=1$, so q is quartic by (1.3). It remains to consider the case $q \mathbf{X}+\mathbf{Y}$.

Suppose first that $q \mid\left(4 \mathbf{D}^{4}-p \mathbf{Y}^{2}\right)$. If $q \mid \mathbf{C}$, then $p^{2} \equiv 4 \mathbf{D}^{4} \equiv p \mathbf{Y}^{2}$ and so $q \mid \mathbf{X}$. Thus $q+\mathbf{C}$. For some choice of $s \equiv \sqrt{p}, s \mathbf{Y} \equiv-2 \mathbf{D}^{2}$, so $p+s \mathbf{Y} \equiv \mathbf{C}^{2} \not \equiv 0$. Thus q is quartic by (1.3).
Finally, suppose that $q \mid\left(\mathbf{C}^{4}-p \mathbf{X}^{2}\right)$. If $q \mid \mathbf{D}$, then $p^{2} \equiv \mathbf{C}^{4} \equiv p \mathbf{X}^{2}$, giving $q \mid \mathbf{Y}$. Thus $q+\mathbf{D}$. For some choice of $s \equiv \sqrt{p}, s \mathbf{X} \equiv-\mathbf{C}^{2}$, and then $2 p+2 s \mathbf{X} \equiv 4 \mathbf{D}^{2} \equiv 0$. Thus q is quartic by (1.2).

Special cases of the next two theorems were given by the Lehmers. D.H. and E. Lehmer [6] obtained the special cases $t=1, k=1,-3$ of Theorem 2.3 by looking at cyclotomic resultants. E. Lehmer [9] obtained the special case $t=0, k=3$ of Theorem 2.4.

Theorem 2.3. Suppose that $q+\mathbf{Y}$ and $\left(t^{2}+k^{2} p-2(2 / p) p\right)^{2} \equiv$ $4 p(\mathbf{X}-k t)^{2}(\bmod q)$ for some integers k, t. Then q is quartic $(\bmod p)$.

Proof. For some choice of $s \equiv \sqrt{p}(\bmod q)$,

$$
2 s(2 / p)(\mathbf{X}-k t) \equiv-2(2 / p) p+t^{2}+k^{2} p(\bmod q) .
$$

Thus

$$
(2 / p)(2 p+2 s \mathbf{X}) \equiv 2(2 / p) s k t+t^{2}+k^{2} p \equiv(k s+t(2 / p))^{2}(\bmod q)
$$

The members of this congruence are nonzero $(\bmod q)$, otherwise $0 \equiv$ $(2 p+2 s \mathbf{X})(2 p-2 s \mathbf{X}) \equiv 4 p \mathbf{Y}^{2}(\bmod q)$. Thus q is quartic by (1.2).

THEOREM 2.4. Suppose that $q+\mathbf{X}$ and $\left(t^{2}+k^{2} p-(2 / p) p\right)^{2} \equiv$ $p(\mathbf{Y}-2 k t)^{2}(\bmod q)$ for some integers k, t. Then q is quartic $(\bmod p)$.

Proof. For some choice of $s \equiv \sqrt{p}(\bmod q)$,

$$
s(2 / p)(\mathbf{Y}-2 k t) \equiv-(2 / p) p+t^{2}+k^{2} p(\bmod q)
$$

Thus,

$$
(2 / p)(p+s \mathbf{Y}) \equiv 2(2 / p) s k t+t^{2}+k^{2} p \equiv(k s+t(2 / p))^{2}(\bmod q)
$$

The members of the above congruence are nonzero $(\bmod q)$, otherwise $0 \equiv(p+s \mathbf{Y})(p-s \mathbf{Y}) \equiv p \mathbf{X}^{2}(\bmod q)$. Thus q is quartic by (1.3).
3. Extension of Theorem 1.1. Throughout this section, let q be an odd prime and let $\varepsilon=(-1)^{(q-1) / 2}$. Let m be a squarefree positive integer $\not \equiv 0(\bmod q)$ such that $s=\sqrt{m}$ exists $(\bmod q)$, and let \mathbf{M} denote the largest odd factor of m. Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ be pairwise relatively prime integers such that $\mathbf{A}>0, q+\mathbf{A B C}, 2+\mathbf{B}$, and $\mathbf{A}^{2}=m\left(\mathbf{B}^{2}+\mathbf{C}^{2}\right)$. Observe that any odd prime p dividing \mathbf{A} satisfies $p \equiv 1(\bmod 4)$, since $\mathbf{B}^{2}+\mathbf{C}^{2}=\mathbf{A}^{2} / m \equiv 0(\bmod p)$. Thus $\mathbf{M} \equiv 1(\bmod 4)$.
Let x, y, and z denote the number of primes p dividing \mathbf{M} for which $q^{(p-1) / 4} \equiv \mathbf{C} / \mathbf{B},-\mathbf{C} / \mathbf{B}$, and $-1(\bmod p)$, respectively. In the case that every prime factor of m is a square $(\bmod q)$, we have $x=y=0$ and Theorem 3.1 below reduces to the result $[\mathbf{1 4}$, p. 257] of Williams, Hardy, and Friesen. Taking $m=p, \mathbf{A}=p, \mathbf{B}=\mathbf{X}, \mathbf{C}=\mathbf{Y}$, with $p, \mathbf{X}, \mathbf{Y}$ as in (1.1), we see that Theorem 3.1 implies Theorem 1.1 in the case $q+\mathbf{X Y}$.

Theorem 3.1. We have

$$
\left(\frac{2 \mathbf{A}+2 \mathbf{C} s}{q}\right)=\left(\frac{\mathbf{A}+\mathbf{B} s}{q}\right)=(-1)^{(8 z+4 x-4 y+(q-1)(M+q)+(m-1)(q-\varepsilon)) / 8}
$$

Our proof of Theorem 3.1 depends on the well-known properties (3.1)(3.4) listed below for the quartic residue symbol $\chi_{\alpha}(\beta)$ defined as in [4, p. 122] for $\alpha, \beta \in \mathbf{Z}[i]$ with $(\alpha, 2 \beta)=1, \alpha+1$.

$$
\begin{equation*}
\chi_{\alpha}(\beta) \chi_{\bar{\alpha}}(\bar{\beta})=1 \quad[\mathbf{4}, \text { p. } 122] \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\chi_{\alpha}(\beta)=1, \text { if } \alpha, \beta \in \mathbf{Z} \quad[\mathbf{4}, \text { p. 122]; } \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\chi_{q}(1+i)=i^{(q-\varepsilon) / 4} \quad[4, \text { p. } 136] \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\chi_{\beta}(\alpha)=\chi_{\alpha}(\beta)(-1)^{b d / 4}, \quad \text { if } a, b, c, d \in \mathbf{Z} \text { are } \tag{3.4}
\end{equation*}
$$

chosen such that $\alpha=a+b i$ and $\beta=c+d i$ are primary.
(Recall that $\alpha=a+b i$ is primary is a is odd, b is even, and $a+b \equiv 1(\bmod 4)$.) Formula (3.4) is a version of the law of quartic reciprocity [4, p. 123].
To facilitate the proof of Theorem 3.1, we prove the following lemma.

LEMmA 3.2. For $a, b \in \mathbf{Z}, \chi_{q}^{2}(a+b i)=\left(\frac{a^{2}+b^{2}}{q}\right)$.

Proof. If $q \equiv-1(\bmod 4)$, then q is prime in $\mathbf{Z}[i]$, so

$$
\begin{aligned}
\chi_{q}^{2}(a+b i) & \equiv(a+b i)^{\left(q^{2}-1\right) / 2} \equiv\left((a+b i)^{q}(a+b i)\right)^{(q-1) / 2} \\
& \equiv((a-b i)(a+b i))^{(q-1) / 2} \equiv\left(\frac{a^{2}+b^{2}}{q}\right)(\bmod q)
\end{aligned}
$$

and the result follows. If $q \equiv 1(\bmod 4)$, then $q=\alpha \bar{\alpha}$ for some primary $\alpha, \bar{\alpha} \in \mathbf{Z}[i]$, so, by (3.1),

$$
\begin{aligned}
\chi_{q}^{2}(a+b i) & =\chi_{\alpha}^{2}(a+b i) \chi_{\frac{2}{\alpha}}(a+b i)=\chi_{\alpha}^{2}(a+b i) \chi_{\alpha}^{2}(a-b i) \\
& =\chi_{\alpha}^{2}\left(a^{2}+b^{2}\right) \equiv\left(a^{2}+b^{2}\right)^{(q-1) / 2} \equiv\left(\frac{a^{2}+b^{2}}{q}\right)(\bmod \alpha)
\end{aligned}
$$

and the result follows.

Proof of Theorem 3.1. Since

$$
2(\mathbf{A}+\mathbf{B} s)(\mathbf{A}+\mathbf{C} s) \equiv(\mathbf{A}+\mathbf{B} s+\mathbf{C} s)^{2} \not \equiv 0(\bmod q)
$$

the first equality is proved.

Without loss of generality, we now fix the signs of \mathbf{B} and \mathbf{C} so that $\mathbf{B}+\mathbf{C} \equiv 1(\bmod 4)$ or $\mathbf{B} \equiv \mathbf{C} \equiv 1(\bmod 4)$ according to whether \mathbf{C} is even or odd. Define

$$
\alpha= \begin{cases}B+i C, & \text { if } 2 \mid C \\ (B+i C) /(1+i), & \text { if } 2+C\end{cases}
$$

Then α is primary and

$$
\begin{equation*}
\alpha \bar{\alpha}=M A^{2} / m^{2} \equiv 1(\bmod 2) \tag{3.6}
\end{equation*}
$$

Let p be any odd prime divisor of \mathbf{A}. Write $p=\pi \bar{\pi}$ for distinct primary primes $\pi, \bar{\pi} \in \mathbf{Z}[i]$. We may suppose that $\pi \mid \alpha$ (otherwise interchange π and $\bar{\pi}$).

We proceed by evaluating $\chi_{q}(\alpha)$ in two different ways. First, by (3.6),

$$
\begin{equation*}
\chi_{q}(\alpha)=\Pi_{q \mid M}\left(\chi_{q}(\pi)\right) \cdot \Pi_{p^{k}| | A / m}\left(\chi_{q}\left(\pi^{2 k}\right)\right) \tag{3.7}
\end{equation*}
$$

By Lemma 3.2,

$$
\Pi_{p^{k} \| A / m}\left(\chi_{q}^{2 k}(\pi)\right)=\Pi_{p^{k} \| A / m}\left(\frac{p}{q}\right)^{k}=\left(\frac{A / m}{q}\right)=\left(\frac{A}{q}\right)
$$

since $A>0$. By (3.4), for each $p \mid M$,

$$
\chi_{q}(\pi)=\chi_{q \varepsilon}(\pi)=\chi_{\pi}(q \varepsilon)
$$

since $q \varepsilon$ is primary. Since

$$
\Pi_{p \mid M}\left(\chi_{\pi}(\varepsilon)\right)=\varepsilon^{(M-1) / 4}=(-1)^{(q-1)(M-1) / 8}
$$

(3.7) becomes

$$
\begin{equation*}
\left(\frac{A}{q}\right) \chi_{q}(\alpha)=(-1)^{(q-1)(M-1) / 8} \Pi_{p \mid M}\left(\chi_{\pi}(q)\right) \tag{3.8}
\end{equation*}
$$

For each $p \mid M, \quad \chi_{\pi}(q) \equiv q^{(p-1) / 4}(\bmod \pi)$. Since $\pi \mid(B+i C), i \equiv$ $C / B(\bmod \pi)$; thus $\chi_{\pi}(q)=i,-i,-1$, or 1 depending on whether $q^{(p-1) / 4} \equiv C / B,-C / B,-1$ or $1(\bmod p)$. Thus (3.8) becomes

$$
\begin{equation*}
\left(\frac{A}{q}\right) \chi_{q}(\alpha)=(-1)^{(q-1)(M-1) / 8} i^{x-y}(-1)^{z} \tag{3.9}
\end{equation*}
$$

Next, since $A^{2}=m\left(B^{2}+C^{2}\right)$,

$$
0 \equiv 2(A s+B m)(B+i C)-(A+s B+s i C)^{2}(\bmod q)
$$

Thus, by (3.2),

$$
\chi_{q}(B+i C)=\chi_{q}^{2}(A+s B+s i C)
$$

Then, by Lemma 3.2,

$$
\begin{equation*}
\chi_{q}(B+i C)=\left(\frac{2 A}{q}\right)\left(\frac{A+B s}{q}\right) \tag{3.10}
\end{equation*}
$$

Since $M \equiv 1(\bmod 4)$, we have $m \equiv 1$ or $2(\bmod 4)$ depending on whether C is even or odd. Thus, by (3.3) and (3.5),

$$
\begin{equation*}
\chi_{q}(B+i C)=\chi_{q}(\alpha) i^{(m-1)(q-\varepsilon) / 4} \tag{3.11}
\end{equation*}
$$

Combining (3.9)-(3.11), we obtain

$$
\left(\frac{A+B s}{q}\right)=\left(\frac{2}{q}\right) i^{(m-1)(q-\varepsilon) / 4}(-1)^{(q-1)(M-1) / 8} i^{x-y}(-1)^{z},
$$

and the result follows.
4. Splitting of the period polynomial over GF (q). Let n be a squarefree positive integer, and write $\zeta_{n}=\exp (2 \pi i / n)$. Let G be the group of $\phi(n)$ reduced residues $(\bmod n)$ and let H be an arbitrary subgroup of index e in G. Thus, if n is prime, then H is the group of e-th power residues $(\bmod n)$. For $c \in G$, define $\sigma_{c} \in \operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{n}\right) / \mathbf{Q}\right)$ by $\sigma_{c}\left(\zeta_{n}\right)=\zeta_{n}^{c}$. We sometimes identify G with the Galois group, as in (4.3) below.

By [1, p. 218], the generalized Gaussian period

$$
\begin{equation*}
\eta=\sum_{h \in H} \sigma_{h}\left(\zeta_{n}\right) \tag{4.1}
\end{equation*}
$$

is nonzero (since n is squarefree), and in fact η has degree $e=|G / H|$ over \mathbf{Q}. Thus, for $c \in G$,

$$
\begin{equation*}
\sigma_{c}(\eta)=\eta \text { if and only if } c \in H \tag{4.2}
\end{equation*}
$$

The minimal polynomial of η over \mathbf{Q}, viz.

$$
\begin{equation*}
\psi(x)=\Pi_{\tau \in G / H}(x-\tau(\eta)) \tag{4.3}
\end{equation*}
$$

is called the period polynomial of η, and its discriminant is denoted by $D(\psi)$.

Let q be a rational prime with $q+n$ (q is not required to be odd in this section). Then q is unramified in $\mathbf{Q}\left(\zeta_{n}\right)$. Often q is viewed as an element of G; for example, $q \in H$ means $q \equiv h(\bmod n)$ for some $h \in H$. In view of (4.2), the Frobenius automorphism σ_{q} is trivial on $\mathbf{Q}(\eta)$ if and only if $q \in H$. Thus [5, p. 100] q splits completely in $\mathbf{Q}(\eta)$ if and only if $q \in H$.

It follows immediately from (4.4) and the Kummer-Dedekind factorization theorem $[\mathbf{5}$, pp. 32,33] that if $q+D(\psi)$, then $q \in H$ if and only if $\psi(x)(\bmod q)$ has e distinct linear factors. The following theorem shows that, whether $q \mid D(\psi)$ or not, $q \in H$ if and only if $\psi(x)(\bmod q)$ has e (not necessarily distinct) linear factors. For example, if $n=73, e=$ $4, q=2$, then q divides $D(\psi)=256 \times 73^{2}, q$ is in the set H of 4 -th power residues $(\bmod 73)$, and $\psi(x)=x(x+1)^{3}(\bmod q)[1,(4.3),(4.4)]$. (Please replace the misprint $-2 p+(-1)^{f}(3-p)$ by $-2 p(-1)^{f}+3-p$ in $[1,(4.3)]$.) On the other hand, if $n=37, e=4, q=3$, then q divides $D(\psi)=37^{3} X 441, q$ is not in the set H of 4 -th powers (mod 37$)$, and $\psi(x)=(x-1)^{2}\left(x^{2}+1\right)(\bmod q)$, so $\psi(x)$ has only two linear factors $(\bmod q)$.

THEOREM 4.1. Let n be squarefree and let q be a prime with $q+n$. Let H be a subgroup of index e in the group G of reduced residues $(\bmod n)$.

Define $\psi(x)$ as in (4.3). Let F denote the smallest positive integer for which $q^{F} \in H$. Then F equals the least common multiple of the degrees of the irreducible factors of $\psi(x)(\bmod q)$. In particular, $q \in H$ if and only if $\psi(x)(\bmod q)$ has e linear factors.

Proof. Let R_{K} denote the ring of integers in $K=\mathbf{Q}(\eta)$. Let Q be a prime ideal dividing q in R_{K}. View $\mathbf{Z} / q \mathbf{Z}$ as a subfield of R_{K} / Q. By [13, p. 247], $F=\left|R_{K} / Q: \mathbf{Z} / q \mathbf{Z}\right|$. By (4.3), R_{K} / Q contains the splitting field of $\psi(x)(\bmod Q)$ (so the degree of each irreducible factor of $\psi(x)(\bmod q)$ divides $F)$, and it remains to show that R_{K} / Q equals this splitting field.

Since n is squarefree, the elements $\sigma_{c}\left(\zeta_{n}\right)(c \in G)$ form a Z-basis for $\mathbf{Q}\left(\zeta_{n}\right)$. Taking the traces of these basis elements from $\mathbf{Q}\left(\zeta_{n}\right)$ down to K, we see [5, p.165] that $\tau_{1}(\eta), \ldots, \tau_{e}(\eta)$ form a Z-basis for K, where $\tau_{1}, \ldots, \tau_{e}$ denote a complete set of coset representatives for G / H. In particular,

$$
\begin{equation*}
R_{K}=\mathbf{Z}\left[\tau_{1}(\eta), \ldots, \tau_{e}(\eta)\right] \tag{4.5}
\end{equation*}
$$

This proves that R_{K} / Q is the splitting field of $\psi(x)(\bmod Q)$.

It would be interesting to determine the extent to which (4.5) holds for general integers n.
5. Criterion for octic residuacity. In this section we will apply Theorem 4.1 with $e=8$ and n a prime $p \equiv 1(\bmod 8)$. Thus H is the group of octic residues $(\bmod p)$. Write

$$
\begin{equation*}
p=8 f+1=X^{2}+Y^{2}=C^{2}+2 D^{2}, \quad C \equiv X \equiv 1(\bmod 4) \tag{5.1}
\end{equation*}
$$

It is well-known that 2 is octic $(\bmod p)$ if and only if $Y \equiv 8 f(\bmod 16)$ [3, p. 111], [12]. In Theorem 5.1 below, we give a criterion for an odd prime $q \neq p$ to be octic $(\bmod p)$. Corollaries $5.2,5.3$, and 5.4 illustrate the special cases $q=3, q=5, q=7$, respectively. These and further cases $(q \leq 41)$ are considered by von Lienen [11, p. 114]. Corollary 5.5 shows that the result on octic residuacity in [7] can also be deduced from Theorem 5.1.

THEOREM 5.1. Let p be a prime satisfying (5.1) and let q be an odd prime $\neq p$. Define $E=(-1)^{f}$. If $q \mid Y$, then q is octic $(\bmod p)$ if and only if

$$
\begin{equation*}
\left(\frac{2 E X(X+C)}{q}\right)=1 \text { or }\left(\frac{E X(X-C)}{q}\right)=1 . \tag{5.2}
\end{equation*}
$$

If $q+Y$, then q is octic $(\bmod p)$ if and only if

$$
\begin{equation*}
s^{2} \equiv p(\bmod q), r^{2} \equiv 2 p-2 s X(\bmod q), \text { and }\left(\frac{2 E(s-C)(2 s+r)}{q}\right)=1 \tag{5.3}
\end{equation*}
$$

for some $s, r \in \mathbf{Z}$.

Proof. From [2, p. 390], the eight zeros of $\psi(x)$ in $\mathbf{Q}(\eta)$ are

$$
\begin{aligned}
(-1+S+R \pm \sqrt{U}) / 8, & (-1+S-R \pm \sqrt{V}) / 8 \\
\left(-1-S+R_{1} \pm \sqrt{U_{1}}\right) / 8, & \left(-1-S-R_{1} \pm \sqrt{V_{1}}\right) / 8
\end{aligned}
$$

where $S=\sqrt{p}, R=\sqrt{2 p-2 S X}, R_{1}=\sqrt{2 p+2 S X}$,

$$
\begin{aligned}
& U=2 E(S-C)(2 S+E N R), \quad U_{1}=2 E(S+C)\left(2 S-E N R_{1}\right) \\
& V=2 E(S-C)(2 S-E N R), \quad V_{1}=2 E(S+C)\left(2 S+E N R_{1}\right)
\end{aligned}
$$

with $N=1$ or -1 according to whether 2 is quartic or not $(\bmod p)$. Therefore, by Theorem 4.1, q is octic $(\bmod p)$ if and only if there exist integers s, r, r_{1} such that

$$
\begin{gather*}
s^{2} \equiv p(\bmod q), r^{2} \equiv 2 p-2 s X(\bmod q), r_{1}^{2} \equiv 2 p+2 s X(\bmod q) \tag{5.4}\\
\left(\frac{u}{q}\right) \geq 0,\left(\frac{u_{1}}{q}\right) \geq 0,\left(\frac{v}{q}\right) \geq 0, \quad \text { and }\left(\frac{v_{1}}{q}\right) \geq 0
\end{gather*}
$$

where

$$
\begin{array}{ll}
u=2 E(s-C)(2 s+E N r), & u_{1}=2 E(s+C)\left(2 s-E N r_{1}\right) \\
v=2 E(s-C)(2 s-E N r), & v_{1}=2 E(s+C)\left(2 s+E N r_{1}\right) \tag{5.5}
\end{array}
$$

Case 1. $q \mid Y$. First, (5.2) is equivalent to

$$
\begin{equation*}
\left(\frac{2 E X(X+C)}{q}\right) \geq 0 \text { and }\left(\frac{E X(X-C)}{q}\right) \geq 0 \tag{5.6}
\end{equation*}
$$

because $q+2 E X$ and

$$
2(X+C)(X-C)=2\left(X^{2}-C^{2}\right) \equiv 2\left(p-C^{2}\right) \equiv(2 D)^{2}(\bmod q)
$$

Thus we must show that (5.4) and (5.6) are equivalent. By (5.1), the three congruences in (5.4) automatically hold with $s=-X, r=2 X$, and $r_{1}=0$. With this choice of s, r, r_{1}, (5.5) yields $u=4 E X$ $(X+C)(1-E N), v=4 E X(X+C)(1+E N)$, and $v_{1}=u_{1}=$ $4 E X(X-C)$. Thus (5.6) holds if and only if

$$
\begin{equation*}
\left(\frac{u}{q}\right) \geq 0, \quad\left(\frac{u_{1}}{q}\right) \geq 0, \quad\left(\frac{v}{q}\right) \geq 0, \quad \text { and }\left(\frac{v_{1}}{q}\right) \geq 0 \tag{5.7}
\end{equation*}
$$

Case 2. $q+Y$. Here we must show that (5.3) and (5.4) are equivalent. Assume that (5.4) holds. We have $r^{2} r_{1}^{2} \equiv 4 p Y^{2} \not \equiv 0(\bmod q)$. Clearly q cannot divide both $s-C$ and $s+C$. Assume without loss of generality that $q+(s-C)$; otherwise, replace s by $-s$, which has the effect of interchanging r and r_{1}, u and u_{1}, and v and v_{1}. Then, since $u v \equiv 4(s-C)^{2} r_{1}^{2} \not \equiv 0(\bmod q)$, we have $(u v / q)=1$; by (5.4), $(u / q)=(v / q)=1$. This proves

$$
\begin{equation*}
\left(\frac{2 E(s-C)(2 s+r)}{q}\right)=1 \tag{5.8}
\end{equation*}
$$

so (5.3) follows.
Conversely, suppose that (5.3) holds. To prove (5.4), we must show that there exists an integer r_{1} such that (5.7) holds and

$$
\begin{equation*}
r_{1}^{2} \equiv 2 p+2 s X(\bmod q) \tag{5.9}
\end{equation*}
$$

Choose $r_{1} \equiv 2 s Y / r(\bmod q)$. Since

$$
\begin{equation*}
(2 p+2 s X) r^{2} \equiv 4 p Y^{2} \equiv r_{1}^{2} r^{2} \not \equiv 0(\bmod q) \tag{5.10}
\end{equation*}
$$

(5.9) holds. It remains to prove (5.7). There are two subcases.

Subcases 2A. $q \mid D$. Here $s^{2} \equiv p \equiv C^{2}(\bmod q)$, so $s \equiv \pm C(\bmod q)$. By (5.8), $s \equiv-C(\bmod q)$. Thus, $u_{1} \equiv v_{1} \equiv 0(\bmod q)$. By (5.10), $u v \equiv 4(s-C)^{2} r_{1}^{2} \not \equiv 0(\bmod q)$, so $(u v / q)=1$. By (5.8), at least one of $(u / q),(v / q)$ equals 1 , so $(u / q)=(v / q)=1$. This proves (5.7).

Subcase 2B. $q+D$. Here $(s-C)(s+C) \equiv 2 D^{2} \not \equiv 0(\bmod q)$, so by (5.10), $u v \equiv 4(s-C)^{2} r_{1}^{2} \not \equiv 0(\bmod q)$ and $u_{1} v_{1} \equiv 4(s+C)^{2} r^{2} \not \equiv$ $0(\bmod q)$. Moreover, $0 \not \equiv u u_{1} \equiv 4 D^{2}\left(r-r_{1}+2 E N s\right)^{2}$. Thus

$$
\left(\frac{u v}{q}\right)=\left(\frac{u_{1} v_{1}}{q}\right)=\left(\frac{u u_{1}}{q}\right)=1
$$

By (5.8), $(u / q)=1$ or $(v / q)=1$, and so $(u / q)=(v / q)=\left(u_{1} / q\right)=$ $\left(v_{1} / q\right)=1$. This proves (5.7).

COROLLARY 5.2. Let p be a prime satisfying (5.1). Then 3 is octic $(\bmod p)$ if and only if $3 \mid Y$ and $C \equiv E X(\bmod 3)$, where $E=(-1)^{f}$.

COROLLARY 5.3. Let p be a prime satisfying (5.1). Then 5 is octic $(\bmod p)$ if and only if $5 \mid Y$ and $C \equiv X$ or $3 X(\bmod 5)$.

COROLLARY 5.4. Let p be a prime satisfying (5.1). Then 7 is octic $(\bmod p)$ if and only if either $7|C, 7| Y, E=1$ or $7|C, 7| X, E=-1$ or $7 \mid X, C \equiv \pm(2+3 E) Y(\bmod 7)$ or $7 \mid Y, C \equiv \pm(2-3 E) X(\bmod 7)$, where $E=(-1)^{f}$.

COROLLARY 5.5. ([7, Theorem 4]). Let p be a prime satisfying (5.1) with $E=-1, X=-3 C$. Then any odd divisor q of $7 p+C^{2}$ is octic $(\bmod p)$.

Proof. It suffices to consider the case when q is an odd prime $\neq p$. If $q \mid Y$, then q divides $7 X^{2}+C^{2}=64 C^{2}$, so q divides $-3 C=X$. Thus $q+Y$. Since $4 C^{2} \equiv-7 D^{2}(\bmod q)$, there exists an integer t such that $t^{2} \equiv-7(\bmod q)$. Thus there exists an integer s such that $s^{2} \equiv p(\bmod q)$. and $C \equiv-s t(\bmod q)$. Define $r=s(t-3)$, so $r^{2} \equiv 2 p-2 s X(\bmod q)$. Then

$$
2 E(s-C)(2 s+r) \equiv-2(s+s t)(s t-s) \equiv(4 s)^{2} \not \equiv 0(\bmod q)
$$

so q is octic $(\bmod p)$ by Theorem 5.1.

REFERENCES

1. R.J. Evans, Period polynomials for generalized cyclotomic periods, Manuscripta Math. 40 (1982), 217-243.
2. -, The octic period polynomial, Proc. Amer. Math. Soc. 87 (1983), 389-393.
3. R.H. Hudson and K.S. Williams, Extensions of theorems of CunninghamAigner and Hasse-Evans, Pacific J. Math. 104 (1983), 111-132.
4. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, N.Y., 1982.
5. G. Janusz, Algebraic Number Fields, Academic Press, N.Y., 1973.
6. D.H. Lehmer and E. Lehmer, Cyclotomic resultants, Math. Comp. 48 (1987), 211-216.
7. E. Lehmer, Period equations applied to difference sets, Proc. Amer. Math. Soc. 6 (1955), 433-442.
8. - Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29.
9. ——, Problem 85:01, Western Number Theory Conference, Asilomar, 1985.
10. - On special primes, Pacific J. Math. 118 (1985), 471-478.
11. H. von Lienen, Primzahlen als achte Potenzreste, J. Reine Angew. Math. 266 (1974), 107-117.
12. G. Meyerson, (Review of [3]), Math. Reviews 84e, \#10005.
13. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, PWN, Warsaw, 1974.
14. K.S. Williams, K. Hardy, and C. Friesen, On the evaluation of the Legendre symbol $\left(\frac{A+B \sqrt{m}}{p}\right)$, Acta Arith. 45 (1985), 255-272.

Department of Mathematics, University of California, San Diego. La Jolla, CA 92093

[^0]: AMS Subject classification: Primary 11A15, 11T21; Secondary 11T06.
 Received by the editors on January 22, 1987.

