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A CHARACTER SUM FOR ROOT SYSTEM G2

RONALD EVANS

(Communicated by William Adams)

Abstract. A character sum analog of the Macdonald-Morris constant term

identity for the root system Gi is proved. The proof is based on recent eval-

uations of Selberg character sums and on a character sum analog of Dixon's

summation formula. A conjectural evaluation is presented for a related sum.

1. Introduction

Let GFiq) denote the finite field of q elements, where q is a power of an

odd prime p. Throughout, A, B, and C denote multiplicative characters on

GFiq). Let 1 and cj> denote the trivial and quadratic characters on GFiq),

respectively. Define ^4(0) = 0, even if A = 1. Let ordC denote the order of

C (e.g., ord</> = 2).
Define the Gauss and Jacobi sums GiA), JiA, B) over GFiq) by

(1.1) GiA) = Y,Am)C{m),        /(.4,/?) = 5>(zTz)5(l-zn),
m m

where the sums are over all m £ GFiq), Ç = expi2ni/p), and T denotes

the trace map from GFiq) to C7F(p). For nonnegative integers n , define the

«-dimensional Selberg character sum L„iA, B, Cc¡>) over GFiq) by

(1.2) LniA,B,C4>)=    Y.   Aii-l)nFiO))BiFil))C<f>iDF),
F

deg F=n

where the sum is over all monic polynomials F over GFiq) of degree zz, and

where Dp denotes the discriminant of F.
Define

n-1
(13) R (A   IÎ   C\     TT G(a+X)G(ACJ)G(BC
(1.3) Rn(A, B, C) - H     G{C)G{ABCn-l+J)
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and

n-1

S„(A, B, C) = q'"Rn(A, B, C)l[\G(ABC"-x+J)\2

(1.4) j=°v       ' n-l

= q~nG{C)-" Y[ G(Cj+x)G(ACj)G(BCj)G(ABC"-x+j).

;=0

The generic Selberg character sum formula in Theorem 1.1 was conjectured

in [5, (2.6); 2, (29)]. A proof of Theorem 1.1, based on the method of Anderson
[1], is given in [4].

Theorem 1.1. If

(1.5) ABC"-x+j is nontrivial for all j,        0 < j < n - 1

or

(1.6) AC is nontrivial for all a,        0 < a < n - 1

or

(1.7) BCb is nontrivial for all b,        0 < b < n - 1,

then

(1-8) L„iA,B,Ctp)=SniA,B,C).

Using Theorem 1.1 we prove a character sum analog of the Macdonald-Morris

constant term identity for the root system G2 [9, p. 994; 10, p. 45]. This analog,

given in Theorem 1.2, was inspired by a pretty paper of Zeilberger [11].

Theorem 1.2. Let

(1.9) L=     £    B2(F(l))Ctp(DF),

F(0)=-\
degF=3

where the sum is over all monk cubic polynomials F over GF(q) with constant

term -1. Then

(1.10) L = a2-2a + 3,     ifB2=\,  C = tp,

(1.11) L = (2-4/q)G(C)\     if B2 = I, ordC = 2>,

(1.12) L = (l-3/a)G(C)3,     ifB2 = C2, ordC = 3,

azzd

(1.13) L = P(B,C) + P(B<f>,C)   otherwise,

where

G(C2)G(C>)G(B2)G(B2C3)G(BC2)G(B>C>)
(1.14) P(B,C) =-G(B)G(BC)G(C)2-'

Note the completely direct analogy between P(B, C) and the product of

gamma functions in the Macdonald-Morris identity for G2 . The form of the

sum L in (1.9) is suggested by identifying the polynomial F(W) in (1.9) with

(W-x/y)(W -y/z)(W -z/x), where x, v, z are the variables in the constant
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term identity for G2 in [11, Theorem, p. 880]. The form of the sum L is not

directly analogous to the trigonometric integral [10, p. 46] or the beta integral
[6, (1.7)] associated with G2 .

We remark that if B2 is replaced by a nonsquare character in (1.9), then the

resulting sum vanishes. This follows from (2.1) below and [5, (2.2)].

Our proof of Theorem 1.2 employs the character sum analog of Dixon's

summation formula [11, p. 881] given in Theorem 1.3. A proof of this analog

(and more general results) can be found in [7]; we give a different proof in the

Appendix.

(1.1J) «A-{\\   I

Theorem 1.3. Define

0,    ifA^l,

ifA = l.

Then for all characters D, E, F on G F (a),

(q - I)"1 V G(AD)G(AE)G(AF)G(AD)G(AE)G(AF)
(1.16) A

= iq- l)q2ôiD2E2F2) + QiD, E, F) + Q(Dtf>, Etf>, Ftj>),

where

(1.17)
QiD, E,F) = DEF(-l)G(DE)G(DF)G(EF)G(D)G(E)G(F)/G(DEF).

Our proof of Theorem 1.2 also requires the evaluations of the Selberg sums

Li(C , 1, C4>) and L^(C, C, Ctj>) given in Theorem 1.4. These two Selberg
sums are not covered by Theorem 1.1, but they can be evaluated by a suitable

modification of the proof of [4, Theorem 1.1]. We omit the details.

Theorem 1.4. // C2 # 1, then

(U8) L3(C2,l,C<¿) = L3(C^Ü,C</>)^2    q

i<3(C2,l,C)       Ri(C,C,C)

Inspired by Theorem 1.2, Greg Anderson suggested that the sum

(1.19) Y(B,C):=     Yl     B(x2-4y)C(y2+l&y+l2xy-4x3-27)
x,yeGF(q)

has an elegant product formula.   Since the discriminant of the polynomial

F(z) — z3 - rz2 + sz - 1 is r2s2 + ISrs - 4s3 - 4r3 - 27, one sees via the

transformation x = r + s, y = rs that

(1.20) L = Y(B,Ccj)) + Y(B(t>,C<t>).

Thus the following conjecture implies Theorem 1.2.

Conjecture 1.5. We have

(1.21) Y(Btp,Ctp) = q2-2q + 2 = (q2-2q + 2)P(B,C),     ifB = C = tf>,

(1.22) Y{Btf>, C<t>) = (1 - 2/<7)G(C)3 = (2 - q)qP(B, C),
zTordC = 3, B£{l,tp,C},
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azzd

(1.23) Y(Btj), Ctf>) = P(B, C),    otherwise.

For character sum analogs of Macdonald-Morris constant term identities con-

nected with various other root systems, see [3]. For most root systems (e.g.,

F4, Ef,, E-i, Es,...), no analogs are known.

2. Proof of Theorem 1.2

By (1.2) and (1.9),

(2.1) L = -±-r 5>3G4,52,C0).
9 A

Define

(2.2) d(A,B,C) = L3(A ,B,Ctp)- S3(A ,B,C).

Then by (2.1) and Theorem 1.1,

(2.3) L = T+-^      £      d(A,B2,C),

^€{l,C,C2}

where

(2.4) T=l¿2S3(A,B2,C).

9 A

By (2.4) and (1.4),

(2.5)

:a-l

Apply Theorem 1.3 with

(2.6) D = BC2,        E = BC,        F = B

to obtain, for all characters B, C,

G(C2)G(C3)G(B2)G(B2C)G(B2C2)

(2.7) " q'G(C)2

• {(q - l)q2ôiB6C6) + Q(BC2 ,BC,B) + Q(Btf>C2 , BtfC, Bip)} .

By definition (1.17),

(2.8)

Q(BC2,BC,B)

= BC(-l)G(B2Ci)G(B2C2)G(B2C)G(B^2)G(BT)G(B)/G(B:iC3).

r=-lT^53(^c2,Js2,c)

Define

(2.9)   W(B, C) = G(FC>(B'r)G(FC)G(5C')G(IC)G(I)G(fi3C3)/?,,-^2—3,^,-^2—2,^,-^2—,^,-^2, _ "p3/-3n
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By (2.8) and (2.9),

(2.10) rV(B,C) = Q(BC2,BC,B),     if 53C3 ¿I.

Assume first that

(2.11) B2, B2C, and B2C2 are nontrivial.

By (2.11), if B3C3= l,then

(2.12) W(B,C) = -q2   and   Q(BC2 ,BC ,B) = -a3.

Hence (2.10) has the extension

(2.13) (q - l)q2ô(B3C3) + Q(BC2 ,B~C ,B) = W(B, C).

Since S(B6C6) = ô(B3C3) + ô(tf>B3C3), the expression in braces in (2.7) equals

(2.14) WiB,C) + WiBtp,C).

Again using (2.11), we thus obtain

(2.15) T = P(B,C) + P(Bcp,C).

By (2.11) and Theorem 1.1, each summand d(C , B2, C) in (2.3) vanishes.
Thus L = T and the result follows from (2.15) under the assumption (2.11).

Now drop the assumption (2.11). For brevity, set

(2.16) Ria, b) = R(Ca ,Cb, C),

(2.17) U(a,b) = L3(Ca,Cb, Ctj>)/R(a,b),

(2.18) V(a,b)=Sy(Ca,Cb,C)/R(a, b),

where 0 < a, b < 2. Observe that i?(a, b), £/(a, b), V(a, b) are symmetric

in a, b. We proceed to evaluate these functions.

From (1.3),

(2.19) R(0,0) = G2(C2)/G(C*),

(2.20) R( 1, 0) = G(C)G(C2)/G(C),

(2.21) R(2,0) = R(2,2) = R(2,l) = -\G(C2)\2G(C3)G(C)/G2(C),

(2.22) R(l, 1) = -G(C3)G2(C)/G(C).

From (1.4),

q-\ ifC=l,

q~2, if C = tp,

q~x, if ordC = 3 or 4,

, 1, if ord C > 4,

(2.23) F(0,0)

(2.24) F(1,0)

q-\    if C = 1,

q~x,    ifordC = 2or3,

1,        if ord C > 3,
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(2.25) F(2,0) = F(2,2) = F(1, 1) ,-2

,-1

if C = 1,

if C = tj),

if ord C > 2,

(2.26)

By [5, Theorem 4.1],

^•»={£; ï
if C = 1,

C#l.

r 4 - 3o, if C = 1,

-a3 + 3a2 - 5a + 4,    ifC = 0,

(2.27) C/(0,0) = < q2-3q + 3,

i,

We claim that

(2.28) 17(1,0)

' 4-

2-

<72

1.

3a,

?,

- 3a + 3,

if ord C = 3,

if ord C = 4,

if ord C > 4.

if C = 1,

if C = <f>,
if ord C = 3,

if ord C > 3.

The cases C = 1, C = 0 of (2.28) follow from [5, (2.13), (2.14)]. The case
where ordC = 3 follows from (2.27), since by [5, Lemmas 2.1, 2.2],

(7(1,0) = [7(0,0)   ifordC = 3.

The last case where ordC > 3 follows from (2.24) and Conjecture 1.1 (note

that the hypothesis (1.5) of Theorem 1.1 holds with A = C, B = 1). Next we
claim that

f4-3a, ifC=l,

(2.29) U(2,0) = U(2,2) = l  -q3 + 3q2-5q + 4,    ifC = 0,

I 2 - q, if ord C > 2.

The first equality in (2.29) follows from [5, Lemmas 2.1, 2.2]. The cases C = 1,
C = tf> of (2.29) follow from [5, (2.13), (2.14)], while the remaining case follows
from Theorem 1.4. The same argument shows that

4 - 3a,        if C = 1,

(2-q)/q,
2-q,

(2.30) £7(1,1) = if C = 4>,

if ord C > 2.

Finally, we claim that

(2.31) U(2, 1)
4-3a,f 4- 3a

\2-a,

if C = 1,

if C ¿ 1.

The cases C = 1, C = tf> of (2.31) follow from [5, (2.13), (2.14)], while the
cases where C2 ^ 1 follow from (2.30), since

(2.32) U(2, l) = U(l, 1)   ifordC>2

by [5, Lemmas 2.1, 2.2].
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For 0 < a, b < 2, set

(2.33) d(a,b) = {Uia,b) - Via, b)}Ria, b),

so that by (2.2),

(2.34) dia,b) = d(Ca,Cb ,C).

From (2.19)—(2.31), we obtain the following evaluation of o"(a, b) :

{ -(4-3a-a"3), if C = 1,

-(-a3 + 3a2-5a+ 4-a-2),    if C = <¡>,

(q2-3q + 3-q-x)G\C)/q,     ifordC = 3,

I 0, ifordC>3;

633

(2-35) ¿(0,0) = <

(2.36) d(l,0)={

( -(4-3a-<r3), ifC=l,

-(2-a-a-1), ifC = tp,

(a2-3a + 3-a-')(J3(C)/a, ifordC = 3,

L 0, ifordC>3;

(2.37) rf(2,0) = rf(2,2) = i

{ -(4-3a-a-3), if C = 1,

(-a3 + 3a2-5a+ 4-a-2),     if C = tp,

t -(2 - a - q-x)G(C3)G\C)/q,    ifordC>2;

(2.38) ¿(1,1) = <

and

(2.39) rf(2, 1)=^

f -(4-3a-a-3), if C = 1,
i2-q-q-x)4>i-l), ifC = </»,

, -(2-a-a-')(7(C3)G3(C)C(-l)/a,    ifordC>2;

' -(4-3a-a-3), if C = 1,

-i2-q-q-x), ifC = tp,

. -(2-a-a-')G(C3)(?3(C)/a,    ifordC>2.

We now evaluate L from (2.3), using (2.7), (2.8), and (2.35)-(2.39), and The-
orem 1.2 follows.

3. Appendix

Here we give a proof of Theorem 1.3. Let H denote the left side of (1.16).

First suppose that DE = 1. Then

(3.1)

where

H = -î-j- Y] \GiAE)\2\G{AE)\2GiAF)GiAF)

-{
M-iq+l)GiEF)GiEF), ifF2=l,

M - qG(EF)G(ËÂF) - qG{EF)G~iEF),    if E2 ¿ 1,

2

(3.2) M = -2—r Y, GiAF)GiAF).
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By (1.1),

(3.3) M = -^ ¿2 E E AF(t)ÄF(u)CT^-u) = q2(q - l)S(F2).
y t      u     A

Using (3.3) in (3.1), we easily deduce (1.16) in the case DE = 1 .
By symmetry, it remains to prove (1.16) in the case

(3.4) DE ¿I,        DF ± 1,        EF £ 1.

By (1.1),

(3.5)

#=-4tE    £ YiA(x^)D(tx)E(uy)F(v^T{t+u+v'x~y~z)
q t,u,v    x,y,z¿0   A        V    "   /

= -^-r E E E^(iMW)Z)(i;c>;)-E:(M>;z)jF(uzx)^rM'~1)+z("_1)+x(,'"I))'

(,»,iix,y,z   y4

where the last equality results from replacing t by ty, u by uz, and v by

t>x . By (3.4), it follows that

H = -^—G(DE)G(DF)G(EF)
Ci f,\ * '

x E $]^(iw)ö£(l -0FF(1-M)7JF(1 -v)D(t)E(u)F(v).
l,u,v   A

Thus,

(3.7)
H/{G(DE)GiDF)GiEF)}

=  E ^(! - 0^0 - 1/(^))1TF(1 - v)D(t)Ë~(tv)F(v)
t,v¿0

= E ^(J - t/v)ËF(l - i/t)DFil - v)D(t/v)Ë(t)F(v)
t,v¿0

= Y^EF(v)DF(t)E~F(t - l)DF(l-v)DE~(v-t)
t,v

= EF(-l)^m(l-±^)ËF(l-±l)DÊ(v-t)

= EF(-l){J(DË~F, DE)J(E, DE) + J(D~ËFtp, DE)J(Etj>, DE)} ,

where the last equality follows from [2, (28)]. Since DE £ 1, we can apply the

formula [8]

(3.8) J(A,B) = G(A)G(A~B)A(-l)/G(B),     if B ¿ 1

to express all of the Jacobi sums in (3.7) in terms of Gauss sums. Then (1.16)

readily follows.
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