
Silverman’s Game on Discrete Sets 

Ronald J. Evans 

Department of Mathematics 
University of Calijbrnia at San Diego 
La Jolla, Cakjknia 92093 

and 

Gerald A. Heuer 

Department of Mathematics and Computer Science 

Concordia College 

Moor-head. Minnesota 56562 

Submitted by Richard A. Brwddi 

ABSTRACT 

In a symmetric Silverman game each of the two players chooses a number from a 

set S C (0, m). The player with the larger number wins 1, unless the larger is at least T 

times as large as the other, in which case he loses Y. Such games are investigated for 

discrete S, for T > 1 and v > 0. Except for Y too near zero, where there is a 

proliferation of cases, explicit solutions are obtained. These are of finite type and, 

except at certain boundary cases, unique. 

1. INTRODUCTION 

The symmetric Silverman game (S, T, v) is defined as follows. Let S be a 
set of positive real numbers, and let T > 1, v > 0. Each of two players 
independently selects an element of S. The player with the larger number 
wins 1 from his opponent, unless his number is at least T times as large as 
the other, in which case he must pay the opponent v. Equal numbers draw. 
The parameter T is called the threshold, and v is called the penalty. A 
version of this game on a special discrete set S (see the Appendix) is 
described in [3, p. 2121. David Silverman [lo] suggested analyzing the game 
on general sets S. The case where S is an open interval was examined by 
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Evans [l], who showed that optimal strategies exist (and gave them) only for 
certain isolated values of v, and then only when the interval is sufficiently 
large. An analogous family of games has been examined by Heuer [5]. 

The nonsymmetric version, where player I chooses horn S, and player II 
from S,, has been investigated by Heuer [4] and Heuer and Rieder [7]. 
Solutions are obtained for all disjoint discrete sets S, and S, for all T when 
Y > 1, with partial results in other cases. In [6], Heuer shows that for Y > 1, 
Silverman games may be reduced to games on initial segments of the 
strategy sets, and therefore to finite games when the strategy sets are 
discrete. 

In the present paper we take S to be a discrete set: S ={cl,cz,cs,. . .), 
where 0 < ci < cs < . * . , and S is either finite or unbounded. For positive 
integers n, let Y, = 2cos[ 7r /(2n + 3)] - 1, and note that 0 < v, _ I < v, < 1 
and lim,,, vn = 1. The pair (S, T) determines a certain positive integer n, 
defined in Section 4, which we call the degree of (S, T). In Sections 2-5 we 
obtain the unique optimal strategy for u > v,; see Theorem 3, our main 
result. In particular, this gives the unique optimal strategy when Y 2 1. 

In Sections 6-8, we obtain the unique optimal strategy for Y~_~ < v < v, 
when n > 1; see Theorems 5-9. These results are considerably more compli- 
cated than Theorem 3, because while for v > v, there is only a single case, 
for v~_ 1 < v < v, there are four different cases, each with its own type of 
solution. Under certain conditions we show these solutions remain valid in an 
interval extending below ~,_i, sometimes as far as v,,._~. Since v0 = 0, this 
provides complete solutions for all v > 0 in some special cases where n < 2. 
As v decreases further, the cases seem to proliferate, and there appears to be 
little hope of describing detailed solutions for all v > 0 in general However, 
for some interesting discrete sets S we can give explicit solutions for all 
v>O.ThisisdoneintheAppendixforS={Tk”:k=0,1,2,3,...]. 

2. THE OPTIMAL PROPORTION VECTOR V, 

Define the sequence of polynomials F,,(r) with integer coefhcients by 

F_,(x) = F,(r) = 1, 

(2.1) 
F,(x) = (r +I)F,-,(r) - F,-,(x) for n>l. 

Thus F,(r) = x, F,(x)= x2 + r - 1, F,(x) = x3 +2x2 - x - 1, etc. (These 
polynomials are related to the Brewer polynomials V,(x,I) 12, p. 3181 by 
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V,(x + 1,l) = Fk(r)+ F,_,(x).) By standard difference equation methods 
(e.g. [8, p. 1213) one obtains 

F,(r) =(x +3))‘(y”+‘+ y-“-l + y” + y-“), 

where 

x+1 
+( 

x2 +2x -3)+ 
Y= 

2 2 . 

We now show that for each n, 

T 

F,(x)>0 when II > lJ”_i = 2cos- -1. 
2n+l 

(2.2) 

If x > 1, then y > 1 and F,(x) > 0. If -3 < x < 1, then y is nonreal, and 
F,,(x) = 0 if and only if y’“+i = - 1, i.e., (x + 1)/2 = Re y E 

(cos[h7r/(2n+l)]:h=1,3,..., 2n - 11. Thus for x > 0, F,(x) = 0 if and only 
if ~~(2cos[h~/(2n+1)]-1:h=1,3,...,2n-l} and h/(Zn+l)gi. The 

largest real zero of F,(x) is v,_ i, and (2.2) follows. 
For n >, 1 and Y > 0, define the 2n + 1 by 1 column vector V, = V,<v) by 

(Fn_1,Fn-3 ,..., F,;F,,F,,...,F,-,;F,; 

‘,‘= I F ._2,...,F3,F1;Fo,...,F,-3,F,-1) if n is odd, 

(Fn_I,Fn_3 ,..., F,;F,,,F, ,... >F,,_z; 

F,;F,_, ,..., F,,F,;F,,...,F,-,,F,-,) if n is even, 

where Fi = Fi(v). For example, VIT=(F,,, F,, F,)=(l,v,l), V,‘=(F,, F,, F,, 

F,, F,) = b, 1, v2 + I, - 1, 1, ~1, and V5r = (F4. F,, F,, F,, Fa, Fs, Fs, 
F,, F,, F,, F4). Note that V,, is symmetric about its middle entry F,,, and if 

v > ~~_i, all entries of V, are positive. 

3. THE PAYOFF MATRIX M, 

For n > 1, let M, be the 2n + 1 by 2n + 1 skew-symmetric (Toeplitz) 
matrix for which each entry on the first n subdiagonals below the main 
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diagonal is 1 and each of the remaining entries below is - v. For example, 

M,= 

0 -1 -1 -1 v V 
1 0 -1 -1 -1; 

-‘; 
V 

1 1 0 -1 -1 
1 1 1 0 -1 -1 -; 

--v 1 1 1 0 -1 -1 
-v -v 11 1 o-1 
-v -v -v 1 1 1 0 

Let M,(i) denote the ith row vector of M,. 

LEMMA 1. For all real v, the null space of M, over the reals is the set of 

real multiples of V,,. Thus, M, has rank 2n. 

Proof. We first show that V,, is in the null space of M, by showing that 

M,( i)V,, = 0 for l<i<2n+l. (3.1) 

Since M,(n+l)=(l,..., 1,0,-l ,..., -l), where 1 and - 1 each occur n 

times, (3.1) holds for i = n + 1. For 1 < i < n, the vector M,(i + l)- M,,(i) 

has exactly three nonzero entries, and its product with V, is either Fj(v)+ 

q+,(v)-(v +l)q+,(v) for some nonnegative j depending on i, or F,(v)+ 

F,(v)-(v + l)F,(v). In either case, [M,(i + l)- M,(i)]V, = 0 by (2.1), so we 
have the cases 1~ i < n + 1 of (3.1). For 1~ i < n, reversing the order of the 
entries in M,,(i) yields - M,(2 n + 2 - i), and the remaining cases of (3.1) 

follow. 
It remains to prove that M, has nullity 1. This is easily checked for 

n = 1. Let n > 1, and assume as an induction hypothesis that M,_ 1 has 
nullity 1. Assume for the purpose of contradiction that for some v z 0 the 

nullity of M, exceeds 1. Then since M, has even rank [9, Theorem 21.1, 
p. 1511, there are at least three linearly independent vectors in the null space 
of M,, so there is a nonzero vector U, in this null space whose middle and 
last entries are both 0. Let U,‘, be the 2n - 1 by 1 vector obtained from U,, by 
deleting the middle and last entries. Let MA be the 2n - 1 by 2n - 1 matrix 
obtained from M, by deleting the middle and last rows and columns. Since 
M,U,, = 0, we have MLUA = 0. It is easy to see that ML = M,_,, and thus U: 

is in the null space of M, _ 1. Since M, _ IV,, _ r = 0, the induction hypothesis 
implies that VA is a real multiple of V,, _ r, and without loss of generality we 
assume that U,‘, = V,_,. Thus U,’ = (--,O, --,O>, where the first blank is filled 
with the first n entries of V,_ 1 and the second with the remaining n - 1 
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entries of V,,_ i. Since M,U, = 0, we have M,(n + l)U,, = 0, which implies 
that 

F”_,(U) = 0. (3.2) 

In particular, v < 1. From M,(2n + l)cT,=O it follows that (v - 1)X::,” F,.(v)= 
0, and therefore 

n-2 

c F,(v) = 0. (3.3) 
r=O 

From (2.1) we have C:i: F,.(v) = (v + l>C:I$ F,(v)-- C:l”_, F,.(u), which in 
view of (3.2) and (3.3) reduces to - F,(v) = - F_,(v) + F,_,(v). Therefore 
F,_,(Y) = 0, which contradicts (3.2). n 

4. THE OPTIMAL SET W 

For x > ci, let (x) denote the largest element of S which is less than r. 
Let m be the integer such that c, = (Tc,), and define dj = (Tcj+,) for 
O,<j<m-1. Let Z={j:lgjgm-1 and d,_,<d,}, E={cj:j~Z)U 
{c,), and F = {dj : j E Z}. Without loss of generality, I is nonempty; other- 
wise the optimal strategy is simply to select c,. The integer n = (II is 
determined by S and T, and will be called deg(S,Tl, the degree of (S,T). 
Let e, < e2 < . . . < e,,, =c,betheelementsof E,andfr<fa< a** <f, 
the elements of F. Thus, if i, < . * * < i, are the elements of I, then 
e, = cil ,..., e, = ci, and f, = di ,,..., f, = dim. Let e, = 0, f,, = c,. Note that 

f. <fr. One sees then that for i = O,l,..., n, 

fi = (Tei+l>, (4.1) 

and more generally, that 

fi = (Tc,) for ei <c, < e,+i. (4.2) 

Let W = E U F. Then W has k = 2n + 1 elements, which we denote by 
w,<w,<.** < wk. Also write w. = co = 0. Observe that W is determined 
by S and T, independent of v. We shall see that W is the optimal, or 
essential, subset of S for this T in the sense that optimal play in the 
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Silverman game (S,T, v) with Y > r~,, assigns positive probabilities to pre- 
cisely the elements of W. 

LEMMA 2. The payoff matrix for the row player in the Silverman game 
(W,T,v) is M,. 

Proof. The element in the i th row and jth column of the payoff mat- 
rix is 

V if wj>Twi, 

-1 if wi<wj<Twi, 

0 if i=j, 

1 if wj<wi<Twj, 

--v if wi>Twj. 

It is straightforward then to verify, using (4.1) and the definitions preceding 
it, that the payoff matrix is precisely M,. n 

5. THE OPTIMAL STRATEGY FOR v > v, 

Write the vector V,, of Section 2 as V,,T = (vi,. . . , vk), and let r be the 
mixed strategy which assigns probability vi /(vi + * * . + v,) to wi, 1~ i < k. 
[These components vi are positive for v > v,_r by (2.2).] We are now in a 
position to prove the main theorem for v > v,. 

THEOREM 3. Let v > v” = 2cos[r/(2n +3)]- 1. Then T is the unique 
optimal strategy fm the Silverman game 6, T, v). 

Proof. For b E S, denote by E(b, T) the expected payoff to player I (the 
row player) using the pure strategy b against player II’s strategy 7. By 
symmetry of the game, the game value, if it exists, must be 0, so to prove the 
optimality of T it suffices to show that for every b in S, E(b,T) < 0. If 
b E W, it follows from Lemmas 1 and 2 that E(b, 7) = 0. 

Suppose wi<b<wi+l for some i, 0 < i < n. For some r 1* 0, we have 
c,.=ei=wi<b, so c,+~ < b, since b E S. Then from (4.2) UJ,+~+~ = fi = 
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(Tei+l> = (Tc,.+, ) < Tb. If we insert a b-row into the payoff matrix, it looks 
like this: 

I wi+l *‘* wn+i+l **’ 
. . . 

b . . . -1 . . . -1 . . . 

wi+l -** 0 . . . -1 . . . 

The entries in the b-row and the wi+i-row agree except in the w,+,-column. 
Thus E(b,T)< E(wi+,,d=O. 

Suppose next that wi < b < wi + 1 forsome i intherange n+l<i<2n. 
From (4.1) we have wZn+i = f, < Te,+l < Tb. Also, if i = n + j we have 
b > w,,+~ = fj_1 = (Tej), so b 3 Tej = Twj. Thus the b-row and the w,+~+,- 

row in the payoff matrix are 

. . . wj wj+l --- W n+j W n+j+l **’ 

b . . . --v 1 . . . 1 -I .I. 

Wn+j+l 
. . . 

--v 1 . . . 1 0 . . . 

The entries in the b-row and the w,+j+l-row agree except in the w,+~+~- 
column. Again E(b,T) < E(w,+~+,,T)= 0. 

Finally, if b > w~,,+~, the above argument showing that b > Twj now 
shows that b > Tw, + 1, so that each of the first n + 1 entries in the b-row is 
- v, and each of the remaining entries in this row is - v or 1. Letting Y 
denote the b row vector, we have YV, < - v Ejn=,, Fj(v) + C;;,’ 4(v), and an 
easy induction on n shows that the right member of this inequality is 
- F,,+,(v). Since F,,, i(v) > 0 for v > v,, we have E(b, 7) < 0, and r is 
optimal. 

To prove uniqueness, first note that any optimal strategy o will select 
only elements from W, since, as we’ve just seen, E(b, 7) < 0 when b 65 W. If 
E(b, o) < 0 for some b E W, then E(r, a) < 0, which contradicts the optimal- 
ity of T. Thus E(b, a) = 0 for all b E W. Uniqueness now follows from 
Lemma 1. n 

Note that only in the case b > wZn+ 1 of the proof of Theorem 3 did we 
use the assumption that v > v,,. If S has no elements > wZn+i [in fact, if S 
has no elements in the interval (we, + i, Tw,,,); see Theorem 81, the theorem 
is valid for v > v, _ i. In the sequel, we consider games with v in the interval 

(v,_z, VJ. 
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6. ESSENTIAL PURE STRATEGIES FOR v < V” 

The essential sets in Theorems 5-7 below will be obtained by augment- 
ing the set W with two additional elements. Several new definitions are 
required. With rr = deg(S, T) and W as in Section 4, let gi = (Tfi >, i = 1,2. 
Here g, is defined only if n>l. Let U={cES:e,+,<c<g,/Tl, and if 
U z 0 let u be the largest element of U. If U z 0, then u < g, / T < f,, so 

e n+1 <u < fi, and also f, cT~,+~<Tu< g,, so f,,< g,. Whether U is 

empty or not, f, < g, < g,. 
For k = - 1, 0, 1, . . . , let G,(x)=(x2 +2x)F,(x). Then G,(x)= x2 +2x, 

G,(x)=xG,(x), and for k >O G,+,(x)=(r +llG,(x)-G,_,(x). 

LEMMA 4. IA H,(X) = (x2 +2x - 1Xx + l)F,_,(x)+ F,(x), n 3 1. Then 

there exists a positive zero II,, _ 1 of H,(r) such that H,( x 1 z 0 for x 2 I_L n_ 1, 
where p0 A 0.3247, and fm n > 1, u,_~ < I,-, < Y,_,. 

Proof. The function H,(x)=(~~+2x--1~x+1)+x=x~+3~~+2~- 
1 is increasing for x > 0 and is zero at po, so it is positive for x > pa. For 
n > 1, (x2 +2x -1Xx + l)F,_,(x) is 0 at v,,_~ and at fi - 1, both of which 
are less than V, _ r, and is positive for x > max{v,_,, fi - 1). Since F,,(x) > 0 

forx>u,_,,wehave H,(x)>Oforx>V,_,,andbycontinuity, H,(x)>0 

for all x in some interval (p”_i,m), where p,__i < ~,,_r. Since H(v,_,)= 

F,,(v,_~) < 0, v~_~ < /..L,_~. n 

Following is a short table to illustrate the lemma: 

n H,(x) CL,-1 vn-1 

1 x3 +3x2 +2x - 1 0.3247 0 
2 x4 +3x3 +2x2 - 1 0.5129 0.6180 
3 x5+4x4 +4x3 - x2 -3x 0.7106 0.8019 
4 x6+5x5+7x4-6x2-3x+1 0.8303 0.8794 

7. THE CASE U# 0 

Assume u f 0, and let W, = W U {u, sl) = (e,, e2, . . . T en+,, 
u, fi,. . ., f,, gl]. With Fk = F,(V) and G, = G,(v), let Q, = Q”(v) be the 
column vector defined by 

Q;=(F,,_2;G,_2,G,_4 ,..., G,;G,,G3 ,... ,G,-,;-F,+I;G,-1,...,F,-z) 
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for n even, and 

for n odd. (In each case the vector has 2 n + 3 components and is symmetric 
about the middle component, - F,,,,.) Write Q, = (91,92, . * * ,qn+l, 

9 n+2, 9”+r,. . . , 92, 9r), and let B, be the sum of the components of Q,. With 
the help of the paragraph following (2.2) one sees that the components of Q, 
are positive for all (positive) v in the range Y,_~ < v < v,. Let or denote the 
strategy which assigns probability 9{ /B, to the i th element of Wr, 1 Q i Q 

2n +3. 

THEOREM 5. Suppose that U+0. Ifn=l and /.L,,<v<v~, or n>l 
and u~_~<u<v,, then r, is the unique optimal strategy fm the game 

(S,T, ~1. The strategy r1 is no longer optimal fm v < p. when n = 1, if 

Sn(g,,Tgl)# 0, urfor v<v,_~ whenn>l, zfSn(f,,Tu)f 0. However: 

(a) Suppose that n = 1 and S f~ (gl, Tg,) = 0. Then 71 is optimal fw 

0 <v Q VI. 
(b) Suppose that n = 2 and S n<f,, Tu) = 0. Then r1 is optimal fm 

p1 Q v < us. Moreover, r1 is optimalfor 0.2720” cz < v Q v2 ifs n(gl, Tf,) 
= 0, and even fm 0 < Y < v2 af S n(gl, Tg,) = 0, where (Y is the positive 

zero of (x + 1j2(x2 +2x)- 1. 

(c) Suppose that n > 2 and S n(f,,Tu) = 0. Then r1 is optimal for 

t-L”_1 Q v Q V”, andevenfor V”_~QV=GV~ ifSnn(g,,Tf,)=O. 

Proof. We first show that rr is optimal for the subgame on W,. From 
the definitions of U, fi, and gi, the payoff matrix G” of this subgame, shown 
in Table 1, is the 2n + 3 by 2 n + 3 skew-symmetric matrix which has middle 
row 

(--v 1 ... 1 0 -1 ... -1 v) 

(with 1 and - 1 each occurring n times) and last row 

(with 1 occurring n times), and which becomes M, when the middle and last 
rows and columns are deleted. 



SILVERMAN’S GAME ON DISCRETE SETS 225 

for n even, and 

for n odd. (In each case the vector has 2n +3 components and is symmetric 
about the middle component, - F,,, i.) Write Q, = (9i,9s, . . . ,9, + i, 

9 n+2, 9”+i,. . . , q2, 9i), and let B, be the sum of the components of Q,. With 
the help of the paragraph following (2.2), one sees that the components of Q, 
are positive for all (positive) v in the range ~,_s < v < v,. Let pi denote the 
strategy which assigns probability 9i /B, to the i th element of W,, 1 Q i Q 
2n +3. 

THEOREM 5. Suppose that U+0. Zf n=l and p.,<v<v,, or n>l 

and v~_~<v<v,, then r, is the unique optimal strategy for the game 
(S,T, v). The strategy r, is no longer optimal fw v ~11~ when n = 1, if 
Sn(g,,TgI)#O,orforv<v,_, whenn>l,ifSSn(f,,Tu)f0.However: 

(a) Suppose that n= I and sn(g,,Tg,)= 0. Then r1 is optimal fm 
O<V9Vl. 

(b) Suppose that r~= 2 and S n<f,, Tu) = 0. Then r1 is optimaE fm 
p1 Q v G vs. Moreover, r, is optimal for 0.2720’ cy < v Q v2 ifs n(gl, Tf,) 
= 0, and even fm 0 < v < vp zf S n (g,, Tg,) = 0, where LY is the positive 
zero of (x + l)‘(x’ +2x)- 1. 

(c) Suppose that n > 2 and S n (f,,, Tu) = 0. Then r, is optimul fm 

/-L”_l Q v Q V”, and even for v”._~ Q v =G v, if S n(gl, Tf,) = 0. 

Proof. We first show that rr is optimal for the subgame on W,. From 
the definitions of U, fi, and gi, the payoff matrix ii?, of this subgame, shown 
in Table 1, is the 2n + 3 by 2 n + 3 skew-symmetric matrix which has middle 
row 

(-v 1 ... 1 0 -1 ... -1 v) 

(with 1 and - 1 each occurring n times) and last row 

(-v -0. -v 1 *.* 1 0) 

(with 1 occurring n times), and which becomes M, when the middle and last 
rows and columns are deleted. 
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the w-row of the payoff matrix differ only in the w-column, and E(b, TV) < 
E(w,T~) = 0. 

If f, < b < g, the f,, and b rows are 

e, *-* en en+, u fl *** fn-1 fn g1 

k -u --v ... ... --v --v --v 1 a 1 1 1 *** *** 1 1 0 1 -1 -1 

where a = - Y or 1 according as b > Tu or b < Tu. First suppose that a = 1, 
sothat f,<b<Tu.The E(b,rl)B,=-(v+l)q,+l+qa=-(V+l)G,_l+ 
G,_, = - G,, which is Q 0 for v,_ i < Y Q v,, but > 0 for (positive) v 
immediately below V, _ i. Next suppose that a = - Y, so that Tu Q b < g,. 
Then E(b,T,)B, = -(v +1X9,+, +9n+2)+9z=-G,-(~+1X-Fn+1)= 
- (v’+Zv)F, + (v + l)F,+, = -(v + l)‘F,, + (V + l)F,,+, + F, = 
-b+l)Fn_l+Fn=-Fn_z, which is < 0 for all v > ~,,_a (indeed, for 

V > V”_J 
Finally, suppose that b > g,. First consider the case of n = 1. Then the 

g, and b rows are as follows: 

where a = -v or 1 according as b > Tg, or g, <b < Tg,. If a = - Y, then 
E(b,T1)=-v<O. If a=l, then B,E(b,rl)=-(v+1Xv2+2v)+l= 
- H,(v), which is < 0 for v > /.~a (but > 0 for u immediately below /A,,). 
Next, let n > 1. Then the g, and b rows are as follows: 

where each ai is -V or 1. If b E(gl,Tfi), then each a, is 1, and 
E(b, Tl)B, = -(v + 09,+ 1 + 4l = -(v + l)G,_, + F,_, = -(y + 1x1~’ + 
~Y)F,_~ +(v + l)F,_, - F,, = - H,(v) < 0 for v > CL,_~. If b > Tf,, then 
a,= -v and E(b, Tl)Bn d - (v + l)(9,+1 + 9,) + 91 = 

-(r~+l)(G,_~+G”_a)+ F,_, Q -(Y+~XY~+~VXF,_~+F~--~)+F,-~=[~- 
(v + 112(v2 +2v)lF,_,. Now, F,_,>O for v>v,-a, and l-(~+l)~ 
(V2 +2v) < 0 for v > (Y G 0.2720. Thus for b > Tf,, E(~,T~) =G 0 for all v > C-X 

g1 
b 

e, ... U fl f2 *** fn g1 

--v e-0 --v 1 1 ... 1 0 
-v ... -u --v al ... an-1 an 
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when n = 2 and for all v 2 v,_a when n > 2. If n = 2 and S has no elements 
in (f,, Tu)U(g,, Tgr), then E(b, TV) = - v < 0, so TV is optimal for the full 
game as described in the statement of the theorem. 

It remains only to prove the uniqueness statement for rl. For this it 
suffices to show that for all v > 0, the nullity of M, is 1. Assume that for 
some v > 0 and n 2 1 the nullity of M, exceeds 1. Then since this nullity is 
odd, there is a nonzero vector U, in the null space of M, whose middle and 
last components are both zero. Let U,!, be the 2n + 1 by 1 vector obtained 
from U,, by deleting the middle and last components. The matrix obtained 

from M, by deleting its middle and last rows and columns is M,. Since 
ii?,U,, = 0, we have M,U: = 0. By (3.1) and Lemma 1, we therefore have, 
without loss of generality, U,!, = V,. Thus U,’ = (---, 0, -, O), where the first 
blank is filled by the first n + 1 components of V, and the second by the last 
n components of V,. We have 

since 

F”_,(V) = O, (7.2) 

O=~,(n+2)U,=F,+C~~~F,.-vF,,_1-C~~~F,.=F,-(v+1)F,_1 

=- F,-a* 

It follows readily from (2.1) that 

n-1 

(l-v) c F,.(v) = F,_,(v)-vF,_,(v). (7.3) 
7-=O 

By (7.2) and (7.31, 0 = ii?,(2n +3)U,, = - v C:=,F,. +c:L,‘F, = - vF,, + 
(l-~)C~~,‘F,=-vF,-vF,_,=-v(v+2)F,_,.Sincev>O,wethushave 
F, _ ,(v) = 0, which contradicts (7.2). n 

REMARK. If v = 0, it is not true that 3, always has nullity 1; for 
example, M, has nullity 3. 

8. THE CASES WHERE U = 0 

As remarked in Section 6, we always have f,, < g, < g,, and when U = 0 
equality is possible in either place, leading to three cases. When n = 1, g, is 
undefined, and we use h 1 = (Tg, ) in place of g,. We begin with the case of 
strict inequalities. Theorem 6 deals with n = 1, while Theorem 7 deals with 
n > 1. 
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THEOREM 6. Assume that n=deg(S,T)=l, U=0, undf,<g,<h,. 
Let @=<- F,,G,,F_,,G,,- F,) and W,=(e,,e,,f,,g,,h_,). Let 72 be the 
strategy which assigns probabilities to W, in proportion to Q1. Then: 

(a) For cl,, < u < v~, r2 is the unique optimal strategy. 
(b) Zf S n(f,, h, /T] = 0, then 72 is optimal &r p. < v < vl, where 

p,, A 0.2470 is th e positive zero ofx3+4x2 +3x -1. 
(c) Zf S has no elements in (f,, h, /TlU(h,,Th,), then 72 is optimal fw 

o<v<lJ,. 

Proof. We show first that r2 is optimal for the subgame on W,. The 
matrix ti, of this subgame is 

e1 e2 fl gl h, 

e1 0 -1 
e2 1 0 -Y 

V u 

fi --Y 1 0 -Y 
IJ 

g1 -v -v 1 0 -Y 
h, --v -v --v 1 0 

It is easily checked that d,o, = 0. 
Next we show that 72 is optimal on the full game by showing that 

E(b, 72) < 0 for every b in S. If b < e2, we have E(b, 72) < 0 as in proof of 
Theorem 3. If e2 < b < fi then b > g, /T because U = 0. The payoff rows 
for b and fl then are 

SO E(b, 72) < 0. For fi < b, < g, < b, < h, < b, the payoff rows are 

e1 e2 fl g1 h, 

b, --Y --v 1 -1 

g1 -v --v 1 0 -1” 
b, --v --Y -V 1 -1 
h, --v --v -u 1 0 
b, -_y -v -v -v y 
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where x is - 1 or v and y is 1 or - u. If b,<h,/T then X=Y, and 

[E(b,,rz)- E(g,, 72)]B=-(v~+v)+(v+1X-v~-V+1)=-v3-3v2- 

2v + 1 < 0 when Y > ~a, where B is the sum of the components of 0,. If 
h,/T<b, then x=-l, and E(b,,T2)<E(g1,T2)=0. Also, E(b2,T2)< 
E(h,,Ts) = 0. If b, < Th, then y = 1 and BE(b,, TV) = BE(h,, TV)- 
(V + 1)(v2 +2v)+(- v2 - v + 1) G 0 when v > pa. If b, > Th, then y = 
- v = E(b,, T2). 

It remains only to prove the uniqueness, and this follows from the fact 
that a, has nullity 1 for all real V. n 

THEOREM 7. Assume n > 1, U = 0, and f, < gl < gs. Let ws = 

(e,, e2, . . . , e,,,, fl, . , f,, g,, g2). Let Qf = (qn+2, qn+ly . . . t 92> 

91>9 2,. . ,9,,+ 1, 9n+2), where 9i is the i th component of Q, (defined in 
Section 7), and let T2 be the strategy which assigns probabilities to ws in 

proportion to 0,. Then: 

(a) For p,_ 1 -c v < v, and n > 2, 72 is the unique optimal strategy. 

(b) Zf S has no elements in ( fl, g, /T), then for n = 2, 72 is optimal for 

p1 G v G v2, where p1 A 0.3406 is the positive zero of 2x3 +5x2 + x - 1, and 
fm n > 2, 72 is optimal for u,_2 =G V G V,. 

(c) For n = 2, if S has no elements in (f,, g, /T)U(g,,Tg,), then T2 

optimal fm o, < V < V2, where u1 A 0.2888 is the positive zero of x 4 + 5~ 3 

7x2 + x - 1. 
(d) For n = 2, if S has no elements in (fl,g2/Z’)U(g2,Tg2), then 72 

optimal fW 0 = u0 < V < V2. 

is 
+ 

is 

Proof. We first show that 72 is optimal for the subgame on W,. The 
matrix a,, of this subgame is the 2 n + 3 by 2 n + 3 skew-symmetric matrix 
with each entry in the first n subdiagonals equal to 1 and each entry below 
this equal to - V. It is easily checked (cf. the proof of Lemma 1) that 
a”& = 0. 

Next we show that 72 is optimal on the full game. If b < e,,,, we have 
E(b, TV) < 0 as in the proof of Theorem 3. If e,, 1 < b < f 1 then b > g, / T 
because U = 0, and one finds E(~,T~) < E(f,,T2) = 0. If fi < b < f2, the 
payoff rows for f,, b, and f2 are 

el e2 e3 ... en+, f, f2 f3 ... g1 g2 

i -_v --y _-v 1 1 1 ... . . . 1 1 ; -1 -1 1; ... . . . 1; v 

f2 -u --v 1 *** 1 1 0 -1 . . . -1 -;r 
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where x is - 1 or V. Let B, be the sum of the components of 6,. If 

b < g, /T, then r = v and B,E(b, ra) = B,E(f,, ~a) - (V + l)o,+l + 

cI~=(-Y+~)G,,-~ + F,_, = -(v + l)(v’+ 2v)F,_, + (v + l)F,_, - F, = 
- H,(v) < 0 for Y > pn_ r. If S has no elements in (f,, g, /T I, then x = - 1 
and E(b, T~) < E(f,, TV)= 0. 

Suppose fi <b <fi+l for some i, 2<i<n-1. Then E(b,T2)< 

E(fi+u TV) = 0, as one sees by comparing the b and fi+ 1 payoff rows, and 
for f,, < b < g, as for g, < b < g,, the situation is similar. Finally, suppose 
that ,b > g,. The g, and b payoff rows are 

1 . . . fl j-2 J-3 * * . g1 g2 

g2 
. . . -u 1 1 ... 1 0 

b . . . 
--v --v Y *** 

where y is --Y or 1. Then B,E(b, T2)68,E(g2, T2)-(LJ+1h72+qn+z= 

-(V+~)G,_~-F,+~=-(~+~~~(~+~~G,_~-G,~-~(~+~~F,-F,-~~= 
[1 - (V + 1j2(y2 + 2v))F,_, + (V + 1Xv2 + 2~ - l)F, = K,(Y), say. Now 
K2(Y) = - 2Y3 - 5v2 - Y + 1 < 0 for Y > pi. For n > 2 and v > v,,_~, we will 

show that 

(i) K,(v) < - H,(v), so that K,(Y) < 0 for v > p”_i, and 
(ii) K,(v) < 0 for v in (r~_~,v~_~). 

It will follow, by Lemma 4, that K,(v) < 0 for v > Y, _a. 
To see (i) note first that (V + 1j2(v2 +2v)- 1 > (V + lXv2 +2v)- 1 > 

(V +1Xv2 +21, -1). Since F,,_, > 0 for Y > v,_~, the F,_, term in the 
definition of K, is less than the F,,_ 1 term in the definition of - H,. 
Moreover, (v+~XV~+~V-~)F,<O<-F, for v>max{-l+fi,v,_,)= 
Y n_2. As for (ii), 1-_(~+1)~(~~+2~)<0<~~+2~-1 when v>v,. For v 

in (v,,_~,Y,-i), F, -C 0 -C Fn_-l, so K, < 0. 
If n = 2 and S has no elements in (g,,Tg,), then the g,-column takes 

the place of the f,-column, y = - V, and B,E(b, TV) Q -(v + lXG, + G,)- 

F3=-(~+1)(~3+3~2+2~)-_(~3+2~2-~-l)<0 when ~>a,. If, fur- 
ther, S has no elements in (g2, Tg,), then E(b, TV) = - u. 

It remains only to prove the uniqueness statement for TV. For this, it 
suffices to show that for all Y > 0, the nullity of G,, is 1. It is easily checked 
that the nullity of G, is 1. Assume that for some n 2 2, fin_ 1 has nullity 1 
but i%?,, has nullity > 1. Then there is a nonzero vector U, in the null space 
of &?,, whose (n + 11th and (2 n + 2)th entries are both zero. Let UL be the 
2 n + 1 by 1 vector obtained from U, by deleting the (n + 11th and (2 n + 21th 

entries. The matrix obtained from @, by deleting the (n + 1)th and (2 n + 2)th 
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rows and columns is Q,, _ r. Since Q,,U,, = 0, we have 

so by the induction hypothesis, we have, without loss of generality, UL = 6, _ r. 
Thus, UT=(t,+l,t “,..., t,,O,t,,t, ,..., t,,O,t,+l), where ti is the ith compo- 
nent of Q,_r. 

Now, Q 

n+1 

O=fi,(n+l)U,= c t,- 2 t,+ut,+1 
r=2 I-=1 

=-t,+(v+l)t,+,=-I?,_,-(v+l)F, 

= -v(v+2)F,_,. 

Since v > 0, it follows that 

F,_,(v) = 0. 

(8.1) 

(8.2) 

Also, 

?I+1 n 

O=ti,(Zn+2)U,=-I, c t,+ c t,--t”,l 
r=2 l-=1 

= -(“+l)t,+, +t,+(1-u) 2 t,=(1-V) k t,, 
r=2 r=2 

where the last equality follows from (8.1). Therefore, since V’ +2v f 0, 

n-2 n-2 

0=(1-v) c G,=(l-V) c F,. (8.3) 
r=O r=O 

From (7.3), (8.2) and (8.3), we have F,_,(v) = 0, which contradicts (8.2). n 

THEOREM 8. If g, = f,, then (U = 0 and) the strategy 7 of Theurem 3 is 

optimal alsofor vn_,Qv<v,. This optimal strategy is unique fw v > u,, _ 1. 
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Proof. As noted after the proof of Theorem 3, that proof remains valid 

for u > u,_i up to the case b > wp,+l. For b > wZn+l = f, we now have 
b>g,, so b>TfI, and - v occurs at least n +2 times in the b-row. 

Then E(b,7)A,~-F,+1-(Y+1)F,_z=-(v+1)F,+F,_,-(v+1)F,_z 
= -(v2 +2v)F,_, < 0 where A,, is the sum of the entries of V,,. The 
uniqueness argument in the proof of Theorem 3 remains valid for Y > v, _ i. 

W 

THEOREM 9. Suppose that U = 0 and f, -C g,. If 
(a) n=l andg,=h,, or 

(b) n > 1 and g, = g,, 

then the strategy T of Theorem 3, with W replaced by W” = 

{e 2>“‘, e,+,,f, ,..., fn,gl), is optimal fw v,_,<v<v,. For v,_~<v<v, 
this optimal strategy is unique. 

Proof. Denote the modified strategy by P. Rename the elements of 
W” as follows. For i = 1,. . . , n, ep = ei+ 1 and fi?, = fi, f,” = g,. Also define 

g; = (Tf,“). Th en the elements of W” = {ey , ei,. . . , e”,, f,“, . . . , f,“) are re- 
lated to one another exactly as Ie,, es,. . . , e,, fo,. . . , f,} are, namely f;:” = 

(Tep,,). That g, = h, in (a), or g, = g, in (b), means that gp = f,“. The set 
corresponding to U in Section 6 is U” = (c E S : e”,+ 1 < c Q g’; / T} = 0, and 
the proof of Theorem 8 shows that E(b,P ) Q 0 for all b > ey We next show 
that E( e,, TO ) < 0. The e, and e2 payoff rows are as follows: 

el 

e2 

Fn-, Fn-2 Fn 
el e2 e3 a-- e,+, fi f2 **= gl 

0 -1 -1 . . . -1 v . . . u 
1 0 -1 . . . -1 -1” v . . . v 

Then [E(e,,r”)- E(e,,#‘)]A,= - F,_,+(v+l)F,= F,+l<O. If b<e, 

or e, <b < e2, familiar arguments show that E(b, TO ) < E(e,, TO ) or 

E(b, TO > Q E(e,, TO ), respectively. The uniqueness for Y,, _ 1 < Y < v, fohows 
as in the proof of Theorem 8. n 

9. CONCLUDING REMARKS 

The methods used to find the solutions described above will yield 
solutions for further values of V. The condition Y > ZJ, corresponds to the 
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polynomial conditions F,(V) > 0, k = O,l,. ..,n + 1, but as v decreases a 
plethora of additional polynomial conditions enter the picture, and we do not 
know of a reasonably concise way to describe the solutions in general for all 
lJ > 0. 

It seems likely that there are always solutions of finite type. In [6] it is 
shown that if c = min S, then for v > 1 every pure strategy 2 T2c is 
dominated. Perhaps it is realistic to try to obtain, as a function of V, a similar 
upper bound for the essential set for values of Y in (0, 1). 

APPENDIX 

Theorem 10 below gives explicit optimal strategies for the game (S,T,v) 
for all v > 0, where S =(Tk/’ :k = 0, I,2 3 _ ] ) )... . 

For r > 0, define the polynomials A,(v), B,(v) recursively by 

A,=l, A,=l, A,+,=(v+2)A,+,-(v+l)‘A, 

and 

B,=O, B,=v, B,+z=(v+2)B,+1-(v+1)2B,. 

For m 2 1, 1~ r < 2m + 1, define polynomials C,,“,(V) by 

c r,m =V -lWm+l-k (r=2k, l<k<m), 

c r,m = AkAm-k (r=2k+l, O<k<m) 

Define cy, for r > 1 by 

2tan2( &)-2+2[I+tan’( &)]“2 

(Y= r n- 
3-tan2 - 

( 1 2r+l 

(10.1) 

(10.2) 

(10.3) 

(10.4) 

(10.5) 

Observe that 03=01>02>czs> a.1 >O and a,.+0 as r+a. Thus a,,,+, 
<V<CX, for some m > 1. For this m, let T denote the strategy which 
assigns probabilities to 1, T ‘12, T, T312,. . , T” in proportion to C,,,(v), 

C,,,(v) ,..., C2m+i,m(v). It can be shown that when v < (Ye, C,,,(v) > 0 for 
each r (1~ r < 2m + l), so T is well defined for any v > 0. 
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THEOREM 10. For (Y,,,+~ < v < cr,, r is an optimal strategy fw the game 

(S,T,v). If(Y,+l<Y<(Y,, then r is in fact the unique optimal strategy. 

EXAMPLES. If cr,=(&-1)/2<v< m, then the unique optimal strat- 
egy is to choose 1,T iI2 T with probabilities in proportion to 1, Y, 1. This is 
consistent with Theorem 3. If cys A 0.24698 < v < (6 - 1)/2 = cr2 G 0.618, 

then the unique optimal strategy is to choose 1, T112, T, T 3/2, T 2 with 
probabilities in proportion to 1- v - v2, v2 +2v, 1, us +2v, 1 - v - v2. This 
is consistent with Theorem 6(b). For the “boundary value” v = (6 - I)/2, 
one optimal strategy is to choose 1, T 1/2 T with probabilities in proportion to 
1, v, 1, while another is to choose T l/2 ‘T, T3j2 with probabilities in propor- , 
tion to 1 + v, 1,1-t v. Any convex linear combination of these two strategies is 
also optimal. 
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