Silverman's Game on Discrete Sets

Ronald J. Evans
Department of Mathematics
University of California at San Diego
La Jolla, California 92093
and
Gerald A. Heuer
Department of Mathematics and Computer Science
Concordia College
Moorhead, Minnesota 56562

Submitted by Richard A. Brualdi

Abstract

In a symmetric Silverman game each of the two players chooses a number from a set $S \subset(0, \infty)$. The player with the larger number wins 1 , unless the larger is at least T times as large as the other, in which case he loses ν. Such games are investigated for discrete S, for $T>1$ and $\nu>0$. Except for ν too near zero, where there is a proliferation of cases, explicit solutions are obtained. These are of finite type and, except at certain boundary cases, unique.

1. INTRODUCTION

The symmetric Silverman game (S, T, ν) is defined as follows. Let S be a set of positive real numbers, and let $T>1, \nu>0$. Each of two players independently selects an element of S. The player with the larger number wins 1 from his opponent, unless his number is at least T times as large as the other, in which case he must pay the opponent ν. Equal numbers draw. The parameter T is called the threshold, and ν is called the penalty. A version of this game on a special discrete set S (see the Appendix) is described in [3, p. 212]. David Silverman [10] suggested analyzing the game on general sets S. The case where S is an open interval was examined by

Evans [1], who showed that optimal strategies exist (and gave them) only for certain isolated values of ν, and then only when the interval is sufficiently large. An analogous family of games has been examined by Heuer [5].

The nonsymmetric version, where player I chooses from S_{1} and player II from S_{2}, has been investigated by Heuer [4] and Heuer and Rieder [7]. Solutions are obtained for all disjoint discrete sets S_{1} and S_{2} for all T when $\nu \geqslant 1$, with partial results in other cases. In [6], Heuer shows that for $\nu \geqslant 1$, Silverman games may be reduced to games on initial segments of the strategy sets, and therefore to finite games when the strategy sets are discrete.

In the present paper we take S to be a discrete set: $S=\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$, where $0<c_{1}<c_{2}<\cdots$, and S is either finite or unbounded. For positive integers n, let $\nu_{n}=2 \cos [\pi /(2 n+3)]-1$, and note that $0<\nu_{n-1}<\nu_{n}<1$ and $\lim _{n \rightarrow \infty} \nu_{n}=1$. The pair (S, T) determines a certain positive integer n, defined in Section 4, which we call the degree of (S, T). In Sections 2-5 we obtain the unique optimal strategy for $\nu>\nu_{n}$; see Theorem 3, our main result. In particular, this gives the unique optimal strategy when $\nu \geqslant 1$.

In Sections 6-8, we obtain the unique optimal strategy for $\nu_{n-1}<\nu<\nu_{n}$ when $n>1$; see Theorems 5-9. These results are considerably more complicated than Theorem 3, because while for $\nu>\nu_{n}$ there is only a single case, for $\nu_{n-1}<\nu<\nu_{n}$ there are four different cases, each with its own type of solution. Under certain conditions we show these solutions remain valid in an interval extending below ν_{n-1}, sometimes as far as ν_{n-2}. Since $\nu_{0}=0$, this provides complete solutions for all $\nu>0$ in some special cases where $n \leqslant 2$. As ν decreases further, the cases seem to proliferate, and there appears to be little hope of describing detailed solutions for all $\nu>0$ in general. However, for some interesting discrete sets S we can give explicit solutions for all $\nu>0$. This is done in the Appendix for $S=\left\{T^{k / 2}: k=0,1,2,3, \ldots\right\}$.

2. THE OPTIMAL PROPORTION VECTOR V_{n}

Define the sequence of polynomials $F_{n}(x)$ with integer coefficients by

$$
\begin{align*}
F_{-1}(x)= & F_{0}(x)=1, \tag{2.1}\\
& F_{n}(x)=(x+1) F_{n-1}(x)-F_{n-2}(x) \quad \text { for } \quad n \geqslant 1 .
\end{align*}
$$

Thus $F_{1}(x)=x, F_{2}(x)=x^{2}+x-1, F_{3}(x)=x^{3}+2 x^{2}-x-1$, etc. (These polynomials are related to the Brewer polynomials $V_{k}(x, 1)$ [2, p. 318] by
$V_{k}(x+1,1)=F_{k}(x)+F_{k-1}(x)$.) By standard difference equation methods (e.g. [8, p. 121]) one obtains

$$
F_{n}(x)=(x+3)^{-1}\left(y^{n+1}+y^{-n-1}+y^{n}+y^{-n}\right)
$$

where

$$
y=\frac{x+1}{2}+\frac{\left(x^{2}+2 x-3\right)^{1 / 2}}{2}
$$

We now show that for each n,

$$
\begin{equation*}
F_{n}(x)>0 \quad \text { when } \quad x>\nu_{n-1}=2 \cos \frac{\pi}{2 n+1}-1 \tag{2.2}
\end{equation*}
$$

If $x \geqslant 1$, then $y \geqslant 1$ and $F_{n}(x)>0$. If $-3<x<1$, then y is nonreal, and $F_{n}(x)=0$ if and only if $y^{2 n+1}=-1$, i.e., $(x+1) / 2=\operatorname{Re} y \in$ $\{\cos [h \pi /(2 n+1)]: h=1,3, \ldots, 2 n-1\}$. Thus for $x \geqslant 0, F_{n}(x)=0$ if and only if $x \in\{2 \cos [h \pi /(2 n+1)]-1: h=1,3, \ldots, 2 n-1\}$ and $h /(2 n+1) \leqslant \frac{1}{3}$. The largest real zero of $F_{n}(x)$ is ν_{n-1}, and (2.2) follows.

For $n \geqslant 1$ and $\nu>0$, define the $2 n+1$ by 1 column vector $V_{n}=V_{n}(\nu)$ by

$$
V_{n}^{T}= \begin{cases}\left(F_{n-1}, F_{n-3}, \ldots, F_{0} ; F_{1}, F_{3}, \ldots, F_{n-2} ; F_{n} ;\right. & \\ \left.F_{n-2}, \ldots, F_{3}, F_{1} ; F_{0}, \ldots, F_{n-3}, F_{n-1}\right) & \text { if } n \text { is odd } \\ \left(F_{n-1}, F_{n-3}, \ldots, F_{1} ; F_{0}, F_{2}, \ldots, F_{n-2} ;\right. & \\ \left.F_{n} ; F_{n-2}, \ldots, F_{2}, F_{0} ; F_{1}, \ldots, F_{n-3}, F_{n-1}\right) & \text { if } n \text { is even }\end{cases}
$$

where $F_{i}=F_{i}(\nu)$. For example, $V_{1}^{T}=\left(F_{0}, F_{1}, F_{0}\right)=(1, \nu, 1), V_{2}^{T}=\left(F_{1}, F_{0}, F_{2}\right.$, $\left.F_{0}, F_{1}\right)=\left(\nu, 1, \nu^{2}+\nu-1,1, \nu\right)$, and $\quad V_{5}^{T}=\left(F_{4}, F_{2}, F_{0}, F_{1}, F_{3}, F_{5}, F_{3}\right.$, $F_{1}, F_{0}, F_{2}, F_{4}$). Note that V_{n} is symmetric about its middle entry F_{n}, and if $\nu>\nu_{n-1}$, all entries of V_{n} are positive.

3. THE PAYOFF MATRIX M_{n}

For $n \geqslant 1$, let M_{n} be the $2 n+1$ by $2 n+1$ skew-symmetric (Toeplitz) matrix for which each entry on the first n subdiagonals below the main
diagonal is 1 and each of the remaining entries below is $-\nu$. For example,

$$
M_{3}=\left(\begin{array}{rrrrrrr}
0 & -1 & -1 & -1 & \nu & \nu & \nu \\
1 & 0 & -1 & -1 & -1 & \nu & \nu \\
1 & 1 & 0 & -1 & -1 & -1 & \nu \\
1 & 1 & 1 & 0 & -1 & -1 & -1 \\
-\nu & 1 & 1 & 1 & 0 & -1 & -1 \\
-\nu & -\nu & 1 & 1 & 1 & 0 & -1 \\
-\nu & -\nu & -\nu & 1 & 1 & 1 & 0
\end{array}\right) .
$$

Let $M_{n}(i)$ denote the i th row vector of M_{n}.

Lemma 1. For all real ν, the null space of M_{n} over the reals is the set of real multiples of V_{n}. Thus, M_{n} has rank $2 n$.

Proof. We first show that V_{n} is in the null space of M_{n} by showing that

$$
\begin{equation*}
M_{n}(i) V_{n}=0 \quad \text { for } \quad 1 \leqslant i \leqslant 2 n+1 \tag{3.1}
\end{equation*}
$$

Since $M_{n}(n+1)=(1, \ldots, 1,0,-1, \ldots,-1)$, where 1 and -1 each occur n times, (3.1) holds for $i=n+1$. For $l \leqslant i \leqslant n$, the vector $M_{n}(i+1)-M_{n}(i)$ has exactly three nonzero entries, and its product with V_{n} is either $F_{j}(\nu)+$ $F_{j+2}(\nu)-(\nu+1) F_{j+1}(\nu)$ for some nonnegative j depending on i, or $F_{0}(\nu)+$ $F_{1}(\nu)-(\nu+1) F_{0}(\nu)$. In either case, $\left[M_{n}(i+1)-M_{n}(i)\right] V_{n}=0$ by (2.1), so we have the cases $1 \leqslant i \leqslant n+1$ of (3.1). For $1 \leqslant i \leqslant n$, reversing the order of the entries in $M_{n}(i)$ yields $-M_{n}(2 n+2-i)$, and the remaining cases of (3.1) follow.

It remains to prove that M_{n} has nullity 1 . This is easily checked for $n=1$. Let $n>1$, and assume as an induction hypothesis that M_{n-1} has nullity 1. Assume for the purpose of contradiction that for some $\nu \geqslant 0$ the nullity of M_{n} exceeds 1 . Then since M_{n} has even rank [9 , Theorem 21.1, p. 151], there are at least three linearly independent vectors in the null space of M_{n}, so there is a nonzero vector U_{n} in this null space whose middle and last entries are both 0 . Let U_{n}^{\prime} be the $2 n-1$ by 1 vector obtained from U_{n} by deleting the middle and last entries. Let M_{n}^{\prime} be the $2 n-1$ by $2 n-1$ matrix obtained from M_{n} by deleting the middle and last rows and columns. Since $M_{n} U_{n}=0$, we have $M_{n}^{\prime} U_{n}^{\prime}=0$. It is easy to see that $M_{n}^{\prime}=M_{n-1}$, and thus U_{n}^{\prime} is in the null space of M_{n-1}. Since $M_{n-1} V_{n-1}=0$, the induction hypothesis implies that U_{n}^{\prime} is a real multiple of V_{n-1}, and without loss of generality we assume that $U_{n}^{\prime}=V_{n-1}$. Thus $U_{n}^{T}=(-, 0,-, 0)$, where the first blank is filled with the first n entries of V_{n-1} and the second with the remaining $n-1$
entries of V_{n-1}. Since $M_{n} U_{n}=0$, we have $M_{n}(n+1) U_{n}=0$, which implies that

$$
\begin{equation*}
F_{n-1}(\nu)=0 \tag{3.2}
\end{equation*}
$$

In particular, $\nu<1$. From $M_{n}(2 n+1) U_{n}=0$ it follows that $(\nu-1) \sum_{r=0}^{n-2} F_{r}(\nu)=$ 0 , and therefore

$$
\begin{equation*}
\sum_{r=0}^{n-2} F_{r}(\nu)=0 \tag{3.3}
\end{equation*}
$$

From (2.1) we have $\sum_{r=1}^{n-1} F_{r}(\nu)=(\nu+1) \sum_{r=0}^{n-2} F_{r}(\nu)-\sum_{r=-1}^{n-3} F_{r}(\nu)$, which in view of (3.2) and (3.3) reduces to $-F_{0}(\nu)=-F_{-1}(\nu)+F_{n-2}(\nu)$. Therefore $F_{n-2}(\nu)=0$, which contradicts (3.2).

4. THE OPTIMAL SET W

For $x>c_{1}$, let $\langle x\rangle$ denote the largest element of S which is less than x. Let m be the integer such that $c_{m}=\left\langle T c_{1}\right\rangle$, and define $d_{j}=\left\langle T c_{j+1}\right\rangle$ for $0 \leqslant j \leqslant m-1$. Let $I=\left\{j: 1 \leqslant j \leqslant m-1\right.$ and $\left.d_{j-1}<d_{j}\right\}, E=\left\{c_{j}: j \in I\right\} \cup$ $\left\{c_{m}\right\}$, and $F=\left\{d_{j}: j \in I\right\}$. Without loss of generality, I is nonempty; otherwise the optimal strategy is simply to select c_{m}. The integer $n=|I|$ is determined by S and T, and will be called $\operatorname{deg}(S, T)$, the degree of (S, T). Let $e_{1}<e_{2}<\cdots<e_{n+1}=c_{m}$ be the elements of E, and $f_{1}<f_{2}<\cdots<f_{n}$ the elements of F. Thus, if $i_{1}<\cdots<i_{n}$ are the elements of I, then $e_{1}=c_{i_{1}}, \ldots, e_{n}=c_{i_{n}}$ and $f_{1}=d_{i_{1}}, \ldots, f_{n}=d_{i_{n}}$. Let $e_{0}=0, f_{0}=c_{m}$. Note that $f_{0}<f_{1}$. One sees then that for $i=0,1, \ldots, n$,

$$
\begin{equation*}
f_{i}=\left\langle T e_{i+1}\right\rangle \tag{4.1}
\end{equation*}
$$

and more generally, that

$$
\begin{equation*}
f_{i}=\left\langle T c_{r}\right\rangle \quad \text { for } \quad e_{i}<c_{r} \leqslant e_{i+1} \tag{4.2}
\end{equation*}
$$

Let $W=E \cup F$. Then W has $k=2 n+1$ elements, which we denote by $w_{1}<w_{2}<\cdots<w_{k}$. Also write $w_{0}=c_{0}=0$. Observe that W is determined by S and T, independent of ν. We shall see that W is the optimal, or essential, subset of S for this T in the sense that optimal play in the

Silverman game (S, T, ν) with $\nu>\nu_{n}$ assigns positive probabilities to precisely the elements of W.

Lemma 2. The payoff matrix for the row player in the Silverman game (W, T, ν) is M_{n}.

Proof. The element in the i th row and j th column of the payoff matrix is

$$
\begin{array}{lll}
\nu & \text { if } & w_{j} \geqslant T w_{i} \\
-1 & \text { if } & w_{i}<w_{j}<T w_{i} \\
0 & \text { if } & i=j \\
1 & \text { if } & w_{j}<w_{i}<T w_{j} \\
-\nu & \text { if } & w_{i} \geqslant T w_{j}
\end{array}
$$

It is straightforward then to verify, using (4.1) and the definitions preceding it, that the payoff matrix is precisely M_{n}.

5. THE OPTIMAL STRATEGY FOR $\nu>\nu_{n}$

Write the vector V_{n} of Section 2 as $V_{n}^{T}=\left(v_{1}, \ldots, v_{k}\right)$, and let τ be the mixed strategy which assigns probability $v_{i} /\left(v_{1}+\cdots+v_{k}\right)$ to $w_{i}, l \leqslant i \leqslant k$. [These components v_{i} are positive for $\nu>\nu_{n-1}$ by (2.2).] We are now in a position to prove the main theorem for $\nu>\nu_{n}$.

Theorem 3. Let $\nu>\nu_{n}=2 \cos [\pi /(2 n+3)]-1$. Then τ is the unique optimal strategy for the Silverman game (S, T, ν).

Proof. For $b \in S$, denote by $E(b, \tau)$ the expected payoff to player I (the row player) using the pure strategy b against player II's strategy τ. By symmetry of the game, the game value, if it exists, must be 0 , so to prove the optimality of τ it suffices to show that for every b in $S, E(b, \tau) \leqslant 0$. If $b \in W$, it follows from Lemmas 1 and 2 that $E(b, \tau)=0$.

Suppose $w_{i}<b<w_{i+1}$ for some $i, 0 \leqslant i \leqslant n$. For some $r \geqslant 0$, we have $c_{r}=e_{i}=w_{i}<b$, so $c_{r+1} \leqslant b$, since $b \in S$. Then from (4.2), $w_{n+1+i}=f_{i}=$
$\left\langle T e_{i+1}\right\rangle=\left\langle T c_{r+1}\right\rangle<T b$. If we insert a b-row into the payoff matrix, it looks like this:

	\cdots	w_{i+1}	\cdots	w_{n+i+1}	\cdots
b	\cdots	-1	\cdots	-1	\cdots
w_{i+1}	\cdots	0	\cdots	-1	\cdots

The entries in the b-row and the w_{i+1}-row agree except in the w_{i+1}-column. Thus $E(b, \tau)<E\left(w_{i+1}, \tau\right)=0$.

Suppose next that $w_{i}<b<w_{i+1}$ for some i in the range $n+1 \leqslant i \leqslant 2 n$. From (4.1) we have $w_{2 n+1}=f_{n}<T e_{n+1}<T b$. Also, if $i=n+j$ we have $b>w_{n+j}=f_{j-1}=\left\langle T e_{j}\right\rangle$, so $b \geqslant T e_{j}=T w_{j}$. Thus the b-row and the $w_{n+j+1^{-}}$ row in the payoff matrix are

The entries in the b-row and the $w_{n+j+1^{-r o w}}$ agree except in the $w_{n+j+1^{-}}$ column. Again $E(b, \tau)<E\left(w_{n+j+1}, \tau\right)=0$.

Finally, if $b>w_{2 n+1}$, the above argument showing that $b \geqslant T w_{j}$ now shows that $b \geqslant T w_{n+1}$, so that each of the first $n+1$ entries in the b-row is $-\nu$, and each of the remaining entries in this row is $-\nu$ or l. Letting Y denote the b row vector, we have $Y V_{n} \leqslant-\nu \sum_{j=0}^{n} F_{j}(\nu)+\sum_{j=0}^{n-1} F_{j}(\nu)$, and an easy induction on n shows that the right member of this inequality is $-F_{n+1}(\nu)$. Since $F_{n+1}(\nu)>0$ for $\nu>\nu_{n}$, we have $E(b, \tau)<0$, and τ is optimal.

To prove uniqueness, first note that any optimal strategy σ will select only elements from W, since, as we've just seen, $E(b, \tau)<0$ when $b \notin W$. If $E(b, \sigma)<0$ for some $b \in W$, then $E(\tau, \sigma)<0$, which contradicts the optimality of τ. Thus $E(b, \sigma)=0$ for all $b \in W$. Uniqueness now follows from Lemma 1.

Note that only in the case $b>w_{2 n+1}$ of the proof of Theorem 3 did we use the assumption that $\nu>\nu_{n}$. If S has no elements $>w_{2 n+1}$ [in fact, if S has no elements in the interval ($w_{2 n+1}, T w_{n+2}$); see Theorem 8], the theorem is valid for $\nu>\nu_{n-1}$. In the sequel, we consider games with ν in the interval (ν_{n-2}, ν_{n}).

6. ESSENTIAL PURE STRATEGIES FOR $\nu<\nu_{n}$

The essential sets in Theorems 5-7 below will be obtained by augmenting the set W with two additional elements. Several new definitions are required. With $n=\operatorname{deg}(S, T)$ and W as in Section 4, let $g_{i}=\left\langle T f_{i}\right\rangle, i=1,2$. Here g_{2} is defined only if $n>1$. Let $U=\left\{c \in S: e_{n+1}<c \leqslant g_{1} / T\right\}$, and if $U \neq \varnothing$ let u be the largest element of U. If $U \neq \varnothing$, then $u \leqslant g_{1} / T<f_{1}$, so $e_{n+1}<u<f_{1}$, and also $f_{n}<T e_{n+1}<T u \leqslant g_{1}$, so $f_{n}<g_{1}$. Whether U is empty or not, $f_{n} \leqslant g_{1} \leqslant g_{2}$.

For $k=-1,0,1, \ldots$, let $G_{k}(x)=\left(x^{2}+2 x\right) F_{k}(x)$. Then $G_{0}(x)=x^{2}+2 x$, $G_{1}(x)=x G_{0}(x)$, and for $k>0 G_{k+1}(x)=(x+1) G_{k}(x)-G_{k-1}(x)$.

Lemma 4. Let $I I_{n}(x)=\left(x^{2}+2 x-1\right)(x+1) F_{n-1}(x)+F_{n}(x), n \geqslant 1$. Then there exists a positive zero μ_{n-1} of $H_{n}(x)$ such that $H_{n}(x) \geqslant 0$ for $x \geqslant \mu_{n-1}$, where $\mu_{0} \doteq 0.3247$, and for $n>1, \nu_{n-2}<\mu_{n-1}<\nu_{n-1}$.

Proof. The function $H_{1}(x)=\left(x^{2}+2 x-1\right)(x+1)+x=x^{3}+3 x^{2}+2 x-$ 1 is increasing for $x>0$ and is zero at μ_{0}, so it is positive for $x>\mu_{0}$. For $n>1,\left(x^{2}+2 x-1\right)(x+1) F_{n-1}(x)$ is 0 at ν_{n-2} and at $\sqrt{2}-1$, both of which are less than ν_{n-1}, and is positive for $x>\max \left\{\nu_{n-2}, \sqrt{2}-1\right\}$. Since $F_{n}(x)>0$ for $x>\nu_{n-1}$, we have $H_{n}(x)>0$ for $x \geqslant \nu_{n-1}$, and by continuity, $H_{n}(x)>0$ for all x in some interval $\left(\mu_{n-1}, \infty\right)$, where $\mu_{n-1}<\nu_{n-1}$. Since $H\left(\nu_{n-2}\right)=$ $F_{n}\left(\nu_{n-2}\right)<0, \nu_{n-2}<\mu_{n-1}$.

Following is a short table to illustrate the lemma:

n	$H_{n}(x)$	μ_{n-1}	ν_{n-1}
1	$x^{3}+3 x^{2}+2 x-1$	0.3247	0
2	$x^{4}+3 x^{3}+2 x^{2}-1$	0.5129	0.6180
3	$x^{5}+4 x^{4}+4 x^{3}-x^{2}-3 x$	0.7106	0.8019
4	$x^{6}+5 x^{5}+7 x^{4}-6 x^{2}-3 x+1$	0.8303	0.8794

7. THE CASE $U \neq \varnothing$

Assume $U \neq \varnothing$, and let $W_{1}=W \cup\left\{u, g_{1}\right\}=\left\{e_{1}, e_{2}, \ldots, e_{n+1}\right.$, $\left.u, f_{1}, \ldots, f_{n}, g_{1}\right\}$. With $F_{k}=F_{k}(\nu)$ and $G_{k}=G_{k}(\nu)$, let $Q_{n}=Q_{n}(\nu)$ be the column vector defined by

$$
Q_{n}^{T}=\left(F_{n-2} ; G_{n-2}, G_{n-4}, \ldots, G_{0} ; G_{1}, G_{3}, \ldots, G_{n-1} ;-F_{n+1} ; G_{n-1}, \ldots, F_{n-2}\right)
$$

for n even, and

$$
\left(F_{n-2} ; G_{n-2}, G_{n-4}, \ldots, G_{1} ; G_{0}, G_{2}, \ldots, G_{n-1} ;-F_{n+1} ; G_{n-1}, \ldots, F_{n-2}\right)
$$

for n odd. (In each case the vector has $2 n+3$ components and is symmetric about the middle component, $-F_{n+1}$.) Write $Q_{n}=\left(q_{1}, q_{2}, \cdots, q_{n+1}\right.$, $q_{n+2}, q_{n+1}, \ldots, q_{2}, q_{1}$), and let B_{n} be the sum of the components of Q_{n}. With the help of the paragraph following (2.2), one sees that the components of Q_{n} are positive for all (positive) ν in the range $\nu_{n-2}<\nu<\nu_{n}$. Let τ_{1} denote the strategy which assigns probability q_{i} / B_{n} to the i th element of $W_{1}, 1 \leqslant i \leqslant$ $2 n+3$.

Theorem 5. Suppose that $U \neq \varnothing$. If $n=1$ and $\mu_{0}<\nu<\nu_{1}$, or $n>1$ and $\nu_{n-1}<\nu<\nu_{n}$, then τ_{1} is the unique optimal strategy for the game (S, T, ν). The strategy τ_{1} is no longer optimal for $\nu<\mu_{0}$ when $n=1$, if $S \cap\left(g_{1}, T g_{1}\right) \neq \varnothing$, or for $\nu<\nu_{n-1}$ when $n>1$, if $S \cap\left(f_{n}, T u\right) \neq \varnothing$. However:
(a) Suppose that $n=1$ and $S \cap\left(g_{1}, T g_{1}\right)=\varnothing$. Then τ_{1} is optimal for $0<\nu \leqslant \nu_{1}$.
(b) Suppose that $n=2$ and $S \cap\left(f_{n}, T u\right)=\varnothing$. Then τ_{1} is optimal for $\mu_{1} \leqslant \nu \leqslant \nu_{2}$. Moreover, τ_{1} is optimal for $0.2720 \doteq \alpha \leqslant \nu \leqslant \nu_{2}$ if $S \cap\left(g_{1}, T f_{2}\right)$ $=\varnothing$, and even for $0<\nu \leqslant \nu_{2}$ if $S \cap\left(g_{1}, T g_{1}\right)=\varnothing$, where α is the positive zero of $(x+1)^{2}\left(x^{2}+2 x\right)-1$.
(c) Suppose that $n>2$ and $S \cap\left(f_{n}, T u\right)=\varnothing$. Then τ_{1} is optimal for $\mu_{n-1} \leqslant \nu \leqslant \nu_{n}$, and even for $\nu_{n-2} \leqslant \nu \leqslant \nu_{n}$ if $S \cap\left(g_{1}, T f_{2}\right)=\varnothing$.

Proof. We first show that τ_{1} is optimal for the subgame on W_{1}. From the definitions of u, f_{i}, and g_{i}, the payoff matrix \bar{M}_{n} of this subgame, shown in Table 1, is the $2 n+3$ by $2 n+3$ skew-symmetric matrix which has middle row

$$
\left(\begin{array}{lllllllll}
-\nu & 1 & \cdots & 1 & 0 & -1 & \cdots & -1 & \nu
\end{array}\right)
$$

(with 1 and -1 each occurring n times) and last row

$$
\left(\begin{array}{lllllll}
-\nu & \cdots & -\nu & 1 & \cdots & 1 & 0
\end{array}\right)
$$

(with 1 occurring n times), and which becomes M_{n} when the middle and last rows and columns are deleted.
for n even, and

$$
\left(F_{n-2} ; G_{n-2}, G_{n-4}, \ldots, G_{1} ; G_{0}, G_{2}, \ldots, G_{n-1} ;-F_{n+1} ; G_{n-1}, \ldots, F_{n-2}\right)
$$

for n odd. (In each case the vector has $2 n+3$ components and is symmetric about the middle component, $\left.-F_{n+1}\right)$ Write $Q_{n}=\left(q_{1}, q_{2}, \cdots, q_{n+1}\right.$, $q_{n+2}, q_{n+1}, \ldots, q_{2}, q_{1}$), and let B_{n} be the sum of the components of Q_{n}. With the help of the paragraph following (2.2), one sees that the components of Q_{n} are positive for all (positive) ν in the range $\nu_{n-2}<\nu<\nu_{n}$. Let τ_{1} denote the strategy which assigns probability q_{i} / B_{n} to the i th element of $W_{1}, 1 \leqslant i \leqslant$ $2 n+3$.

Theorem 5. Suppose that $U \neq \varnothing$. If $n=1$ and $\mu_{0}<\nu<\nu_{1}$, or $n>1$ and $\nu_{n-1}<\nu<\nu_{n}$, then τ_{1} is the unique optimal strategy for the game (S, T, ν). The strategy τ_{1} is no longer optimal for $\nu<\mu_{0}$ when $n=1$, if $S \cap\left(g_{1}, T g_{1}\right) \neq \varnothing$, or for $\nu<\nu_{n-1}$ when $n>1$, if $S \cap\left(f_{n}, T u\right) \neq \varnothing$. However:
(a) Suppose that $n=1$ and $S \cap\left(g_{1}, T g_{1}\right)=\varnothing$. Then τ_{1} is optimal for $0<\nu \leqslant \nu_{1}$.
(b) Suppose that $n=2$ and $S \cap\left(f_{n}, T u\right)=\varnothing$. Then τ_{1} is optimal for $\mu_{1} \leqslant \nu \leqslant \nu_{2}$. Moreover, τ_{1} is optimal for $0.2720 \doteq \alpha \leqslant \nu \leqslant \nu_{2}$ if $S \cap\left(g_{1}, T f_{2}\right)$ $=\varnothing$, and even for $0<\nu \leqslant \nu_{2}$ if $S \cap\left(g_{1}, T g_{1}\right)=\varnothing$, where α is the positive zero of $(x+1)^{2}\left(x^{2}+2 x\right)-1$.
(c) Suppose that $n>2$ and $S \cap\left(f_{n}, T u\right)=\varnothing$. Then τ_{1} is optimal for $\mu_{n-1} \leqslant \nu \leqslant \nu_{n}$, and even for $\nu_{n-2} \leqslant \nu \leqslant \nu_{n}$ if $S \cap\left(g_{1}, T f_{2}\right)=\varnothing$.

Proof. We first show that τ_{1} is optimal for the subgame on W_{1}. From the definitions of u, f_{i}, and g_{i}, the payoff matrix \bar{M}_{n} of this subgame, shown in Table 1, is the $2 n+3$ by $2 n+3$ skew-symmetric matrix which has middle row

$$
\left(\begin{array}{lllllllll}
-\nu & 1 & \cdots & 1 & 0 & -1 & \cdots & -1 & \nu
\end{array}\right)
$$

(with 1 and -1 each occurring n times) and last row

$$
\left(\begin{array}{lllllll}
-\nu & \cdots & -\nu & 1 & \cdots & 1 & 0
\end{array}\right)
$$

(with 1 occurring n times), and which becomes M_{n} when the middle and last rows and columns are deleted.
the w-row of the payoff matrix differ only in the w-column, and $E\left(b, \tau_{1}\right)<$ $E\left(w, \tau_{1}\right)=0$.

If $f_{n}<b<g_{1}$ the f_{n} and b rows are

	e_{1}	\cdots	e_{n}	e_{n+1}	u	f_{1}	\cdots	f_{n-1}	f_{n}	g_{1}
f_{n}	$-\nu$	\cdots	$-\nu$	1	1	1	\cdots	1	0	-1
b	$-\nu$	\cdots	$-\nu$	$-\nu$	a	1	\cdots	1	1	-1

where $a=-\nu$ or 1 according as $b \geqslant T u$ or $b<T u$. First suppose that $a=1$, so that $f_{n}<b<T u$. The $E\left(b, \tau_{1}\right) B_{n}=-(\nu+1) q_{n+1}+q_{2}=-(\nu+1) G_{n-1}+$ $G_{n-2}=-G_{n}$, which is $\leqslant 0$ for $\nu_{n-1} \leqslant \nu \leqslant \nu_{n}$ but >0 for (positive) ν immediately below ν_{n-1}. Next suppose that $a=-\nu$, so that $T u \leqslant b<g_{1}$. Then $E\left(b, \tau_{1}\right) B_{n}=-(\nu+1)\left(q_{n+1}+q_{n+2}\right)+q_{2}=-G_{n}-(\nu+1)\left(-F_{n+1}\right)=$ $-\left(\nu^{2}+2 \nu\right) F_{n}+(\nu+1) F_{n+1}=-(\nu+1)^{2} F_{n}+(\nu+1) F_{n+1}+F_{n}=$ $-(\nu+1) F_{n-1}+F_{n}=-F_{n-2}$, which is <0 for all $\left.\nu\right\rangle \nu_{n-2}$ (indeed, for $\nu>\nu_{n-3}$).

Finally, suppose that $b>g_{1}$. First consider the case of $n=1$. Then the g_{1} and b rows are as follows:

	e_{1}	e_{2}	u	f_{1}	g_{1}
g_{1}	$-\nu$	$-\nu$	$-\nu$	1	0
b	$-\nu$	$-\nu$	$-\nu$	$-\nu$	a

where $a=-\nu$ or 1 according as $b \geqslant T g_{1}$ or $g_{1}<b<T g_{1}$. If $a=-\nu$, then $E\left(b, \tau_{1}\right)=-\nu<0$. If $a=1$, then $B_{1} E\left(b, \tau_{1}\right)=-(\nu+1)\left(\nu^{2}+2 \nu\right)+1=$ $-H_{1}(\nu)$, which is <0 for $\nu>\mu_{0}$ (but >0 for ν immediately below μ_{0}). Next, let $n>1$. Then the g_{1} and b rows are as follows:

	e_{1}	\cdots	u	f_{1}	f_{2}	\cdots	f_{n}	g_{1}
g_{1}	$-\nu$	\cdots	$-\nu$	1	1	\cdots	1	0
b	$-\nu$	\cdots	$-\nu$	$-\nu$	a_{1}	\cdots	a_{n-1}	a_{n}

where each a_{i} is $-\nu$ or 1 . If $b \in\left(g_{1}, T f_{2}\right)$, then each a_{i} is 1 , and $E\left(b, \tau_{1}\right) B_{n}=-(\nu+1) q_{n+1}+q_{1}=-(\nu+1) G_{n-1}+F_{n-2}=-(\nu+1)\left(\nu^{2}+\right.$ $2 \nu) F_{n-1}+(\nu+1) F_{n-1}-F_{n}=-H_{n}(\nu)<0$ for $\nu>\mu_{n-1}$. If $b \geqslant T f_{2}$, then $a_{1}=-\nu \quad$ and $E\left(b, \tau_{1}\right) B_{n} \leqslant-(\nu+1)\left(q_{n+1}+q_{n}\right)+q_{1}=$ $-(\nu+1)\left(G_{n-1}+G_{n-3}\right)+F_{n-2} \leqslant-(\nu+1)\left(\nu^{2}+2 \nu\right)\left(F_{n-1}+F_{n-3}\right)+F_{n-2}=[1-$ $\left.(\nu+1)^{2}\left(\nu^{2}+2 \nu\right)\right] F_{n-2}$. Now, $F_{n-2}>0$ for $\nu>\nu_{n-3}$, and $1-(\nu+1)^{2}$ $\left(\nu^{2}+2 \nu\right)<0$ for $\nu>\alpha \doteq 0.2720$. Thus for $b \geqslant T f_{2}, E\left(b, \tau_{1}\right) \leqslant 0$ for all $\nu \geqslant \alpha$
when $n=2$ and for all $\nu \geqslant \nu_{n-2}$ when $n>2$. If $n=2$ and S has no elements in $\left(f_{2}, T u\right) \cup\left(g_{1}, T_{g_{1}}\right)$, then $E\left(b, \tau_{1}\right)=-\nu<0$, so τ_{1} is optimal for the full game as described in the statement of the theorem.

It remains only to prove the uniqueness statement for τ_{1}. For this it suffices to show that for all $\nu>0$, the nullity of \bar{M}_{n} is 1 . Assume that for some $\nu>0$ and $n \geqslant 1$ the nullity of \bar{M}_{n} exceeds 1 . Then since this nullity is odd, there is a nonzero vector U_{n} in the null space of \bar{M}_{n} whose middle and last components are both zero. Let U_{n}^{\prime} be the $2 n+1$ by 1 vector obtained from U_{n} by deleting the middle and last components. The matrix obtained from \bar{M}_{n} by deleting its middle and last rows and columns is M_{n}. Since $\bar{M}_{n} U_{n}=0$, we have $M_{n} U_{n}^{\prime}=0$. By (3.1) and Lemma 1 , we therefore have, without loss of generality, $U_{n}^{\prime}=V_{n}$. Thus $U_{n}^{T}=(-, 0,-, 0)$, where the first blank is filled by the first $n+1$ components of V_{n} and the second by the last n components of V_{n}. We have

$$
\begin{equation*}
F_{n-2}(\nu)=0, \tag{7.2}
\end{equation*}
$$

since

$$
\begin{aligned}
0 & =\bar{M}_{n}(n+2) U_{n}=F_{n}+\sum_{r-0}^{n-2} F_{r}-\nu F_{n-1}-\sum_{r-0}^{n-1} F_{r}=F_{n}-(\nu+1) F_{n-1} \\
& =-F_{n-2}
\end{aligned}
$$

It follows readily from (2.1) that

$$
\begin{equation*}
(1-\nu) \sum_{r=0}^{n-1} F_{r}(\nu)=F_{n-2}(\nu)-\nu F_{n-1}(\nu) . \tag{7.3}
\end{equation*}
$$

By (7.2) and (7.3), $0=\bar{M}_{n}(2 n+3) U_{n}=-\nu \sum_{r=0}^{n} F_{r}+\sum_{r=0}^{n-1} F_{r}=-\nu F_{n}+$ $(1-\nu) \sum_{r=0}^{n-1} F_{r}=-\nu F_{n}-\nu F_{n-1}=-\nu(\nu+2) F_{n-1}$. Since $\nu>0$, we thus have $F_{n-1}(\nu)=0$, which contradicts (7.2).

Remark. If $\nu=0$, it is not true that \bar{M}_{n} always has nullity 1 ; for example, \bar{M}_{3} has nullity 3 .

8. THE CASES WHERE $U=\varnothing$

As remarked in Section 6 , we always have $f_{n} \leqslant g_{1} \leqslant g_{2}$, and when $U=\varnothing$ equality is possible in either place, leading to three cases. When $n=1, g_{2}$ is undefined, and we use $h_{1}=\left\langle T g_{1}\right\rangle$ in place of g_{2}. We begin with the case of strict inequalities. Theorem 6 deals with $n=1$, while Theorem 7 deals with $n>1$.

Theorem 6. Assume that $n=\operatorname{deg}(S, T)=1, U=\varnothing$, and $f_{1}<g_{1}<h_{1}$. Let $\tilde{Q}_{1}^{T}=\left(-F_{2}, G_{0}, F_{-1}, G_{0},-F_{2}\right)$ and $W_{2}=\left(e_{1}, e_{2}, f_{1}, g_{1}, h_{1}\right)$ Let τ_{2} be the strategy which assigns probabilities to W_{2} in proportion to Q_{1}. Then:
(a) For $\mu_{0}<\nu<\nu_{1}, \tau_{2}$ is the unique optimal strategy.
(b) If $S \cap\left(f_{1}, h_{1} / T\right]=\varnothing$, then τ_{2} is optimal for $\rho_{0} \leqslant \nu \leqslant \nu_{1}$, where $\rho_{0} \doteq 0.2470$ is the positive zero of $x^{3}+4 x^{2}+3 x-1$.
(c) If S has no elements in $\left(f_{1}, h_{1} / T\right] \cup\left(h_{1}, T h_{1}\right)$, then τ_{2} is optimal for $0<\nu \leqslant \nu_{1}$.

Proof. We show first that τ_{2} is optimal for the subgame on W_{2}. The matrix \tilde{M}_{1} of this subgame is

	e_{1}	e_{2}	f_{1}	g_{1}	h_{1}
e_{1}	0	-1	ν	ν	ν
e_{2}	1	0	-1	ν	ν
f_{1}	$-\nu$	1	0	-1	ν
g_{1}	$-\nu$	$-\nu$	1	0	-1
h_{1}	$-\nu$	$-\nu$	$-\nu$	1	0

It is easily checked that $\tilde{M}_{1} \tilde{Q}_{1}=0$.
Next we show that τ_{2} is optimal on the full game by showing that $E\left(b, \tau_{2}\right) \leqslant 0$ for every b in S. If $b<e_{2}$, we have $E\left(b, \tau_{2}\right)<0$ as in proof of Theorem 3. If $e_{2}<b<f_{1}$ then $b>g_{1} / T$ because $U=\varnothing$. The payoff rows for b and f_{1} then are

	e_{1}	e_{2}	f_{1}	g_{1}	h_{1}
b	$-\nu$	1	-1	-1	ν
f_{1}	$-\nu$	1	0	-1	ν

so $E\left(b, \tau_{2}\right)<0$. For $f_{1}<b_{1}<g_{1}<b_{2}<h_{1}<b_{3}$ the payoff rows are

	e_{1}	e_{2}	f_{1}	g_{1}	h_{1}
b_{1}	$-\nu$	$-\nu$	1	-1	x
g_{1}	$-\nu$	$-\nu$	1	0	-1
b_{2}	$-\nu$	$-\nu$	$-\nu$	1	-1
h_{1}	$-\nu$	$-\nu$	$-\nu$	1	0
b_{3}	$-\nu$	$-\nu$	$-\nu$	$-\nu$	y

where x is -1 or ν and y is 1 or $-\nu$. If $b_{1} \leqslant h_{1} / T$ then $x=\nu$, and $\left[E\left(b_{1}, \tau_{2}\right)-E\left(g_{1}, \tau_{2}\right)\right] B=-\left(\nu^{2}+\nu\right)+(\nu+1)\left(-\nu^{2}-\nu+1\right)=-\nu^{3}-3 \nu^{2}-$ $2 \nu+1 \leqslant 0$ when $\nu \geqslant \mu_{0}$, where B is the sum of the components of \tilde{Q}_{1}. If $h_{1} / T<b_{1}$ then $x=-1$, and $E\left(b_{1}, \tau_{2}\right)<E\left(g_{1}, \tau_{2}\right)=0$. Also, $E\left(b_{2}, \tau_{2}\right)<$ $E\left(h_{1}, \tau_{2}\right)=0$. If $b_{3}<T h_{1}$ then $y=1$ and $B E\left(b_{3}, \tau_{2}\right)=B E\left(h_{1}, \tau_{2}\right)-$ $(\nu+1)\left(\nu^{2}+2 \nu\right)+\left(-\nu^{2}-\nu+1\right) \leqslant 0$ when $\nu \geqslant \rho_{0}$. If $b_{3} \geqslant T h_{1}$ then $y=$ $-\nu=E\left(b_{3}, \tau_{2}\right)$.

It remains only to prove the uniqueness, and this follows from the fact that \tilde{M}_{1} has nullity 1 for all real ν.

Theorem 7. Assume $n>1, U=\varnothing$, and $f_{n}<g_{1}<g_{2}$. Let $W_{2}=$ $\left(e_{1}, e_{2}, \ldots, e_{n+1}, f_{1}, \ldots, f_{n}, g_{1}, g_{2}\right) . \quad$ Let $\quad \tilde{Q}_{n}^{T}=\left(q_{n+2}, q_{n+1}, \ldots, q_{2}\right.$, $q_{1}, q_{2}, \ldots, q_{n+1}, q_{n+2}$), where q_{i} is the ith component of Q_{n} (defined in Section 7), and let τ_{2} be the strategy which assigns probabilities to W_{2} in proportion to \bar{Q}_{n}. Then:
(a) For $\mu_{n-1}<\nu<\nu_{n}$ and $n>2, \tau_{2}$ is the unique optimal strategy.
(b) If S has no elements in $\left(f_{1}, g_{2} / T\right)$, then for $n=2, \tau_{2}$ is optimal for $\rho_{1} \leqslant \nu \leqslant \nu_{2}$, where $\rho_{1} \doteq 0.3406$ is the positive zero of $2 x^{3}+5 x^{2}+x-1$, and for $n>2, \tau_{2}$ is optimal for $\nu_{n-2} \leqslant \nu \leqslant \nu_{n}$.
(c) For $n=2$, if S has no elements in $\left(f_{1}, g_{2} / T\right) \cup\left(g_{2}, T g_{1}\right)$, then τ_{2} is optimal for $\sigma_{1} \leqslant \nu \leqslant \nu_{2}$, where $\sigma_{1} \doteq 0.2888$ is the positive zero of $x^{4}+5 x^{3}+$ $7 x^{2}+x-1$.
(d) For $n=2$, if S has no elements in $\left(f_{1}, g_{2} / T\right) \cup\left(g_{2}, T g_{2}\right)$, then τ_{2} is optimal for $0=\nu_{0}<\nu<\nu_{2}$.

Proof. We first show that τ_{2} is optimal for the subgame on W_{2}. The matrix \bar{M}_{n} of this subgame is the $2 n+3$ by $2 n+3$ skew-symmetric matrix with each entry in the first n subdiagonals equal to 1 and each entry below this equal to $-\nu$. It is easily checked (cf. the proof of Lemma 1) that $\tilde{M}_{n} \tilde{Q}_{n}=0$.

Next we show that τ_{2} is optimal on the full game. If $b<e_{n+1}$, we have $E\left(b, \tau_{2}\right)<0$ as in the proof of Theorem 3. If $e_{n+1}<b<f_{1}$ then $b>g_{1} / T$ because $U=\varnothing$, and one finds $E\left(b, \tau_{2}\right)<E\left(f_{1}, \tau_{2}\right)=0$. If $f_{1}<b<f_{2}$, the payoff rows for f_{1}, b, and f_{2} are

	e_{1}	e_{2}	e_{3}	\cdots	e_{n+1}	f_{1}	f_{2}	f_{3}	\cdots	g_{1}	g_{2}
f_{1}	$-\nu$	1	1	\cdots	1	0	-1	-1	\cdots	-1	ν
b	$-\nu$	$-\nu$	1	\cdots	1	1	-1	-1	\cdots	-1	x
f_{2}	$-\nu$	$-\nu$	1	\cdots	1	1	0	-1	\cdots	-1	-1

where x is -1 or ν. Let \tilde{B}_{n} be the sum of the components of \tilde{Q}_{n}. If $b \leqslant g_{2} / T$, then $x=\nu$ and $\tilde{B}_{n} E\left(b, \tau_{2}\right)=\tilde{B}_{n} E\left(f_{1}, \tau_{2}\right)-(\nu+1) q_{n+1}+$ $q_{1}=(-\nu+1) G_{n-1}+F_{n-2}=-(\nu+1)\left(\nu^{2}+2 \nu\right) F_{n-1}+(\nu+1) F_{n-1}-F_{n}=$ $-H_{n}(\nu) \leqslant 0$ for $\nu \geqslant \mu_{n-1}$. If S has no elements in $\left(f_{1}, g_{2} / T\right.$], then $x=-1$ and $E\left(b, \tau_{2}\right)<E\left(f_{2}, \tau_{2}\right)=0$.

Suppose $f_{i}<b<f_{i+1}$ for some $i, 2 \leqslant i \leqslant n-1$. Then $E\left(b, \tau_{2}\right)<$ $E\left(f_{i+1}, \tau_{2}\right)=0$, as one sees by comparing the b and f_{i+1} payoff rows, and for $f_{n}<b<g_{1}$ as for $g_{1}<b<g_{2}$, the situation is similar. Finally, suppose that $b>g_{2}$. The g_{2} and b payoff rows are

	\cdots	f_{1}	f_{2}	f_{3}	\cdots	g_{1}	g_{2}
g_{2}	\cdots	$-\nu$	1	1	\cdots	1	0
b	\cdots	$-\nu$	$-\nu$	y	\cdots		

where y is $-\nu$ or 1 . Then $\tilde{B}_{n} E\left(b, \tau_{2}\right) \leqslant \tilde{B}_{n} E\left(g_{2}, \tau_{2}\right)-(\nu+1) q_{2}+q_{n+2}=$ $-(\nu+1) G_{n-2}-F_{n+1}=-(\nu+1)\left[(\nu+1) G_{n-1}-G_{n}\right]-\left[(\nu+1) F_{n}-F_{n-1}\right]=$ $\left[1-(\nu+1)^{2}\left(\nu^{2}+2 \nu\right)\right] F_{n-1}+(\nu+1)\left(\nu^{2}+2 \nu-1\right) F_{n}=K_{n}(\nu)$, say. Now $K_{2}(\nu)=-2 \nu^{3}-5 \nu^{2}-\nu+1<0$ for $\nu>\rho_{1}$. For $n>2$ and $\nu>\nu_{n-2}$, we will show that
(i) $K_{n}(\nu)<-H_{\mathrm{n}}(\nu)$, so that $K_{n}(\nu)<0$ for $\nu \geqslant \mu_{n-1}$, and
(ii) $K_{n}(\nu)<0$ for ν in $\left(\nu_{n-2}, \nu_{n-1}\right)$.

It will follow, by Lemma 4, that $K_{n}(\nu)<0$ for $\nu>\nu_{n-2}$.
To see (i) note first that $(\nu+1)^{2}\left(\nu^{2}+2 \nu\right)-1>(\nu+1)\left(\nu^{2}+2 \nu\right)-1>$ $(\nu+1)\left(\nu^{2}+2 \nu-1\right)$. Since $F_{n-1}>0$ for $\nu>\nu_{n-2}$, the F_{n-1} term in the definition of K_{n} is less than the F_{n-1} term in the definition of $-H_{n}$. Moreover, $(\nu+1)\left(\nu^{2}+2 \nu-1\right) F_{n}<0<-F_{n}$ for $\nu>\max \left\{-1+\sqrt{2}, \nu_{n-2}\right\} \stackrel{n}{=}$ ν_{n-2}. As for (ii), $1-(\nu+1)^{2}\left(\nu^{2}+2 \nu\right)<0<\nu^{2}+2 \nu-1$ when $\nu>\nu_{1}$. For ν in $\left(\nu_{n-2}, \nu_{n-1}\right), F_{n}<0<F_{n-1}$, so $K_{n}<0$.

If $n=2$ and S has no elements in $\left(g_{2}, T g_{1}\right)$, then the g_{1}-column takes the place of the f_{3}-column, $y=-\nu$, and $B_{2} E\left(b, \tau_{2}\right) \leqslant-(\nu+1)\left(G_{0}+G_{1}\right)-$ $F_{3}=-(\nu+1)\left(\nu^{3}+3 \nu^{2}+2 \nu\right)-\left(\nu^{3}+2 \nu^{2}-\nu-1\right)<0$ when $\nu>\sigma_{1}$. If, further, S has no elements in $\left(g_{2}, T g_{2}\right)$, then $E\left(b, \tau_{2}\right)=-\nu$.

It remains only to prove the uniqueness statement for τ_{2}. For this, it suffices to show that for all $\nu>0$, the nullity of \tilde{M}_{n} is 1 . It is easily checked that the nullity of \tilde{M}_{1} is 1 . Assume that for some $n \geqslant 2, \tilde{M}_{n-1}$ has nullity 1 but \bar{M}_{n} has nullity >1. Then there is a nonzero vector U_{n} in the null space of \tilde{M}_{n}^{n} whose $(n+1)$ th and $(2 n+2)$ th entries are both zero. Let U_{n}^{\prime} be the $2 n+1$ by 1 vector obtained from U_{n} by deleting the ($n+1$)th and $(2 n+2)$ th entries. The matrix obtained from \tilde{M}_{n} by deleting the $(n+1)$ th and $(2 n+2)$ th
rows and columns is \tilde{M}_{n-1}. Since $\tilde{M}_{n} U_{n}=0$, we have

$$
\tilde{M}_{n-1} U_{n}^{\prime}=0=\tilde{M}_{n-1} \tilde{Q}_{n-1},
$$

so by the induction hypothesis, we have, without loss of generality, $U_{n}^{\prime}=\tilde{Q}_{n-1}$. Thus, $U_{n}^{T}=\left(t_{n+1}, t_{n}, \ldots, t_{2}, 0, t_{1}, t_{2}, \ldots, t_{n}, 0, t_{n+1}\right)$, where t_{i} is the i th component of Q_{n-1}.

Now,

7

$$
\begin{align*}
0 & =\tilde{M}_{n}(n+1) U_{n}=\sum_{r=2}^{n 11} t_{r}-\sum_{r-1}^{n} t_{r}+\nu t_{n+1} \\
& =-t_{1}+(\nu+1) t_{n+1}=-F_{n-3}-(\nu+1) F_{n} \\
& =-\nu(\nu+2) F_{n-1} . \tag{8.1}
\end{align*}
$$

Since $\nu>0$, it follows that

$$
\begin{equation*}
F_{n-1}(\nu)=0 . \tag{8.2}
\end{equation*}
$$

Also,

$$
\begin{aligned}
0 & =\tilde{M}_{n}(2 n+2) U_{n}=-\nu \sum_{r=2}^{n+1} t_{r}+\sum_{r=1}^{n} t_{r}-t_{n+1} \\
& =-(\nu+1) t_{n+1}+t_{1}+(1-\nu) \sum_{r=2}^{n} t_{r}=(1-\nu) \sum_{r=2}^{n} t_{r},
\end{aligned}
$$

where the last equality follows from (8.1). Therefore, since $\nu^{2}+2 \nu \neq 0$,

$$
\begin{equation*}
0=(1-\nu) \sum_{r=0}^{n-2} G_{r}=(1-\nu) \sum_{r=0}^{n-2} F_{r} . \tag{8.3}
\end{equation*}
$$

From (7.3), (8.2) and (8.3), we have $F_{n-2}(\nu)=0$, which contradicts (8.2).

Theorem 8. If $g_{1}=f_{n}$, then $(U=\varnothing$ and) the strategy τ of Theorem 3 is optimal also for $\nu_{n-1} \leqslant \nu \leqslant \nu_{n}$. This optimal strategy is unique for $\nu>\nu_{n-1}$.

Proof. As noted after the proof of Theorem 3, that proof remains valid for $\nu>\nu_{n-1}$ up to the case $b>w_{2 n+1}$. For $b>w_{2 n+1}=f_{n}$ we now have $b>g_{1}$, so $b \geqslant T f_{1}$, and $-\nu$ occurs at least $n+2$ times in the b-row. Then $E(b, \tau) A_{n} \leqslant-F_{n+1}-(\nu+1) F_{n-2}=-(\nu+1) F_{n}+F_{n-1}-(\nu+1) F_{n-2}$ $=-\left(\nu^{2}+2 \nu\right) F_{n-1}<0$ where A_{n} is the sum of the entries of V_{n}. The uniqueness argument in the proof of Theorem 3 remains valid for $\nu>\nu_{n-1}$.

Theorem 9. Suppose that $U=\varnothing$ and $f_{n}<g_{1}$. If
(a) $n=1$ and $g_{1}=h_{1}$, or
(b) $n>1$ and $g_{1}=g_{2}$,
then the strategy τ of Theorem 3, with W replaced by $W^{\circ}=$ $\left\{e_{2}, \ldots, e_{n+1}, f_{1}, \ldots, f_{n}, g_{1}\right\}$, is optimal for $\nu_{n-1} \leqslant \nu \leqslant \nu_{n}$. For $\nu_{n-1}<\nu<\nu_{n}$ this optimal strategy is unique.

Proof. Denote the modified strategy by τ°. Rename the elements of W° as follows. For $i=1, \ldots, n, e_{i}^{\circ}=e_{i+1}$ and $f_{i-1}^{\circ}=f_{i}, f_{n}^{\circ}=g_{1}$. Also define $g_{1}^{\circ}=\left\langle T f_{1}^{\circ}\right\rangle$. Then the elements of $W^{\circ}=\left\{e_{1}^{\circ}, e_{2}^{\circ}, \ldots, e_{n}^{\circ}, f_{0}^{\circ}, \ldots, f_{n}^{\circ}\right\}$ are related to one another exactly as $\left\{e_{1}, e_{2}, \ldots, e_{n}, f_{0}, \ldots, f_{n}\right\}$ are, namely $f_{i}^{\circ}=$ $\left\langle T e_{i+1}^{\circ}\right\rangle$. That $g_{1}=h_{1}$ in (a), or $g_{1}=g_{2}$ in (b), means that $g_{1}^{\circ}=f_{n}^{\circ}$. The set corresponding to U in Section 6 is $U^{\circ}=\left\{c \in S: e_{n+1}^{\circ}<c \leqslant g_{1}^{\circ} / T\right\}=\varnothing$, and the proof of Theorem 8 shows that $E\left(b, \tau^{\circ}\right) \leqslant 0$ for all $b \geqslant e_{1}^{\circ}$. We next show that $E\left(e_{1}, \tau^{\circ}\right) \leqslant 0$. The e_{1} and e_{2} payoff rows are as follows:

	F_{n-1}				F_{n-2}	F_{n}			
	e_{1}	e_{2}	e_{3}	\cdots	e_{n+1}	f_{1}	f_{2}	\cdots	g_{1}
e_{1}	0	-1	-1	\cdots	-1	ν	ν	\cdots	ν
e_{2}	1	0	-1	\cdots	-1	-1	ν	\cdots	ν

Then $\left[E\left(e_{1}, \tau^{\circ}\right)-E\left(e_{2}, \tau^{\circ}\right)\right] A_{n}=-F_{n-1}+(\nu+1) F_{n}=F_{n+1} \leqslant 0$. If $b<e_{1}$ or $e_{1}<b<e_{2}$, familiar arguments show that $E\left(b, \tau^{\circ}\right) \leqslant E\left(e_{1}, \tau^{\circ}\right)$ or $E\left(b, \tau^{\circ}\right) \leqslant E\left(e_{2}, \tau^{\circ}\right)$, respectively. The uniqueness for $\nu_{n-1}<\nu<\nu_{n}$ follows as in the proof of Theorem 8.

9. CONCLUDING REMARKS

The methods used to find the solutions described above will yield solutions for further values of ν. The condition $\nu>\nu_{n}$ corresponds to the
polynomial conditions $F_{k}(\nu)>0, k=0,1, \ldots, n+1$, but as ν decreases a plethora of additional polynomial conditions enter the picture, and we do not know of a reasonably concise way to describe the solutions in general for all $\nu>0$.

It seems likely that there are always solutions of finite type. In [6] it is shown that if $c=\min S$, then for $\nu \geqslant 1$ every pure strategy $\geqslant T^{2} c$ is dominated. Perhaps it is realistic to try to obtain, as a function of ν, a similar upper bound for the essential set for values of ν in $(0,1)$.

APPENDIX

Theorem 10 below gives explicit optimal strategies for the game (S, T, ν) for all $\nu>0$, where $S=\left\{T^{k / 2}: k=0,1,2,3, \ldots\right]$.

For $r \geqslant 0$, define the polynomials $A_{r}(\nu), B_{r}(\nu)$ recursively by

$$
\begin{equation*}
A_{0}=1, \quad A_{1}=1, \quad A_{r+2}=(\nu+2) A_{r+1}-(\nu+1)^{2} A_{r} \tag{10.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{0}=0, \quad B_{1}=\nu, \quad B_{r+2}=(\nu+2) B_{r+1}-(\nu+1)^{2} B_{r} \tag{10.2}
\end{equation*}
$$

For $m \geqslant 1,1 \leqslant r \leqslant 2 m+1$, define polynomials $C_{r, m}(\nu)$ by

$$
\begin{array}{ll}
C_{r, m}=\nu^{-1} B_{k} B_{m+1-k} & (r=2 k, \quad 1 \leqslant k \leqslant m) \\
C_{r, m}=A_{k} A_{m-k} & (r=2 k+1, \quad 0 \leqslant k \leqslant m) \tag{10.4}
\end{array}
$$

Define α_{r} for $r \geqslant 1$ by

$$
\begin{equation*}
\alpha_{r}=\frac{2 \tan ^{2}\left(\frac{\pi}{2 r+1}\right)-2+2\left[1+\tan ^{2}\left(\frac{\pi}{2 r+1}\right)\right]^{1 / 2}}{3-\tan ^{2}\left(\frac{\pi}{2 r+1}\right)} \tag{10.5}
\end{equation*}
$$

Observe that $\infty=\alpha_{1}>\alpha_{2}>\alpha_{3}>\cdots>0$ and $\alpha_{r} \rightarrow 0$ as $r \rightarrow \infty$. Thus α_{m+1} $\leqslant \nu<\alpha_{m}$ for some $m \geqslant 1$. For this m, let τ denote the strategy which assigns probabilities to $1, T^{1 / 2}, T, T^{3 / 2}, \ldots, T^{m}$ in proportion to $C_{1, m}(\nu)$, $C_{2, m}(\nu), \ldots, C_{2 m+1, m}(\nu)$. It can be shown that when $\nu<\alpha_{m}, C_{r, m}(\nu)>0$ for each $r(1 \leqslant r \leqslant 2 m+1)$, so τ is well defined for any $\nu>0$.

Theorem 10. For $\alpha_{m+1} \leqslant \nu<\alpha_{m}, \tau$ is an optimal strategy for the game (S, T, ν). If $\alpha_{m+1}<\nu<\alpha_{m}$, then τ is in fuct the unique optimal strategy.

Examples. If $\alpha_{2}=(\sqrt{5}-1) / 2<\nu<\infty$, then the unique optimal strategy is to choose $1, T^{1 / 2}, T$ with probabilities in proportion to $1, \nu, 1$. This is consistent with Theorem 3. If $\alpha_{3} \doteq 0.24698<\nu<(\sqrt{5}-1) / 2=\alpha_{2} \doteq 0.618$, then the unique optimal strategy is to choose $1, T^{1 / 2}, T, T^{3 / 2}, T^{2}$ with probabilities in proportion to $1-\nu-\nu^{2}, \nu^{2}+2 \nu, 1, \nu^{2}+2 \nu, 1-\nu-\nu^{2}$. This is consistent with Theorem $6(\mathrm{~b})$. For the "boundary value" $\nu=(\sqrt{5}-1) / 2$, one optimal strategy is to choose $1, T^{1 / 2}, T$ with probabilities in proportion to $1, \nu, 1$, while another is to choose $T^{1 / 2}, T, T^{3 / 2}$ with probabilities in proportion to $1+\nu, 1,1+\nu$. Any convex linear combination of these two strategies is also optimal.

The work of the second author was done in large part while visiting at the Institute for Statistics, Econometrics and Operations Research, Graz University, Austria. The support and hospitality of the Institute are gratefully acknowledged.

REFERENCES

1 R. J. Evans, Silverman's game on intervals, Amer. Muth. Munthly 86:277-281 (1979).

2 R. Guidici, J. Muskat, and S. Robinson, On the evaluation of Brewer's character sums, Trans. Amer. Math. Soc. 171:317-347 (1972).
3 I. Herstein and I. Kaplansky, Matters Mathematical, Harper \& Row, New York, 1974.

4 G. A. Heuer, Odds versus evens in Silverman-type games, Internat. J. Game Theory 11:183-194 (1982).
5 __, A family of games on $[1, \infty)^{2}$ with payoff a function of y / x, Naval Res. Logist. Quart. 31:229-249 (1984).
6 _, Keduction of Silverman-like games to games on bounded sets, Internat. J. Game Theory 18:31-36 (1989).
7 G. A. Heuer and W. Dow Rieder, Silverman games on disjoint discrete sets, SIAM J. Discrete Math. 1:485-525 (1988).
8 I. Niven and H. Zuckerman, An Introduction to the Theory of Numbers, 4th ed., Wiley, New York, 1980.
9 H. Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices, Noordhoff, Groningen, 1961.
10 David L. Silverman, private communication, 1976.

