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ASYMPTOTIC FORMULAS FOR
ZERO-BALANCED HYPERGEOMETRIC SERIES*

RONALD J. EVANS AND DENNIS STANTON

Abstract. A hypergeometric series is called s-balanced if the sum of denominator parameters minus the
sum of numerator parameters is s. A nonterminating s-balanced hypergeometric series converges at x-- if s
is positive. An asymptotic formula for the partial sums of a zero-balanced F2(I) is given. A corollary is the
behavior of a zero-balanced F2(x) as x approaches 1. Some q-analogues are also given.

1. Introduction. For 0< q< 1, define

k-!

(1.1) (a)-jl-Io (1 qJa ),

In the limiting case q= 1, define

(1.2)

Let

(1.3)

( a )oo =j__o (1-- qJa ).

where (x) denotes the derivative of (x)o with respect to x.
The following two theorems will be proved in 3 and 4.
THORIM 1. If abc de and Icl< 1, then, in the notation of (1.1),

(1.4) (dqk)(eqk)(qk+’)-- l-------.--Lq
k:0 (aqk)(bqk)oo(cqk)oo l--qk+’

where

(1.5)

also, as m

(1.6)

o
Ck

Lq-2,(q)-X(a)-X(b)+ (d/c)k(e/c)k
k:, (a)k(b)k(1-qk)

m-I (a)k(b) (C)k (al (b) (c) {m-I }k .oo .... +Lq +O(qm),
k=0 (d)(e)(q)k (d oo(e)oo(q)o j= qj+

where the implied constant depends on a, b, c, d, e, q but not on m.
THnOtnM 2. Ifa+b+c-d+e and Re(c)>0, then, in the notation of (1.2),

(1.7) r(a+k)r(b+k)r(c+k) 1._L
:o r(d+k)r(e+k)r(l +k) +1
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ZERO-BALANCED HYPERGEOMETRIC SERIES 1011

where

F’(b) (d-c)k(e-c)k
(a)k(b)kk

where 1 is Euler’s constant; also, as rn o,

(1.9)
m-!

X (a)k(b)k(C)k_ r(d)r(e) (
k:0 (d)k(e)kk! r(a)r(b)r(c) (logm+L+),} +O

where the implied constant depends on a, b, c, d, e but not on m.
Theorem 2 gives an asymptotic formula as mo for the mth partial sums of a

zero-balanced hypergeometric series 3F2(abctl)"d It would be interesting if such a result
could be extended to 4 F3 series. The special case c-e of (1.9) gives the following known
asymptotic formula [4, p. 109, (34)] for partial sums of a zero-balanced hypergeometric
series 2 F(aI):

m-l(a)(b) r(d) {logm-, }+O( )(1.10) -- F’(a) F’(b)
k=0 (d kk!-r(a)r(b) r(a) r(b)

This paper was motivated by the desire to prove the following theorem, stated (in
less precise form) without proof by Ramanujan [6, Entry 24, Cor. 2], [2, Entry 24, Cor.
2]. We are grateful to Bruce Bemdt for bringing Ramanujan’s result to our attention.

THEOREM 3. If a + b+ c= d+ e and Re(c)>0, then as u- with 0<u< 1,

(1 11) r(a)r(b)r(c) ( a,b,cF(d)F(e) 3F2 d,e
u ) log(1 -u) +L/ O((1 u)log(1 -u)),

where L is defined in (1.8).
In 5, we will deduce Theorem 3 from Theorem 2. It is a mystery to us how

Ramanujan found the constant term L in the asymptotic expansion (1.11). Because of
the inductive nature of our proofs, this paper unfortunately sheds little light on how
Ramanujan might have made this remarkable discovery.

Finally, we mention the q-analogue of Theorem 3. If abc-de and Icl< 1, then as
ul

(q)(d)(e) (a,,cl) O((1 u
(a)(b)(c) 32 d,e

u -gq(u)+Lq+ )gq(U)),

uk+/(1 qk+where gq(U)--Xk:0 ), Lq is defined by (1.5), and 3t2 is defined at the
beginning of 2.

2. Preliminary lemmas. We will use the following notation for q-hypergeometric
series:

a,b,c3(2 d, e

Partial sums will be denoted by

a,b,c32 d,e

z)-- (a)k(b)k(C)kZ
k:0 (d)k(e)k(q)k

(a)k(b)k(C)kZk
k:0 (d)k(e)k(q)k
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1012 RONALD I. EVANS AND DENNIS STANTON

LEMMA 4. If Re(C)>0, S D+E A B C, and Re(S) > 0, then

(A,B, C1) F(D)F(E)F(S) (D-C,E-C,S(2.1) 3F2 D,e 3F2 A+S,B+S

LnMMA 5./f0<q< 1, ICl 1, and[DE/ABC]< 1, then

(2.2)

A,B,C
ABC (D)o ( E )o(DE/ABC)o 3*2 DE/AC, DE/BC

Lemma 4 is proved in [1, p. 14]. Lemma 5 is a q-analogue of Lemma 4 whose proof
is completely analogous to the proof for Lemma 4; where Gauss’s theorem was in-
voked, one uses instead the q-analogue of Gauss’s theorem given in [1, p. 68, (3)].

LEMMA 6. If0<q< and D andA are bounded, then, as k o,

(Dq)=l+O(q).(2.3) (Aq)

Proof. This follows easily from the q-binomial theorem [1, p. 66, (4)], namely

(2.4) X (a)Jzg= (az)o Izl< 1.
j=o (q)J

LEMMA 7. If d and a are bounded, then as z with Re(z)> 0,

(2.5) r(a+z) =za_d(
__
O(z_ 1)).r(d+z)

Proof. This follows from [4, p. 33, (11)].
LEMMA 8. Fix e>0 and fix a complex number E. Let Re(z)_>e and let k be a

variable positive integer. Then there exists N>0 such that

(2.6) 1+ -1-O --where N and the implied constant are independent ofz and k.
Proof. Let F- Re(E). If F_> 0, then

so it suffices to consider the case F_>0. Let N--F+ 1. First suppose that k<_[Z1. Then

Thus

1+ _<(l+lzl)F-O(z -0 ---o -o
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ZERO-BALANCED HYPERGEOMETRIC SERIES 1013

and (2.6) follows. Finally suppose that k >lzl. Then since F>_0,

1+ -1 <
m-’l

m
m=l

LEMMA 9. Fix real D,Dq {0, 1, -2, -3,... }. Let k be a variablepositive integer.
Let Re(z) >_ O. Then in the notation of (1.2),

(2.7) (D- z ) k O( e2,rlzV, ),

where the implied constant is independent of z and k.

Proof. For some constant N>0 independent of z and k,

Thus

(D--Z)k D+j--z
D+j j=o

k-I

l-D+j <<(l+lzl)
.=

D+j>--l

1
Z

D+j

(D-z), k-!

<<(1 +lzl) II
j=O

D+j>_

Z Z

D+j 2) 1/2

k-l(<<(1 +lzl) u H 1+
j=O

O+j>!
D+j ) <<(1 +lzl) H 1+ Iz12 ’/:

m--| "
=( + Izl)U( e*l--e-"lzl2rlzl

1/2

<< ( + zl) Ne’l/2 << e 2,zl/3

3. Proof of Theorem 1. We begin by proving (1.6) in the case c-q. Let 0<t<
and let m be a large integer. By the hypothesis abq-abc-de,

(3.1) 32 d, et
--S1--$2,

m--I

where

(3.2) S-3q2( a’b’q[et

and

(3.3) (a)m(b)m(q)mtm
S2= -(’d:(et)m(q)m 3t2

q’bqm
dqm etqm
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1014 RONALD J. EVANS AND DENNIS STANTON

Apply Lemma 5 with A, B, C, D, E equal to a, b, q, d, et, respectively, to obtain

(3.4) (at)oo(bt)oo(q)oo ( d/q,et/q,tS, = 7(-d )oo ( et )oo ( )o 32 at, bt

Apply Lemma 5 with A, B, C, D, E equal to q, bqm, aqm, dam, etqm, respectively, to ob-
tain

(3.5) $2=
(a)oo(qt)oo(b)m(btq")ootm ( d/a,et/a,t( d )oo ( et )oo ( )oo 32 qt, btqm

Thus, by (3.1), (3.4), and (3.5),

(3.6)

where

( a’b’qlt) =R(t)+R2(t)-Ra(t ),32 d, et m-1

(3.7) R,(t)- (at)oo(bt)oo(q)oo
(d)oo(et)oo(t)oo

( a )oo ( qt )oo ( b )m( btqm )otm

(at)oo(bt)oo(q)oo (d/q)k(et/q)k(t)kq(3.8) R2(t)--’ (d)oo(et)oo(t)oo t,= (at)g(bt)k(q)k

and

(3.9) Ra(t )- (a)(qt)(b)m(btqm)tm(d)oo(et)oo(t)o k=l

(d/a)(et/a)(t)(aqm)
(qt)g(btqm)g(q)k

Taking the limit as t--, in (3.6), we obtain

(3.10) 3eP2( a’b’q 1)d,e m--I

where

=R+R2-R3,

(3.11) R,= limR,( ).

Now,

(3.12)

Since

R,-lim {(at)(bt)(q)-(a) (b) (btqm)ootm}t- (e)oo’(d)’oo(1-t) (qt)o o rn

_(a)oo(b)oo
-(d)oo(e)oo {’(q)-’(a)+’(bqm)-X(b)+m}

(3.13) ,(x)- X -xqJ
j--o -xq’
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ZERO-BALANCED HYPERGEOMETRIC SERIES 1015

we have

(3.14)
m--I

X(bq")-X(b)+m- X
j=0 1-bqj

X __1+ -q:+
j--0 -qj+l j-’0 --qJ+!

-bqJ }-bqj

X 1+ X -qJ+
j=o 1-q+ 1-j=o qJ+

m-1

j--O 1--qJ+

-bq
j=o bqj

----------+,(q)-,(b)+O(qm).

+O(qm)

By (3.12) and (3.14),

(a)o(b) { m--I

(3.15) R1--(d)o(e)o 2,(q)-h(a)-,(b)+
j=o 1-q+

Since

(3.16) lim
(t)k (q)k-,

t--)! (l)o
we have

(3.17) (a)o(b)oo (d/q),(e/q),q
za (a)k (1 qgRE-(d)o(e)o = (b)g )

and

(a)o(b)o (d/a)k(e/a)k(aqm) ’(3.18) Ra=(d)(e)o :, (bqm)k(q),(l_qk)
--O(qm).

By (3.10), (3.15), (3.17) and (3.18),

(3.19)

a.b.q
3t2 d, e

(a)(b) ("-’ +2X(q)-(d)(e)o io 1-qj+i

Cl
, }-X(a)-X(b)+ , (d/q)(e/q) +O(q)"

=. (a)k(b)(1-q)

This completes the proof of (1.6) in the case c q.
We next prove that (1.6) holds for c= qn for all positive integers n. Let c--qN for

an integer N> 1, and assume as induction hypothesis that (1.6) holds with c q for all
n such that _< n <N. Since

(a) +(l_qk)(a)g_,,(3.20) (a),-q t’ - ,
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1016 RONALD J. EVANS AND DENNIS STANTON

we have

a,b,c(3.21) 3q2 d,e
(1 d/q)(1 e/q) ( a, b/q, c/q
(1 b/q)(1 c/q) 3q d/q, e/q

(1- d/q)(1- e/q ) ( a/q, b/q, c/q )(1 b/q)(1 c/q) 32 d/q, e/q
q

m

Since a(b/q)(c/q)-(d/q)(e/q), the first term on the right of (3.21) can be
evaluated by the induction hypothesis.

The last term on the right of (3.21) equals

(3.22) (1 d/q)(1 e/q) ( a/q, b/q, c/q(1-b/q)(1-c/q) 32 d/q,e/q q)+O(qm),
since the 32 in (3.22) converges; by Lemma 5, the first term in (3.22) in turn equals

(3.23) (a)(b)(c)oo E (d/c)k(e/c)g(c/q)g
(1-b/q)(d)o(e)o(q)oo ,=, (a)g(b)g

The relations

kq

(b/q),(1-q’) (b/q)t,+ (b),(1-q’)
and

X(b/q ) b,------l--:: (b ) + O(qm )
1--qm+l

show that (3.21) and (3.23) imply that (1.6) holds for c=qN. This completes the
induction, so (1.6) holds for c=qu for all positive integers N. Taking the limit as rn
tends to , we see that (1.4) also holds for all c of the form c=qu.

We next prove that (1.4) holds without the restriction c=q. Since qU0 as
N , it suffices to show that each member of (1.4) is an analytic function of c on the
disk Icl< for each fixed choice of a, b, d, and q.

Fix t, 0< < 1. To show that the right member of (1.4) is analytic in c, it suffices to
prove that the series

(3.24) (d/C)k(ab/d),c’?l (a),(b),(1-q’)

converges uniformly in the disk Icl<t_. Since I(d/c)cl- IIj.=0g-lc-dql<<t for some t,
t<t < 1, and since (ab/d)k/(a)k(b) is bounded, the series in (3.24) converges uni-
formly in the disk Icl_< t.

To show that the left member of (1.4) is analytic in c, it suffices to prove that the
series

(3.25) 2 (dq)(q+ )(abcq/d) l
k=o ( aq ) ( bq ) ( cq ) qk+l
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ZERO-BALANCED HYPERGEOMETRIC SERIES 1017

converges uniformly in the disk Icl t.By Lemma 6, as k

(3.26) ( dqk) + O(qk ) ( qk+ ) + O( q’ )(aq,), (bq,)

( abcq’/d) + O( q’ ).

Therefore the summand in (3.25) is <<q’, so the series in (3.25) converges uni-
formly in the disk Icl_< t. This completes the proof of (1.4).

By (3.26), we see that if the index of summation in (3.25) begins at k-rn instead of
k-0, the resulting series is O(qm), where the implied constant depends on a,b, c, d, e, q
but not on m. Thus (1.6) follows from (1.4).

4. Proof of Theorem 2. By Lemma 7, we see that if the index of summation in
(1.7) begins at k-m instead of k-0, the resulting series is O(1/m), where the implied
constant is independent of m. Since also

mx k+ll =logm+,+Ok=0

(1.9) follows from (1.7). It remains to prove (1.7). If one took limq_+ of each side of
(1.4) and then interchanged limits and summations, (1.7) would result. However, since
it appears to be a difficult task indeed to justify this interchange of limits and summa-
tions, we take a different approach.

The proof in {}3 began by showing that (1.4) holds for each c of the form c--qn,
where n is a positive integer. Mimicking this proof with q= 1, we can deduce that (1.9)
holds for c= 1, as follows. In place of (3.1), write, for e>0,

a,b,3F2 d,e+e 1) m-I --HI--H2’
where

a,b,HI 3F2 d,e+e

and

(a)m(b)m
H2- (d)m(e+e)m 3F2 1,b+m,a+m

d+m,e+e+m

Apply Lemma 4 to get analogues of (3.4) and (3.5) for H and H_. Let e-+0 to obtain
the analogue of (3.10) of the form

a,b,1(4.1) 3F2 d,e

The analogue of (3.12) is

r(d)r(e) (r’(1)-r(a)r(b) r(1)

1) m-I -G +G2-G

r(a)
F’(b) F’(b+m) )I’(b) + I’(b+m)
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1018 RONALD J. EVANS AND DENNIS STANTON

Since [4, p. 33, (8)]

F’(b+m)=logm+O(1 )r(b+m)
we obtain the following analogue of (3.15):

(4.2) G,=r(d)r(e) (r(a)r(b) - r’(a)
r(a)

r’(b) )r(b)
t-logm +

Apply Lemma 7 to obtain the following analogues of (3.17) and (3.18):

(4.3) _=r(d)r(e) (d-1)(e-1)k
r(a)r(b) (a)k(b)kkk=l

and

(4.4) G3 =F(d)F(e) (d-a)g(e-a)g=O(1)r(a)r(b) k= (b+m)k(1)kk -Combining (4.1)-(4.4), we deduce that (1.9) holds for c 1.
An induction argument analogous to that following (3.19) shows that (1.9) holds

for each positive integer c. Taking the limit as rn tends to oo, we see that (1.7) also holds
for each positive integer c.

To prove that (1.7) holds for all c with Re(c)>0, it suffices by Carlson’s theorem
1, p. 39] to prove that, for fixed a, b, d andfixed e> 0, both sides of (1.7) are analytic in
c and equal to O(e2.d/3 ) for Re(c)>_ e.

Write D= Re(d-e), adjusting e if necessary so that D {0,- 1,-2,-3,-.. }.
Write z c+D- d, so in the notation of (1.2),

.’ V.’-
, (d-c)g(e-c)g= X Ag
k=l (a)k(b)kk

(D-z)g
(D)k

with

(a+b--d)k(D)k
(a)k(b)kk

By Lemma 7, hk-O(k-I-e). By Lemma 9, (D--z)k/(D)k--O(e2*l/3). Thus S is
analytic in z and equals O(e2zl/3) for Re(z)_>0. It follows that S is analytic in c and
equal to O(e2/3) for Re(c)>e.

It remains to prove that

o { r(a+k)r(b+k)r(c+k)T’- X r(l+k)r(d+k)r(a+b-d+c+k)k=l k+l

is analytic in c and equal to O(e21cl/3) for Re(c)_>e. Let E=d-a-b. By Lemma 7,

e-(c+k)E(1 +k-lO(1))-k+

-0(1)+ X k-’ l+-k=l
l} (1 +k-’O(1)},
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ZERO-BALANCED HYPERGEOMETRIC SERIES 1019

where the expressions O(1) are bounded analytic functions of c for Re(c)_>e. By
Lemma 8, (1 + c/k)e- O(c/k), so T is analytic in c and equals O(c) for
Re(c)_>e.

5. Proof of Theorem 3. Define

f(k)- r(a+k)r(b+k)r(c+ k)r(d+k)r(e+k)r(1 +k)

and V=Ykof(k)uk+ log(1--u)--L, where L is defined in (1.8). We must show that as
u 1,

By (1.7),

V= 0((1- u)log(1-u)).

V= f(k)-k+ (uk-l)+ k+lk=0 k=0

The last sum is ( u 1)/ulog(1 u) O((1 u)log(1 u)) as u 1. Finally, by Lemma
7,

f(k)-kl (uk-l) << ] 1--

k=l k2

=(l-u) k-2 ] u"-(1-u) u"
k=l n=O n=O k=n+l

,,//.2 U n }<(l-u) --+ -n- o((1-u)log(1-u)).
n=l

6. Concluding remarks. The series

a,b,c3F2 d, e 1)
converges for Re(e+d-a-b-c)>0. Theorem 2 gives information of the divergence
at the boundary a+b+c=d+ e. We have not investigated related problems, such as
a+b+c=d+e+l.

Bailey and Darling have given transformations for truncated 1-balanced 3F2’s [1,
p. 94-95]. We were unable to use similar techniques to derive Theorem 2. There may be
similar results for special truncated very well poised 6Fs’s.

The special case c-e of Theorem 3 gives an asymptotic expansion of a zero-bal-
anced 2F(x) as x 1. This is equivalent to (1.10). This result is easy to obtain in the
following way. The point x-1 is a regular singular point of the differential equation
for 2F(x). There are two independent solutions (u and u2) near x= 1. If the 2F1 is
zero-balanced, one solution is logarithmic. The precise definitions of u and u2 and the
constants c and c2 such that 2F(x)--CUl +c2u2, are given in [3, eq. 2.10 (14)]. The
asymptotic formula follows immediately.

For the 3F2(x) case, Norlund [5] has explicitly given three independent solutions
(u, u2, and u3) near x= 1. (The authors would like to thank Dennis Hejhal for pointing
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this out.) Again the zero-balancing condition gives a logarithmic solution. So an
expansion of the form of Theorem 3 is guaranteed. However, the constant L is. not
given. One would need to find the constants c l, c2, and c such that 3F2(x)=cu +c2u2
+ C3U3. This is not an easy task.
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