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1. INTR~D~JcTI~N 

By 1986, all but one of the identities in the 21 chapters of Ramanujan’s 
Second Notebook [lo] had been proved; see Berndt’s books [Z-4]. 
The remaining identity, which we will prove in Theorem 5.1 below, is 
[ 10, Chap. 20, Entry 8(i)] 

1 1 1 
G,(z) G&l + G&J G&J + G&l G,(z) = 4 + 

V2(Z/P) 
dz) ’ 

(1.1) 

where q(z) is the classical eta function given by (2.5) and 

2 f( _ q2miP, - q1 - WP) 

G,(z) = G,,,(z) = (- 1)” qm(3m-p)‘(2p ) f(-qm,p, -q,-m,p) 9 (1.2) 

with q = exp(2niz), p = 13, and 

Cl(k2+k)/2 (k2pkV2 
B . (1.3) 

k=--13 

The author is grateful to Bruce Berndt for bringing (1.1) to his attention. 
The quotients G,(z) in (1.2) for odd p have been the subject of interest- 

ing investigations by Ramanujan and others. Ramanujan [ 11, p. 2071 
explicitly wrote down a version of the famous quintuple product identity, 

f(-s’, +)J-(-~*q3, -w?+qfF~, -A2q9) 
f(-43 -Q2) f(-Aq3, -Pq6) ’ 

(1.4) 

which yields as a special case a formula for q(z) G,(z) as a linear combina- 
tion of two theta functions; see (1.7). In Chapter 16 of his Second 
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Notebook, Ramanujan recorded the famous RogerssRamanujan continued 
fraction formula 

where q = exp(27riz), p = 5; see [ 1, p. 743. Moreover, Chapters 19-20 of 
Ramanujan’s Second Notebook contain several interesting identities 
involving G,(z) for odd values of p ranging from 5 through 17. 
K. G. Ramanathan [9] has generalized some of these identities and has 
investigated the signs of the Fourier coefficients of G,,(z) for all odd 
p + 0 (mod 3). 

Our paper focusses on identities for the functions G,(z). We now discuss 
the contents of the succeeding sections. 

Sections 2 and 3 are devoted to preliminary results. Instead of expressing 
G,(z) as a quotient of the theta functions f defined in (1.3), we express 
G,(z) in Section 2 as the quotient 

G,(z) = (- 1 I”’ Wmlp, 0; z)lF(m/p, 0; z), (I.61 

where F(u, v; z) is the theta function whose series and product representa- 
tions are given in (2.10). This reformulation is expedient because of the 
beautiful transformation formula (3.8) enjoyed by F(u, v; z). In view of 
(1.6) and Lemma 2.1, one can also express G,(z) in the form 

G&)=‘-;;;;I j {F(1/3+m/p,0;3z)+F(1/3-m/p,0;3z)~. (1.7) 

Lemma 2.1 is equivalent to the quintuple product formula (1.4), and we 
provide a short analytic proof. (For other proofs, consult [6].) Our chief 
application of Lemma 2.1 is to Theorem 6.1. 

In Section 3, we summarize the properties of modular forms and groups 
that will be needed in the sequel. Lemma 3.1 states that the complex scalar 
multiples of q*(z) are the only cusp forms of weight 1 on the congruence 
subgroup r(12) with constant multiplier. Lemma 3.1 will be used in the 
proof of Theorem 6.2. We make an incidental conjecture at the end of 
Section 3, namely, that the scalar multiples of ~~(122) are the only cusp 
forms of weight 1 on r,( 144) (defined in (3.14)) with constant multiplier. 

We begin Section 4 by proving Theorem 4.1, one of our main results. 
This provides, for each odd p > 1, a class of modular functions g(z) on 
f O(p) with the property that g(z) has no poles on the upper half plane or 
at the cusp 0. Moreover, the nonconstant terms in the Fourier expansions 
of g(z) at the cusps 0 and co are rational integers (see the remark preceding 
Corollary 4.2). The functions g(z) are constructed by summing, over all m 
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(modp), products of (positive or negative) powers of G,,(z) over certain 
integers /I. Examples of such constructions are given in Corollaries 4.2, 4.3, 
and 4.4. 

In Section 5, Corollaries 4.24.4 are applied to prove Ramanujan’s out- 
standing identity (1.1) and related identities of the type (5.1) found in [ 10, 
Chap. 20, Entry 8(i); Chap. 19, Entry 18(i)]; see Theorems 5.1 and 5.2. For 
an application of Theorem 5.2, see [S, p. 3121. A recipe for constructing 
and proving a host of formulas of this type for prime p is presented at the 
beginning of Section 5. The procedure, based on Theorem 4.1, is quite 
simple, because the function g(z) constructed in Theorem 4.1 behaves 
nicely at the cusp 0, and cc is the only other cusp for To(p) when p is 
prime. 

Ramanujan stated four interesting identities for p = 13 in [ 10, Chap. 20, 
Entry 8(i)], all of the type (5.1). Two of these are given in Theorem 5.1. We 
have been unable to generalize these two. We have, however, been able 
to extend the other two identities to hold for infinitely many odd p. 
These generalizations are given in Theorems 6.1 and 6.2. Ramanujan 
has given the special cases p = 5, 7, 9, 11, 13, and 17 of Theorem 6.1 [ 10, 
Chap. 19, Entries 12(v), 17(v); Chap. 20, Entries 2(vii), 6(iii), 8(i), 12(i)] 
and the cases p = 13, 17 of Theorem 6.2 [ 10, Chap. 20, Entries 8(i), 
12(i)]. K. G. Ramanathan [9, Theorems 1, 1’1 has independently proved 
Theorem 6.1 in the cases p = f 1 (mod 6). Our proof of Theorem 6.1 uses 
the quintuple product identity and our proof of Theorem 6.2 employs basic 
properties of Hecke operators on r( 12). 

Two further theta function identities are given in Theorems 7.1 and 7.2. 
These do not seem to have been stated by Ramanujan, although they can 
be derived from his work. Theorem 7.1 states that, for p = 13, 

Gl~z;G,o + G&l G&l = 1. (1.8) 

This is equivalent to an intriguing formula involving infinite products of 
the form 

(xl, = fi (l--cl”), (1.9) 
VI=0 

namely, 

{(t2L (t3), (t’“L (an-‘+t{(t”), (f%, (t’), (t9),}-’ 
= f(t), (t5L (t8L (t’*),) -‘, 

where t=q . l/l3 It would be of interest to have similar elegant formulas for 
values of p besides 13. 
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In Theorem 7.2, we provide an example of an identity of type (5.1) for 
a composite value of p, namely p = 9. We close Section 7 with a new proof 
based on Theorem 6.1 of a result of Ramanujan, (7.37). Our proof 
illustrates how the results of this paper can be applied to prove certain 
theta function identities not precisely of type (5.1). 

2. THETA AND ETA FUNCTIONS 

Let H denote the complex upper half plane, i.e., 

H={zE@:Imz>O}. 

For z E H, y E @, define the classical theta function 

(2.1) 

O,(y, z) = f. exp (rriz(k + +)’ + 2rci(k + +)(y - 4)). (2.2) 
k=-.r 

By the Jacobi triple product formula, 

@,o), z) = - @‘+;/4) 

x(1-e 
2ni(--gf(rnp I);))(, _ e2nimz). (2.3) 

The classical eta function q(z) is a simple multiple of a theta function, 
namely 

r](z) = -ie”“‘30,(z, 3z), ZEH. (2.4) 

By (2.2)-(2.4), 

q(z) = q”24 $, (-l)*y*“*-“‘=q”4~~, (1 -q”), (2.5) 

where 
q = e*ni=. (2.6) 

So that we may eventually relate 0, to modular forms in z of arbitrary 
level, define as in [14, Eq. (lo)], for U, v E C, z E H, 

qqu, v; z) = e niu(uz+V)OI(z4Z+ v, z)/q(z). (2.7) 

The function & is analytic for z E H, u E C, and v E C, in each variable. Write 

F(u, v; z) = r](z) $b(u, v; 2) (2.8) 
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and, when v = 0, 

F(z.4; z) = F(u, 0; z) = q(z) f$(u, 0; z). 

Combining (2.2), (2.3) (2.7) and (2.8) we have 

F( u, v; z) = e Wu;+V)@I(UZ+ v, z) 

= -i,=E, (-l)kexp(i?rz(k+u+~)2+irrv(2k+u+1)) 

(2.9) 

= _ieni(~(u+1/2)2+V(U+I)) mn, (1 -e2ni”qm+u) 

x(1-e- 27Gvqm ~ I - “)( 1 _ q”). (2.10) 

In particular, when v = 0, 

k=-s 

= _ iq’” + ~/2SP mt, (1 -qm+U)(l -qm-‘-u)(l -qrn). (2.11) 

From the series in (2.10), it is easily seen that for integers r, s, 

F(u + r, v + s; 2) = ( -eaiu).’ ( -e-niv)r F(u, v; z), (2.12) 

and 

F(-u, -v;z)= -F(u,v;z). 

In particular, when v = 0, 

(2.13) 

and 

F(u + 1; z) = -F(u; z) (2.14) 

F(-u;z)= -F(u;z). (2.15) 

By (2.1 l), for fixed z E H, the zeros of F(u, z) are the points u in the 
lattice H + Zz-‘, and these zeros are simple. Thus F(2u; z)/F(u; z) is an 
entire function of U. The following lemma shows in fact that F(2u; z)/F(u; z) 
is a linear combination of F( l/3 + u; 32) and F( l/3 - u; 32). 

LEMMA 2.1. For z E H, u E @, 

h+(z) 
F( 2~; z) 
~ = F( l/3 + u; 32) + F( l/3 - U; 32). 
F(u; z) 

(2.16) 
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Proqf: Replace the functions in (2.16) by their respective triple products 
in (2.5) and (2.11), and simplify. Then (2.16) becomes, with u = y”, 

fi (1 +aq”‘)(l +(--‘q’n -‘)(I 4p ~‘)(I -u-2q2”’ ‘)(I -q’F’) 

+ fi (1 -a3q3”4)(l -ap3q3’“~~~2)(1 -q3”), (2.17) 
m=l 

This is a well-known version of the quintuple product identity [6]. However, 
the following short analytic proof of (2.17) may be worth including. 

Let L(U), R(u) denote the left and right members of (2.17), respectively. 
These are entire functions of u which satisfy, for q = e2nrz, 

L(u+ 1)= -4~ 3up2L(u), 

R(u+ 1)= -q m3”m2R(u), 

L(u+z-‘)=L(u) 

and 

R(u+z -I)= R(u). 

The zeros of L(U) are at the points 

u=m/2+nzp’/2 (m, n E Z, not both even), 

and these zeros are all simple. It is easily checked that 

R(z-‘/2)=R(1/2)=R(lj2+zm l/2)=0, 

so by (2.19) and (2.21), R(u)=0 at the points in (2.22). Thus 

Q(u) : = Nu)lUu) 

is entire. By (2.18)-(2.21), 

Q(u+ l)=Q(~)=Q(u+z~‘). 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23 

(2.24) 

(2.25) 

Because of the double periodicity in (2.25), Q(U) is a bounded entire 
function, so Q(U) is constant. Finally, Q(u) = 1, since 

L(0) = R(0) = 2 fi (1 - 4”‘). 
??I=, 

(2.26) 
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This paper will focus on the quotients F(2u; z)/F(‘(u; z) in the case where 
u is the rational number m/p, with p odd. Thus, for integers m, p with p 
odd >l, define (cf. (2.36)) 

G(m; z) = (- 1)” F(2m/p; z)/F(m/p; z). (2.27) 

By (2.14), for fixed p and z, G(m; z) depends only on the class of m 
(mod p), since p is odd. By (2.15), 

G(m; z) = G( -m; z) = G( p - m; z). (2.28) 

By the product formula in (2.1 l), G(0; z) = 2, so 

G(m; z) = 2, if p(m. (2.29) 

Ramanujan worked extensively with the theta function which he denoted 
by 

f(a,B)= f. a(k2 + k)/2 (kz- k)/2 
B (2.30) 

k=-nr 

In order to relate his notation to ours, make the change of variables 

p= -,-M, a = 418, (2.31) 

where q = e2niZ. Then by (2.2), (2.3), and (2.30), 

ftcc, p) = ie-ni(7+44@ r(y,z)= 1 (l+~-lq”‘)(l+/?q’+‘)(l-qm). (2.32) 
m=l 

By (2.11), (2.15), and (2.32) 

f(-q”, -q’-“)= -iq~(u-1/2)2/2F(u;z). (2.33) 

Thus, 

F( 224 z) -= 
F(u;z) ’ 

u(3u-1),2f(-q2U’ -P2”) 
“i-(-f, -CPU3 ’ 

(2.34) 

so 

G(m;pz) = (_ 1)” qm(3m-~)i(2~) f( -q2m, -qP4y 

“f-s”, -qp-“) . 
(2.35) 

This shows that 

G,(z) = Gh z), 

where G,(z) is given by (1.2) and G(m; z) is given by (2.27). 

(2.36) 
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3. MODULAR TRANSFORMS OF ETA AND THETA FUNCTIONS 

Define the modular group 

:a,h,c,deZ,ad-hc=l *. (3.1) 

Let kE IR and let f be a subgroup of fJ 1) of finite index. Let 
V: f + { uj E C: 1 w 1 = 1 f. The space M(T, k, V) of modular forms consists 
of those functions g: H + @ u { a3 } which are meromorphic on H and at 
every cusp, and which satisfy 

g(Az) = V(A)(cz + d)k g(z) (ztH,A=(; I;>+ (3.2) 

(so V is a multiplier system of weight k on f ). To say that g is 
meromorphic at a cusp Loo (L = (G $) E r( 1)) means that there exist NE Z, 
K E IR, n E Z (n 3 1 ), and Fourier coefficients b, E C such that 

(yz+6)-kg(Lz)= -f bme2n++h-)P 
tTl=N 

(3.3) 

for all z E H such that Im z is large. (It turns out that if gE M(T, k, If), one 
may take K = rcL and n =nL in (3.3), where rcL and nL are the cusp 
parameter and cusp width defined in (3.17) and (3.18), respectively.) 

If g E M(T, k, V) is analytic on H and if for every cusp Leo, only positive 
powers of e2rriz occur in (3.3), then g is called a cusp form. We denote the 
subspace of cusp forms in M(T, k, V) by S(T, k, V). 

It is a classical result [7, p. 511 that 

v(z) E s(ql)? 1/z E), 

where for A = (F f;) E r( 1 ), E(A) is the 24th root of unity given by 

(3.4) 

if c is odd 

dz)+d(bm <,+3(dpl) 
9 

ifdisoddandeitherc>OordaO 

d2)+d(b-c)+3(d-I) 

ifdisodd,c<O,d<O. (3.5) 
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Here, [, = exp(2+/m) and the Jacobi symbols are interpreted to be 1 when 
their “numerators” are 0. By (3.2) and (3.4), 

$(Az) = w(A)(cz + d) q’(z) (3.6) 

for all A = (F 5;) E I’( 1 ), where by (3.5), 

w(A)=&2(A)=[,2 bd(l-c2)+<(u+d)-3< 7 if c is odd 
p$‘~ d2) + d(h - c) + 3(d- 1) 3 if d is odd. (3.7) 

By [14, Eq. (17)], (2.8), and (3.4) 

F(u, v;Az)=E(A)~J’,~F(u~, v,;z) (3.8) 

for U, v E @, z E H, A = (F 5;) E r( 1 ), where the row vector (uA, vA) is defined 
by 

(U A, vA) = (u, v) A = (au + cv, bu + dv). (3.9) 

We will refer in the sequel to the following congruence subgroups of 
level N: 

f(N)={A:azdzl,h=c=O(modN)}, (3.10) 

F(N)={A:a=d= Ifrl,b=c=O(modN)}, (3.11) 

Z-,(N)= {A: Nlc}, (3.12) 

P(N)= {A: ~lb}, (3.13) 

and 
T,(N)= {A:a-d= 1, c=O(mod N)}, (3.14) 

where A=(: :)~r(l). 
We will need the following elementary dimension estimate [ 12, 

Theorem 4.2.11. If 

Ir(1): rl =pL< Go and -ZEz- (I=(; Y)), (3.15) 

then 

dim S(I’, k, V) < max(O, kp/12 + 1 -A’), (3.16) 

where A’ is the number of r-inequivalent cusps Leo (L E I( 1)) for which 
the cusp parameter rcL = 0. Here K~ is defined by 

O<KL< 1, ,(L (:, (3.17) 
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where the cusp width n,~ is the smallest positive integer for which 

(3.18) 

Let L, x, . . . . L; Y, denote the r-inequivalent cusps (L, E f( 1)). Then 
[ 12, (2.4.10)], 

P= i: HI.,. (3.19) 
!=I 

In particular, if f is normal in r(l), then all summands equal n, and 

p = An, (f normal in r( 1)). (3.20) 

The following lemma shows that the scalar multiples of q2(z) are the 
only cusp forms of weight 1 on r(12) with constant multiplier system. 

LEMMA 3.1. S(T(12), 1, 1)=@~2(z). 

Proof By (3.4), (3.6), and (3.7), 

$(z) E s(r(12), 1, 1). 

It remains to show dim S(T(12), 1, 1)~ 1. By (3.16) with r=T(l2), k= 1, 
and V(( z :)) = x(d) for any odd character X(mod N), 

dim S(T(12), 1, l)=dim S(T(12), 1, V)< 1 +~/12-A’. 

It suffices to show p/12 = j”‘. By (3.17), all cusp parameters K~ vanish, so 
A = i’. Finally, A = p/l 2 by (3.20). 

We are grateful to R. Rankin for pointing out that a similar argument 
shows that 

dimS(T,,(144), l,xmm4)61, (3.21) 

where xP4 is a character (mod 144) given by 

xp4(d)= (- l)(d-‘),‘2, d odd. (3.22) 

Rankin argues as follows. By (3.18) with f = r,( 144) and L = (; 2), 

Thus 144 1 c2n, so 41 cn. Consequently, x--4( 1 + acn) = 1, so by (3.17) with 
V((r :))=~-~(d), K~=O for all LEA-(1). Therefore A=A’. By [13, p. 102, 



THETA FUNCTION IDENTITIES 107 

(33)], 1= 24. By [12, (1.4.23)-J, p = 288. Thus p/12 = A’, so (3.21) follows 
from (3.16). 

In fact, equality holds in (3.21), since 

S(T,(144), 1, x-4) = Q2(122). (3.23) 

This follows from (3.4), (3.6), and (3.7), because for A = (z 2) E r,( 144), 

I conjecture that 

dim S(T,(144), 1, x)=0 

for all characters X(mod 144) except xP4. Since [12, Theorem 8.1.11 
S(T,(144), 1, 1) is the direct sum of the subspaces S(T,(144), 1, x) over all 
characters X(mod 144), this conjecture is equivalent to the following. 

Conjecture. S(T,(144), 1, 1)=@92(12z). 

4. CONSTRUCTION OF MODULAR FUNCTIONS OF ODD LEVEL 
FROM THETA FUNCTIONS 

THEOREM 4.1. Let p he odd > 1 and let E,, fir be nonzero integers 
(1 <rQs) with 

El/?:+ ... + &,/If = O(mod p). (4.1) 

Then 

g(z) := c n Wdr; ZY’E WrO(p), 0, I), 
m r=l 

where the sum is over all m (mod p). Moreover, g(z) has no poles on H or 
at the cusp 0. 

ProojY Let 

A= (4.3) 

We first prove that g transforms like a modular function in M( r”( p), 0, 1 ), 
i.e., 

g(Az) = g(z), z E H. (4.4) 
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By (4.2), (2.27), and (2.9), 

The expression in braces in (4.5) is to be interpreted as 2 when p 1 mp,; see 
(2.29). Apply the transformation in (3.8) to obtain 

g(az’~‘n((-1)m8’ 
F(2m/I,a/p, 2m/3,b/p; z) ‘Ir 

F(mp a/p rnfl b/p;z) ] . (4.6 1 
nt r r 5 r 

Since plb by (4.3), m/?,b/pEZ. By (2.12), for VEZ, 

F(u, v; z) = ( - einu)’ F( u, 0; z). (4.7) 

By (4.6) and (4.7) 

(4.8) 

where 

E,(m)=(-1) ’ rnp (II + 1 + h/p) 
e 

3niubm2/3~~* 
(4.9) 

Rewriting (4.8) using the definition of G, we have 

Now, 

g(Az) = c fl (E,(m) G(mB,a; z)Y’. 
m r 

(4.10) 

r 
inm(a+ 1 +b/p)Zc,B,+yzerfif). (4.11) 

r I 

The sums C E,/?, and C&,/If clearly have the same parity, and the latter 
sum is a multiple of p, by (4.1). Thus, if a is odd, the right side of (4.11) 
equals 1. If a is even, then b is odd because ad - bc = 1, so again we see 
that the right side of (4.11) equals 1. Therefore (4.10) becomes 

g(Az) = 1 n G(m/I,a; z)‘~. 
m I 

(4.12) 

Since ad - bc = 1 and p / 6, a is relatively prime to p. Thus am runs through 
a complete residue system (modp) when m does, so (4.4) follows from 
(4.12). 

If m/p E B, then G(m; z) = 2 for all z E H, by (2.29). If mfp $ Z, then since 
m/p is not half of an integer, both F(Zm/p; z) and F(m/p; z) are analytic 
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functions of z on H which never vanish on H, by (2.11). Thus G(m; z)” is 
analytic on H for all m, E E H, so g(z) is analytic on H. It remains to show 
that g(z) is meromorphic at every cusp Lee (L E f( 1)) with no pole at the 
cusp 0. 

By (2.27) and (3.8), for any m E Z and L = (c {) E r(l), 

G(m; Lz) = (- 1)” FGQdp, 2miVp; z)lF(Wp, m/VP; z). (4.13) 

(The right side of (4.13) is interpreted as 2 if plm.) By (2.10) and (4.13), 
we see that for any m, E E Z, G(m; Lz)” has a Fourier expansion of the form 

G(m; Lz)& = z ~~~~~~~~~~~ akEc, (4.14) 
k=N 

where N is finite. Thus g(Lz) also has a Fourier expansion of this form, so 
g(z) is meromorphic at every cusp. This completes the proof that 
g(z)EM(T’(p), 0, l), and it remains to show that g(z) has no pole at the 
cusp 0. This will be accomplished by showing that for each mEZ’, 
G,( - l/z) has a Fourier expansion of the form 

where 

G,(-l/z)= f Ckqk, 
k=O 

(4.15) 

co = 2( - 1)” cos(nm/p) # 0. (4.16) 

If p 1 m, then (4.15) holds since then G,( - l/z) = 2. Let p { m. By (4.13), 

G,( - l/z) = (- 1)” F(0, -2m/p; z)/F(O, -m/p; z). (4.17) 

BY @lo), 

k=--so 

=-2 f (-l)k k=O sin(“m’~‘1’)q~kz+k~,2~‘4’18’ 

Now (4.15)(4.16) follow from (4.17)-(4.18). 

Remark. Let cr = .sr + ... + E,. We claim that the Fourier expansions of 
both g(z)- 2” and g( - l/z) -2” have integral coefficients. (The term 2” 
corresponds to the term for m = 0 in (4.2).) To see this, first note that if 
p[m, then by (2.11), iF(m/p; z) has (Fourier) coefficients + 1, so by (2.27), 

409i147'1.8 
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G,Jz)’ has integral coefficients for any F E Z. Hence g(z) - 2” has integral 
coefficients, by (4.2). Next note that if pj’m, then by (4.18) 

and the quotients in bates are in the ring of cyclotomic integers Z[[,]. 
Since sin(2rrm/p)/sin(nm/p) is a unit in Z[[,], if follows from (4.17) that 
G,( - l/z)” has coefficients in Z[[,,] for any E E Z. Because of the way these 
coeffkients depend on m and because 

c qwz for all n E B, 
m(mod P) 

it follows from (4.2) that g( - l/z) - 2” has integral coefficients. 

COROLLARY 4.2. Let p > 5 be a prime = 1 (mod 4) and let R denote the 
set of quadratic residues (mod p) between 1 and p/2. Then 

h(z) : = n CD(z) + ( - 1 )(“* ‘I’* n G&z) ’ 
PER PER 

is in M(T’(p), 0, 1) and has no poles on H or at the cusp 0. 

(4.19) 

Proof In Theorem 4.1, let s= (p- 1)/4, E,= 1 (1 <r <s), and let 
P i , . . . . b,, be the elements of R. (Note that { k pr: 1 < r < s} is a complete set 
of quadratic residues (mod p).) Write B = /?f + . + /?f. For a primitive 
root g (modp), 

P- ’ 
2~Bf+2~(gp,)‘r 1 m2-O(modp), 

r r m=I 

so B(l +g’)=O(modp). Sincep>5, 1 +g2 f 0 (modp), so BrO (modp). 
Thus (4.1) holds. Now, for g(z) as in (4.2), 

g(z) = 1 fl G(mj?; z) = 2’p Iv4 + c fl G,Az) + c fl G,AzL 

where N is the set of s quadratic nonresidues (mod p) between 1 and p/2. 
Therefore, 

g(z) = 2 +)“+‘+(II G,(z)+ fl G,(z)). (4.20) 
PER BEN 
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BY (2.27) 

(*- I)/2 (*- I)/’ F(2m/p; z) 
n G,(z) ,nR G,(z) = m-, G,(z) = (- l)(*‘- lv8 m!, 

BEN E 
F(m,p; z) 

The rightmost product equals 1, since F(u; z) = F( 1 - U; z) by (2.14) and 
(2.15). Thus (4.20) becomes 

g(z) = 2 ~p-1”4+p+h(z), (4.21) 

where h(z) is defined by (4.19). The result now follows from Theorem 4.1. 

COROLLARY 4.3. Let p be a prime = 1 (mod 4) and let /I be a primitive 
4th root of unity (mod p). Then for E E { f 1 }, 

k,(z) : = 1 G”(m; z) G”(bm; z) (4.22) 
m(modp) 

is in M(T’(p), 0, 1) and has no poles on H or at the cusp 0. 

Proof: This follows from Theorem 4.1 with s = 2, E, = s2 = E, b1 = 1, 
82 = B. 

COROLLARY 4.4. Let p be odd > 1. Then 

g(z) := c G,(z)~ 
m(mod P) 

(4.23) 

is in M(T’(p), 0, 1) and has no poles on H or at the cusp 0. 

Proof: This follows from Theorem 4.1 with s = 1, E I = p, /?I = 1. 

5. APPLICATION TO RAMANUJAN'S IDENTITIES 

For prime p, Theorem 4.1 provides a simple recipe for the creation of 
theta function identities of the type 

g(z) = E(z), (5.1) 

where g(z) is given by (4.2) and E(z) is a relatively simple function in 
M(r’(p), 0, 1) composed of eta functions (as in (5.17), e.g.). The idea is to 
construct a function E(z) E M(r’(p), 0, 1) with no poles except possibly at 
the cusp cc such that g(z) - E(z) has a zero at co. Then since 0 and cc are 
the only inequivalent cusps (mod r’(p)) when p is prime, it follows from 
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Theorem 4.1 that g(z) - E(z) has no poles at all. As constants are the only 
entire modular functions in M( T”(p), 0, 1) [ 12, p. 1081, (5.1) follows. 

To find the Fourier espansion of g(z) at cc, we need to have the Fourier 
expansion of G,(z). Just as the Euler pentagonal number theorem (2.5) 
provides the Fourier expansion of q(z), the quintuple product formula 
(Lemma 2.1) provides the Fourier expansion of v](z) G(m; z). Thus, by 
Lemma 2.1 and (2.11), 

rl(z)(-l)“G(m;z)= ‘f (-l)k (q3(k+W- V6)2/2+qXk-wP 463%‘)~ (5.2) 
k=- x 

Since G(m; z) = G(p -m; z) by (2.28), we assume 

1 dm<(p- 1)/2. (5.3) 

Isolating the terms in (5.2) for which k = 0, + 1, we find that 

rl(z)( - 1)” G(m; z) 
= q1/24q(3m2+n~1!(2~*) 

x { 1 + f/P _ 4P - 2mvP _ q(P+3m)lP _ q(2PP3wp + O(q2)}, (5.4) 

BY (2.5), 

q(z) = qy 1 -q - q2 + O(qS)). (5.5) 

Thus, for 1 6 m 6 (p - 1)/2, 

( - 1)” G(m; z) 

= q(3m2~m~M2p2). (1 + q”l~ _ q (p~Zm)/p-~(p+3m)/p-~(2p~3m)ip 

+4+9 
(p+m)lP- (2Pp2dlP- (3Pp3mVP 

4 4 + w12)l. (5.6) 

In particular, for 1 < m < (p - 1)/2, 

(-l)“G(m;z)=q (3m*--mpV(*~*){ 1 + qml~~q(~~2Wp + qq2/“)}. (5.7) 

We now prove two identities of the type (5.1) stated by Ramanujan in 
[lo, Chap. 20, Entry 8(i)]. The first identity, (5.8), is the outstanding result 
(1.1). 

THEOREM 5.1. Let p= 13. Then 

G,(~)-‘G,(~)~‘+G,(~)~‘G~(Z)~~+G~(Z)~’G~(Z)~~=~+~~(Z/~)/~~(Z), 

(5.8) 
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and 

G,(z) Gdz) G&)-G,‘(z) G;‘(z) C?(z) = 3 + r12(z/~Yvr2(z). 

(5.9) 

ProoJ: By Corollaries 4.3 and 4.2, respectively, the left members of (5.8) 
and (5.9) are in M( r”( 13), 0, 1) and have no poles on H or at the cusp 0. 
We proceed to follow the recipe for proving identities of type (5.1) outlined 
at the beginning of this section. By (5.7), for p = 13, 

G,(z)= -q+(l +q”p+O(q2’p)) (5.10) 

G,(z) = q - ““‘( 1 + O(q2’p)) (5.11) 

G&)= -qP6’p2(1 + O(q2’p)) (5.12) 

G,(z) = qp2’p2( 1 + O(q2’p)) (5.13) 

G,(z) = -q5’p2( 1 + O(q2’p)) (5.14) 

G6(z) = q15’p2( 1 -q*@ + O(q2’p)). (5.15) 

For ps 1 (mod 12) (3.6) and (3.7) yield 

(cz + d) q2(z/p) = o(A)(cz + d) v’(z/p) (5.16) 

for A = (; 2) E r’(p). Thus, for p = 1 (mod 12), 

112(z/P)/r12(z) E M(TO(P), 0, 1). (5.17) 

Thus all members of (5.8) and (5.9) are in M(T’( 13), 0, 1) and have no 
poles except at co. By (5.5), 

?(z/P)h(z) = 4 (1 -P)/W (1 _ qU~ + o(~‘/P,}. (5.18) 

For p= 13, (5.18) yields 

$(z/p)/Yf2(2) = q-“P - 2 + O(q”P). (5.19) 

From (5.19) and (5.1Ok(5.15), both sides of (5.8) equal q-‘/P+ 2 + O(ql’P), 
while both sides of (5.9) equal q-‘lp + 1 + O(qllp). Thus (5.8) and (5.9) 
hold. 

We close this section with one further identity of the type (.5.1), 
essentially stated by Ramanujan in [ 10, Chap. 19, Entry 18(i)]. For an 
application, see [S, p. 3121. 
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THEOREM 5.2. Let p = 7. Then 

Proof With 

g(z) := c G,(z)‘> (5.21 ) 
m = 0 

we see that (5.20) is equivalent to 

g(z)=14-28(z)‘-2(z)‘. (5.22) 

By Corollary 4.4, the left side of (5.22) is in M(T”(7), 0, 1) and has no 
poles on H or at the cusp 0. Let E(z) denote the right side of (5.22). By 
the argument used to obtain (5.17), we have, for p z 1 (mod 6), 

r14w)/114(4 E Mr”(P), 0, 1). (5.23) 

Thus both members of (5.22) are in M(T0(7), 0, 1) and have no poles 
except at co, so by the procedure described below (5.1), (5.22) will follow 
if 

g(z) - E(z) has a zero at co. (5.24) 

Using (5.5), we see that E(z) has the Fourier expansion 

-2q 2’7 - 12q Ii7 + 86 + o(q’J7). (5.25) 

Using (5.6), we see that 

G,(z)~ = -q 2:7( 1 + q’j7 + @q5/7))7, (5.26) 

‘32(zJ7 = q ‘I’( 1 + o(q2’7))7, (5.27) 

and 

G,(z)~ = O(q317). (5.28) 

Thus g(z) also has a Fourier expansion as in (5.25), so (5.24) follows. 

6. EXTENSIONS OF IDENTITIES OF RAMANUJAN 

In Theorem 5.1, two identities of the type (5.1) were proved for p = 13. 
These are stated by Ramanujan in [ 10, Chap. 20, Entry 8(i)]. In this 
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section, we prove two further identities of type (5.1) which Ramanujan also 
stated for p = 13 in [ 10, Chap. 20, Entry 8(i)]. More importantly, we 
extend these identities to hold for infinitely many p. 

Theorem 6.1 below is a consequence of the quintuple product identity. 
As was mentioned in Section 1, Ramanujan has stated the cases p = 5, 7, 9, 
11, 13, 17 of Theorem 6.1, and Ramanathan has proved the cases p = f 1 
(mod 6). 

THEOREM 6.1. For any odd integer p > 1, 

C G(m; 2) =2(3/p) UP%, 
m(mod P) 

(6.1) 

where (3/p) is the Legendre symbol. 

Proof: By (5.2) 

m m k=-r 

= 2 f ( _ 1 )j q3W~ + 1/6)2/2 = 2 F (_ 1)’ q3(i+p/6)2/(2p2). 

j= --r; ,= -K 

(6.2) 

BY (2.5), 

v(z) = f ( _ 1)” $‘k + 1/6?/2, 
k= -cc 

(6.3) 

so it remains to show that 

f (_ 1)’ qXi+p/6?/2 = (3/p) f (_ l)k q3(k+ 1/6?/2. (6.4) 
j= -z k= -m 

This is easily checked in the cases p = f l(mod 12), p s fS(mod 12), 
wherein (3/p) = 1, (3/p) = - 1, respectively. Finally, suppose that 3 1 p, so 
(3/p) = 0. Then the sum on the left side of (6.4) equals 

f f (-l)iq3(~+l12P/2, (6.5) 
j= --m 

The jth summand in (6.5) is the negative of the (- 1 -j)th summand, for 
j=o, 1, 2, . ..) so the sum in (6.5) vanishes. Thus (6.4) holds. 

In Theorem 5.1, we evaluated the function k,(z), defined in (4.22) for 
p = 13, E = - 1. In Theorem 6.2 below, we evaluate k,(z) for E = 1 and all 
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primes p = 1 (mod 4). Ramanujan has stated the special cases p = 13, 17 of 
Theorem 6.2[ 10, Chap. 20, Entries 8(i) and 12(i)]. 

We are very grateful to H. M. Stark for helpful suggestions relating to 
the proof of Theorem 6.2. 

THEOREM 6.2. For each prime p = 1 (mod 4) 

c G(m; z) G(mB; 2) = 2~,~~(z/p)/~*(~), (6.6) 
m (mod p) 

where b is any primitive fburth root I$ unity (mod p), and 

c (-l),,? 
m, n t I 

(em I?+(bn ,)2=2p 

Proof Let p be a prime = 1 (mod 4). By a general theorem on Hecke 
operators [ 12, Theorem 9.2.11, the space of cusp forms S(T( 12), 1, 1) is 
invariant under the Hecke operator T, defined for f~ S(T(12), 1, 1) by 

j-(z),T+=j-(pr)+;‘$f 
I’ 0 

(6.8) 

Since S(T( 12), 1, 1) = Q*(z) by Lemma 3.1, it follows that for some txP E C, 

qypz) +; p;’ Yj2 $JJ 
( > 

= LYpq2(z). 
\’ 0 (6.9) 

Since, by (5.5), q’(z) has the Fourier expansion q’!‘*( 1 - 2q + 1 f ), com- 
parison of the coefficients of q 1”2 in (6.9) shows that clP is the coefficient of 

p”2 in the Fourier expansion of ~~(2). Squaring the Fourier expansion for 
i(z) given in (2.5), we thus see that c( equals the expression a in (6.7). 

For a modular form h(z) with a FoLrier expansion of the fo;m 

h(z) = c hkqk”‘*“), b,E@, (6.10) 
keL 

define 

z(h) = c bkqk/“*J” = - l “c’ h(z + 12~). 
plk P ,>=o 

(6.11) 

Thus Z(h) is the sum of those terms of (6.10) with integral powers of q1’12. 
Now (6.9) can be rewritten as 

r12(PZ) + 4r12(Z/P)) = apr12(z). (6.12) 
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Squaring both sides of (6.1) we obtain 

r12(z/p) = : 1 (V(PZ) G,(Pz))(~~(Pz) G,(Pz)). (6.13) 
m. *(mod P) 

BY (5.21, 

VI(PZ) G,(Pz) = ( - 1 Y q1’24 kzg, (-llk(s (pk+m)(3pk+3m~~)l(2~) 

+4 
(Pk~m)(3Pk--3m~p)l(2p)). (6.14) 

Thus, either all or none of the terms in the Fourier expansion of the 
product (I G,(pz))(q(pz) G,(pz)) will contain integral powers of q1’12, 
according as m2 + n2 is divisible by p or not. Note that m2 + n2 is divisible 
by p if and only if n = &mfl(modp), and then there are two such values n 
for each nonzero m(modp). Thus, by (6.13) and (2.28) (2.29) 

1(v2(z/p))= -v2b) + 4 1 (V(PZ) G(wPz))(v(Pz) G(@;Pz)). (6.15) 
m(mod PI 

By (6.15) and (6.12) 

1 G(m; PZ) Gk& PZ) = 2h2(~z) + WI~M~)M~(P) 
Mmod P) 

= 2~,VZw12(P4? 

and (6.6) follows. 

7. APPLICATIONS OF SECTION 6 

The following theorem offers an interesting identity involving infinite 
products of the form 

(x),= fi (1-xq”). (7.1) 
m=O 

THEOREM 7.1. For t = q1/13, 

{(t*L (t3Lc (t’O)m V’M -I + tW4L (t6), (t’), (t9), } -’ 

= I(t), (t5Jcc VL V2L-‘. (7.2) 

Equivalently, for p = 13, 

G;‘(z) G;‘(z) + G4(z) G,(z) = 1 (7.3) 
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Proof: For brevity, write 

G,,, = G,(z). 

With p = 13, /I = 5, (6.6) becomes 

4(1 + G, G, + G,G, + G4G6) = -4~2(z/p)/~2(~), 

so 

BY (5.8), 

G,G,+G,G,+G,G,= -l-r/‘(z/p)/~*(z). 

(G,G,)-’ + (G,G,) ’ + (G,G,)-’ =4+q’(~/p)/4~(2). 

Adding (7.6) and (7.7), we obtain 

A+A-‘+B+B-‘-AB-(AB) ‘-3, 

with 

A=G,Gg, B= G,G,, 

since by the definition (2.27) of G, 

G, G,G,G,G,G, = - 1. 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

We are grateful to Peter Montgomery for pointing out that (7.8) is equiva- 
lent to 

(AB-A + l)(AB- BS l)=O. (7.11 ) 

By (5.13) and (5.15), B-+0 as q-0. Thus AB-B+l f 0, so 
AB - A + 1 = 0, i.e., 

B-l+A-‘=O. (7.12) 

This proves (7.3). 
By the product formula in (2.11) 

A = W/P; z) F(~/P; 2) = (t*), (t”), (t3), ([“)a 
F(l/p; z) F(~/P; z) (f’), (fi2), (t’), (t8), 

(7.13) 

and 

B= 05/p; z) F(l/p; 2) = r(t5), ([‘)a (t), (t12), 
F(~/P; z) F(~/P; z) (f4), (f9), (f6), (f’), 

(7.14) 

Now (7.2) follows from (7.12)-(7.14). 
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In the next theorem, we essentially evaluate the modular function g(z) 
given in (4.2), in the case p= 9, E, =fl, = 1, sz =/I2 = 2. The method 
described at the beginning of Section 5 could be used, but cusps other than 
0 and cc would have to be considered, since p = 9 is not prime. We base 
a proof instead on Theorem 6.1 and the following identities of Ramanujan 
proved in [4, Chap. 20, Entries 2(v), (vi), (viii)]: 

F(4/9; z) - F( l/9; z) - F(2/9; z) = ir/(z/27); (7.15) 

F( l/9; z) F(2/9; z) F(4/9; z) = -iy3(z) q(z/9)/~(2/3); (7.16) 

F(4/% z) + W/9; z) F(U9; z) = v4(z/3) 
F( l/9; z) F(4/9; z) - F(2/9; z) ~~(2) r/(z/9)’ 

(7.17) 

THEOREM 7.2. For p = 9, define 

Then 

h(z) := G,(z) G2(z)’ + G2(z) G4(~)2 + G4(z) G,(z)‘. (7.18) 

h(z)=6- ~(z/3)(3~3(z/3) + &z/27)) 
rl(z/9) v3(z) . 

(7.19) 

ProoJ: Let p = 9. As in (7.4), write G, = G,(z). By Theorem 6.1, 

i G,=O. (7.20) 
m=O 

By (2.14), (2.15), we have F(3/9; z) = F(6/9; z), so 

G,=G,= -1. 

Thus, since Go = 2, (7.20) yields 

G,+G,+G,=O. 

For brevity, set 

A = F( l/9; z), B = F( 2/9; z), 

so 

(7.21) 

(7.22) 

c= -F(4/9;z), (7.23) 

G, = -B/A, G, = -C/B, G4= -A/C. (7.24) 
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Then (7.22) and (7.15)-(7.18) are respectively equivalent to 

CB=+AC=$BA==O, (7.25) 

A + B-I- C= -iq(z/27), (7.26) 

ABC = iv3(z) 1(z/9)Mz/3), (7.27) 

(BC= + AB= + CA=)/(ABC) = - v3;;)(;&, 

and 
-h(z) = (A3 + B3 + C3)/(ABC). (7.29) 

Cubing in (7.26) and then dividing by the members of (7.27), we obtain 

+(z/27) 1(z/3) = (A + B + Cl3 
rl(z/9) v3(4 ABC 

= -h(z)- 3s4(z’3) +(j. 
v3(z) rl(z/9) 

(7.30) 

This proves (7.19). 

Remark. Define g(z) as in Theorem4.1 for p=9, &,=/I,= 1, 
.s2 = fi2 = 2. In view of (7.21), the function h(z) in (7.18) equals (g(z) - 6)/2. 
Thus, by Theorem 4.1, h(z) E M(T0(9), 0, 1). Theorem 7.2 therefore implies 
that 

E(z) .= ~r(z/3)(3~3(z/3) + ~13(z/27)) E M(T0(9) o 1) 
r?(zl9) v3(z) 

3, . (7.31) 

The validity of (7.31) is not directly evident, although it is easy to see 
directly that E(z)E M(r0(27), 0, 1). A more direct way to verify (7.31) is to 
use Jacobi’s identity [S, p. 1721, 

to prove that 

q3(z)= -f (-I)k(2k+1)q(2k+‘~2’8, 
k=O 

(7.32) 

E(z + 9) = E(z). (7.33) 

Then (7.31) follows since ( U9, r’(27)) = r’(9) [ 12, Theorem 1.4.51, where 
Ii= (A i). Note that since the Fourier expansion of E(z) begins with the 
term q , -‘I9 the level of E(z) must be exactly 9. 

The following product identity of Ramanujan [ 1, (28.1)] holds for all 
odd p> 1: 

IP- IV2 

,I=‘, F(m/p; z) = 8” Iv2 q(z/p) q(PP 3)‘2(z). (7.34) 
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The special case (7.16) for p = 9 was used along with Theorem 6.1 to prove 
Theorem 7.2. We now give one further application of Theorem 6.1. Let 
p = 5. Then Theorem 6.1 yields 

G(l; z) + G(2; z) = - 1 -r/(z/25)/q(z) (7.35) 

and (7.34) becomes 

F(l/$z) F(2/5;z)= -q(z)q(z/5). (7.36) 

Multiplying, we obtain the following result of Ramanujan [l, Entry 
38(iv)]: 

F*( 1/5;z)- F2(2/5;z)=~(z/5)~(z)+ij(z/5)r/(z/25). (7.37) 
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