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THE UNIVERSALITY OF WORDS x'ys

IN ALTERNATING GROUPS

J. L. BRENNER, R. J. EVANS AND D. M. SILBERGER

Abstract. If /', s are nonzero integers and m is the largest squarefree divisor of rs,

'then for every element ; in the alternating group A„, the equation z = xry' has a

solution with x, y e A„, provided that « > 5 and n > (5/2)logm. The bound

(5/2)log m improves the bound Am + 1 of Droste. If n > 29, the coefficient 5/2

may be replaced by 2; however, 5/2 cannot be replaced by 1 even for all large n.

1. Introduction. For a group G, a word W(xx,.. .,xk) in free variables xx,... ,xk is

said to be (J-universal if G c W(G,... ,G), i.e., if for every g e G, there exist

gx,...,gk g G such that g= W(gx,... ,gk). Let An denote the alternating group

contained in the symmetric group S„ on {1,... ,n}. For each pair of nonzero integers

r, s, let m = m(r, s) denote the product of the distinct prime factors of rs. It is

known [6, Theorem 1; 9] that the word xrys is A „-universal for all n > Am + 1. In

Theorem 3, we show that the condition n ^ Am + 1 may be replaced by the

condition n > (5/2)log m if n > 5, and even by the condition n > 2 log m if n > 29.

Cases n < 29 are treated separately in Theorem 2. Theorem 1 is used to show that

Theorem 2 is "best possible". In Theorem 3', we show that the bound 2 log m for

n > 29 cannot be replaced by log m, even just for n > N0; however, 2 log m can be

replaced by Clog m for any constant C > 8/5, provided that n 3s N0(C).

2. Statements of theorems.

Theorem 1. Let n, a, b be positive integers with n^l and a + b < 2[3n/A], where

[x] denotes the integer part of x. If n = 0 or 1 (mod 4), let w be any product of2[n/A]

disjoint 2-cycles in Sn, and ifn = 3 — e (mod 4) with e = 0 or 1, let w be any product of

2[n/A] — e disjoint 2-cycles with a disjoint (3 + e)-cycle in Sn. Then w does not equal a

product of an a-cycle and a b-cycle in Sn.

Remark. Theorem 1 is best possible in the sense that, for each n, the symbol <

cannot be replaced by < . For, if a — b = [3«/4], then by [1, or 3, Corollary 2.10],

every element of An is a product of two A-cycles in S„.

Theorem 2. Let Pn denote the product of the distinct primes < n. For each n < 28,

the word xrys is A „-universal when m < P„/d„, where the values of d„ are given in
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the following table:

1,2 3,4 5,6,7,10,15 8,9,14 11,12,13 16,17,18 19,20,21 22,23 24.25 26 27,28

1 5 11 11 • 13 13 13 • 17 17 17 • 19

Remark. Theorem 2 is best possible in the sense that, for each n, the symbol <

cannot be replaced by ^ . To see this, first suppose that n = 3 or 4. Then x3^3 is a

word with m = 3 = P„/2 which is not v4 „-universal, since the 3-cycle (123) does not

have the form x3y3. Next suppose that n = 5, 6, 7, 10, or 15. Then x"'y"1 is a word

with m = P„/l which is not A „-universal since x"' is trivial for all x e A„. If n = 8

or 9, then x"]/'5yn'^5 is a word with m = P„/5 which is not ^„-universal since, by

Theorem 1 with a = b = 5, (12)(34)(56)(78) is not the product of two 5-cycles. The

values of n in the ranges 11-13, 16-28 may be handled similarly. For example, if

n = 19, then xai/143y"l/143 is a word with m = P„/143 which is not A „-universal

since, by Theorem 1, (12)(34)(56)(78)(9 10)(11 12)(13 14)(15 16)(17 18 19) is not the

product of two 13-cycles nor two 11-cycles nor an 11-cycle times a 13-cycle. (Note

that there is no element of order 143 in AX9.) Finally, suppose that n = 14. Then

x>'\/2iyn\/2i -s a wor(j w¿in m = Pn/5 which is not ^„-universal, for it is known [4]

that (12)(34)(56)(78)(9 10)(11 12 13 14) is not the product of two elements of order 5

in Ax4. (It is stated incorrectly in [5, p. 39] that for n > 11, every element of An is the

product of two elements of order 5.)

Theorem 3. The word xrys is A„-universal for all n ^ (5/2)log m if n > 5. //

n > 29, then xrys is A „-universal for all n > 2 log m.

Theorem 3'. Let C be any constant exceeding 8/5. For all n ^ N0(C), xrys is

A „-universal whenever n > Clog m. On the other hand, it is not true that, for all

n > A/q, every word xrys is A „-universal whenever n > log m.

3. Lemmas.

Lemma 4. Choose a positive integer b such that [3n/A] < b < n. Then every element

of A„ is a product of two b-cycles in S„.

Proof. This is easily checked for n < 4, and for n > 5, it follows from [3,

Corollary 2.10].

Lemma 5. Choose integers u, v ^ A such that [3n/A] + l^u + v^n. Then every

element of A „ is a product of two words, each of which is a product of a u-cycle and a

disjoint v-cycle in S„.

Proof. This follows from the proof of [3, Corollary 2.10] and from the theorem in

[3, p. 168].
Remark. On lines 13, 17, 19, 20 of [3, p. 168], replace misprints q = 3, 4.07, /, and

7) by q — 3, 4.09, |/|, and t\e, respectively.
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Lemma 6. Let n > 5, and choose an integer v such that [3n/A] — l^v^n — 2.

Then every element of A„ is a product of two words, each of which is a product of a

2-cycle and a disjoint v-cycle in S„.

Proof. Apply [3, Theorem 3.02] and the proof of [3, Corollary 2.10].

Lemma 7. // every element of A„ is a product of two words in A„, each of whose

orders is prime to m, then xrys is A„-universal.

Proof. Given z e A„, write z = wxw2, where w: e A„ has order e¡ and (m, e¡) = 1

for i = 1, 2. Define R, S by Rr = 1 (mod ex), Ss = 1 (mod e2). Then z = xrys where

x = wx,y = w2.

Lemma 8. Suppose that 2 \ m. Then xrys is A „-universal for all n > 5.

Proof. Assume that xrys is not ^„-universal. In view of Lemma 7, the desired

contradiction will be obtained if one can apply Lemma 5 or 6 to show that every

element of A„ is a product of two nontrivial words in A„, each of order a power of 2.

If n = 5, 6, or 7, apply Lemma 6 with v = 2, A, or 4, respectively. Thus assume that

n > 8. Define the integer c by n/2 < 2' < n, and choose the largest integer d such

that 2' + 2d < n. If d = 0, then n = 2£ + 1, so apply Lemma 5 with u = v = 2C_1.

If d = 1, then r = 2C + 2 or 2' + 3, so apply Lemma 6 with u = 2C. If J > 1, we can

apply Lemma 5 with « = 2e, v = 2J; to see that u + v = 2C +x2d > 3n/A, note that

by definition of d, 2d+l + Ie > n, so 2(2' + 2d) > n + 2C > 3n/2.

Lemma9.//3 t m, then xrys is A „-universal for all n > 1.

Proof. This follows from [7, Proposition 2].

Remark. An analogue of Lemmas 8 and 9 with the condition 5 + m is given in [4].

It would be interesting to find an analogue for a general prime/? t m.

Let x = rt/8. Let />,<••■ < pa denote the primes in the interval (x, 2x],

Px < ■ ■ ■ < Pa the primes in (5x, 6x], qx < ■ ■ ■ < qy tbc primes in (2x, 3x], and

Qx < • ■■  < Qs the primes in (Ax, 5x}.

Lemma 10. Let n ^ 5. Suppose that xrys is not A„-universal. Then 6\m. Also, m is

divisible by each prime in (3n/A — 1, n] and each prime in (3«/8, n/2]. Further, for

each / = 1, 2,... ,min(a, ß), at least one of p¡, Pi divides m, and, for each j = 1,

2,... ,min(v, 8), at least one of q^, Q¡ divides m.

Proof. By Lemmas 8 and 9, we have 6\m. If p e (3n/A — 1, n] is a prime ^ 5,

then in view of Lemma 7, one can apply Lemma 4 with b = p to show that p\m. If

p e (3n/8, n/2] is a prime ^ 5, apply Lemma 5 with u = v = p to see that p\m.

Finally, apply Lemma 5 with u = /?,, v = P¡ or u = qJt v = Qj to complete the proof.

4. Proofs of theorems.

Proof of Theorem 1. This follows easily from a beautiful result of Boceara [2,

Theorem 4.1].

Proof of Theorem 2. Assume that xrys is not ^„-universal. If n = 1 or 2, then A„

would be trivial, so n > 3. If n = 3 or 4, then m > P„/2 = 3, because 3\m by

Lemma 9. If n is in the range 5-14, then m > P„/d„, since P„/d„ divides m by
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Lemma 10. If n = 16, 17, or 18, then P„/5d„ = P„/55 divides m by Lemma 10.

Moreover, one of 5, 11 also divides m by Lemma 5 with u = 5, v = 11. Thus,

m > P„/ll = P„/d„ if n = 16, 17, or 18, and the same type of argument shows that

m > P„/d„ if n = 22, 23, or 26. Now suppose that n = 19, 20, or 21. Then

P„/35d„ = P„/(5 • 7 • 11 • 13) = 19 • 17 • 3 ■ 2 divides m by Lemma 10. Moreover,

7 or 11 must divide m by Lemma 5 with u = 7, v — 11, and 5 or 13 must divide m by

Lemma 5 with u = 5, v = 13. Thus m > P„/143 = ¿Vi/„ if « = 19, 20, or 21, and

the same type of argument shows that m > P„/d„ if n = 24, 25, 27, or 28. Finally,

suppose that n = 15. Then P„/5 divides m by Lemma 10. It is known [4] that every

element of AX5 is a product of two elements of order 5 in Axs, so by Lemma 7, xrys

would be A 15-universal if 5 t m. Thus 5|m. It follows that P„\m, so m > P„ = P„/d„.

In the proofs below, we will use the number theoretic functions

0(x)=  £  log/;,       77(x)=  £  1,
/? < x p < *

where /? runs through the primes > 2.

Proof of Theorem 3'. Assume that xrys is not .4„-universal. We will show that

log m > n/C if n > N0(C). By Lemma 10,

log m > 0(r) - 0(3«/4) + 6(n/2) - 0(3n/8)

min(a, ß) min(y, 8)

+     £     log/>,+     £     log 4,.
,=1 7=1

Thus,

(1) log m > e(n) - 6(3n/A) + 9(n/2) - 0(3/7/8)

+ min(a,/3)log(«/8) + min(y, 5) log(rc/4),

where a = 7r(2«/8) - w(«/8), /3 = tt(6«/8) - 7r(5«/8), y = 7r(3«/8) - tt(2«/8), Ô

= w(5«/8) — 77(4>j/8). Now apply the asymptotic formulas [8, p. 66] 6(n) - n,

■n(n) - «/log n(n -» oo). Since 8/(5C) < 1, it follows from (1) that, for n > N0(C),

log m > (8/(5C))(n/4 + «/8 + «/8 + "/8) = h/C.

This proves the first part of Theorem 3'.

Let n be any of the infinitely many integers for which n > 6(n) [8, p. 67]. Put

r = s = n\. Then log m = 0(n) < n, yet x^5 is not ^„-universal since xr and ys are

trivial for all x, y- G yl„.

Proof of Theorem 3. Assume that xrys is not ^„-universal. We will first show

that log m > n/2 if n s= 29. Write x = n/%. Then

and

min(a,/?)

£   log /j, >
; = 1

min(y, 5)

£     log ?, >
7 = 1

0(2x)-0(x)     ifa</3,

/31ogx if a > ß,

6(3x)-8(2x)     ify«5,

8\og2x if y > 8.
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For brevity, write 0(i, j) := 6(ix) - d(jx). Then, by (1),

'0(8,6) + 0(4,1) ifa<j8,y<ô,

,' 0(8,6) + 0(4,3) + 6(2,1) +ôlog2x     if a < ß, y > 8,
í 2 ) IOS YYl 5**   \

» 0(8,6) + (9(4,2) + /3 log x if a > j8, y < «,

^0(8,6) + 0(4,3) + ôlog2x + /31ogx     if a > ß, y > 8.

Case 1. n > 108. By [8, Theorems 9 and 10],

0(2,1) > (.98)(2x) -(1.02)x = .94x,

0(4,3)>.86x,    0(4,2) > 1.88x,    0(4,1) >2.9x,

0(8,6) > 1.72x,    0(6,5)>.78x,    0(5,4) > .82x,

/31ogx = (logjt)(ir(6x) - ir(5x)) > y^-^(0(6x) - 0(5x))

log(l08/8)    ,
>-7s-V^- .78x   > .7x,

log(6 • 108/8)

and

51og2x = (log2x)(77(5x) - tr(Ax)) > ^|^(0(5x) - 0(4x))

log(2 - 10s/8)
> —;-;—r(-82x) > .77x.

log(5 • 108/8)

Thus, in all four cases of (2), log m > Ax = n/2.

Case 2. 7481 < n < 108. By [8, Theorems 10 and 18],

0(2,1) > (.96)(2x) -x= .92x,

0(4,3)>.88x,    0(4,2) > 1.88x,    0(4,1) > 2.88x,

0(8,6) > 1.84x,    0(6,5) > .85x,    0(5,4) > .85x,

and

„.     „        log2x./r   ..      log2 • 7481 , „^   ,

SI°Z2X > Tofe^5'4) > log5-7481 (-85x) > J5X-

Again by (2), log m > Ax = n/2.

Case 3. 223 «g n < 7481. It is easily checked by computer that log m > n/2 as a

consequence of (2) and the fact that 6|w (see Lemma 10).

Case A. 29 < n < 222. Here one proceeds as in Case 3, except that judicious use of

Lemmas 5 and 10 must also be made for several values of n. We illustrate with the

most troublesome value, n = 36. By Lemma 10, m is divisible by 2 • 3 • 17 • 29 • 31.

By Lemma 5 with n = 36, u = 5, v = 25, m is divisible by 5. By Lemma 5 with

u = 13, v = 19, m is divisible by one of 13, 19. Similarly, m is divisible by one of 13,

23, by one of 11, 19, by one of 11, 23, and by one of 7, 23. Thus m is divisible by

7 • 11 • 13 (if 23 I m) or 23 • 19 or 23 • 11. In any event, log m > n/2 = 18, since

log(2 ■ 3 • 5 • 11 • 17 • 23 ■ 29 • 31) > 18.

Case 5. 5 < n < 28. By Theorem 2, log m > log P„/d„ > 2n/5, as claimed.
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