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Abstract

We provide systematic evaluations, in terms of binary quadratic
representations of 4p, for the p-th Fourier coefficients of each member
f of an infinite class C of CM eigenforms. As an application, previously
conjectured evaluations of three algebro-geometric character sums can
now be formulated explicitly without reference to eigenforms. There
are several non-CM newforms that appear to share some properties
with the eigenforms in C, and we pose some conjectures about their
Fourier coefficients.
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1 Introduction

Let Fp denote the field of p elements, where p is an odd prime. For a ∈ F∗p
and a multiplicative character C on F∗p, define the twisted Kloosterman sum

(1.1) K(Ck, a) :=
∑
x∈F∗p

Ck(x)e2πi(x+ax)/p,

where x is the inverse of x (mod p). Let gk(a), hk(a) denote the zeros of the
quadratic polynomial

X2 +XK(Ck, a) + Ck(−a)p.

As in [4, (4.2)], consider the twisted sum of traces of the n-th symmetric
power of twisted Kloosterman sheaves, defined by

(1.2) Tn(C, k, `) :=
∑
a∈F∗p

C
`
(a)
(
gk(a)n + gk(a)n−1hk(a) + · · ·+ hk(a)n

)
.

An estimate of this sum in the special case k = ` = 0 may be found in [6,
Theorem 4.6], while a generic estimate is displayed in [4, (4.8)]. In a number
of special cases, precise determinations in terms of Fourier coefficients of
Hecke eigenforms have been proved or conjectured [4]. For example, from [2,
Theorem 2] and [4, p. 528], we have the following conjectured evaluation of
the character sum T15(C, 1, 0) when p ≡ 1 (mod 3), p > 15, and C has order
3:

(1.3) T15(C, 1, 0) := p5r5 − 4p6r3 + 3p7r +
( p

105

)
A15(p),

where

(1.4) 4p = r2 + 27t2, r ≡ 1 (mod 3)

and

(1.5) A15(p) =

2p8 − p7|b15(p)|2, if
(

1001
p

)
= 1

0, if
(

1001
p

)
= −1,

for the p-th Fourier coefficient b15(p) of a weight 2 newform f15 for Γ0(39039)
with quartic nebentypus of conductor 3003. There are similar conjectural
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evaluations for T7(C, 2, 1) and T11(C, 1, 1), in terms of weight 2 newforms f7

and f11 for Γ0(175) and Γ0(5775), respectively.
In Section 3, we define a certain infinite class C ⊃ {f7, f11, f15} of eigen-

forms attached to Hecke characters. (It would be interesting to find algebro-
geometric objects associated with each of the CM newforms in C.) Theorem
3.1 gives systematic evaluations of the p-th Fourier coefficients of each f ∈ C,
in terms of binary quadratic representations of 4p. By virtue of this theorem,
the conjectured evaluations of the aforementioned algebro-geometric charac-
ter sums T7, T11, T15 can be formulated explicitly without any reference to
eigenforms. For instance (see Example 3.5), when p ≡ 1 (mod 3) and p > 15,
formula (1.5) becomes

(1.6) A15(p) =

2p8 − p7Eu2, if
(

1001
p

)
= 1

0, if
(

1001
p

)
= −1,

where for p satisfying
(

1001
p

)
= 1,

(1.7) E =


1, if

(
p
7

)
= 1,

(
p
11

)
= 1

7, if
(
p
7

)
= 1,

(
p
11

)
= −1

33, if
(
p
7

)
= −1,

(
p
11

)
= 1

231, if
(
p
7

)
= −1,

(
p
11

)
= −1

and the integer u2 is uniquely defined by

(1.8) 4p = Eu2 + Fv2, EF = 3003.

Let D denote the set of 62 integers 7, 11, 19, 43, 67, 163; 20, 24, 40, 52,
15, 88, 35, 148, 51, 232, 91, 115, 123, 187, 235, 267, 403, 427; 84, 120, 132,
168, 228, 280, 312, 340, 372, 408, 520, 532, 708, 760, 195, 1012, 435, 483,
555, 595, 627, 715, 795, 1435; 420, 660, 840, 1092, 1320, 1380, 1428, 1540,
1848, 1155, 1995, 3003, 3315; 5460. The imaginary quadratic field

(1.9) K = Q(
√
−D), D ∈ D

has fundamental discriminant −D, and the set of units in its ring of integers
OK is {±1}. For each D ∈ D, the class group of K has the same cardinality
as the genus class group of K. Moreover, under the Generalized Riemann
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Hypothesis, there are no other imaginary quadratic fields with this property,
except for Q(

√
−1), Q(

√
−2), Q(

√
−3); see [8].

This paper proceeds as follows. In Section 2, we introduce parameters
E and u occurring in binary quadratic representations of 4p, for primes p
that split in OK . In Section 3, we define an infinite class C of eigenforms
attached to Hecke characters on K. Theorem 3.1 provides an algorithm for
systematically computing the p-th Fourier coefficient b(p) of each eigenform
f ∈ C in terms of the parameters E and u. A consequence of Theorem 3.1
(see (3.14)) is that b(p) has the form

(1.10) b(p) = m(p)
√
χ(p)w(p),

where χ is a certain Dirichlet character related to f , and m(p), w(p) are
nonnegative integers such that w(p) depends only on p’s signature (2.14).
Conjecture 2.1 in [3] suggests that a phenomenon like (1.10) holds for a non-
CM weight 3 newform for Γ0(525) with quartic nebentypus of conductor 105.
Section 4 offers conjectures of this kind for several more non-CM newforms;
see Table 2. For the corresponding integers m(p), Conjectures 4.1 and 4.2
give congruences that depend only on p’s signature. All of these conjectures
have been verified for p < 5000, using a Sage program like the one described
in [3].

2 Representation of primes p by binary

quadratic forms

Throughout this and the next section, p and ` denote primes which are split
and ramified, respectively, in K = Q(

√
−D), where D ∈ D. Write the prime

ideal factorizations of (p) and (`) in OK as

(2.1) (p) = PpPp, (l) = P2
` .

Fix a distinguished odd prime factor r of D. Let

(2.2) L = {`1, `2, . . . , `k}, `1 < · · · < `k

denote the set of prime factors of D/r.
Since D ∈ D, it follows from genus theory [7, p. 509] that for any prime

p (that splits in K),

(2.3) Pp

∏
`∈L

P
a(`)
` = (α)
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for some α ∈ OK and some a(`) ∈ {0, 1}. Each of the 2k ideal classes of K
can be written in the form [Pp] for some (split) p, and (2.3) yields a bijection
between these 2k ideal classes [Pp] and the 2k tuples (a(`1), . . . , a(`k)). Taking
norms in (2.3), we have

(2.4) pE = αα, E =
∏
`∈L

`a(`).

Since E divides D/r, we can write

(2.5) D = EF, r | F.

As α is an integer of K = Q(
√
−D), there are rational integers x, v for which

(2.6) α = (x+ iv
√
D)/2.

Then by (2.4),

(2.7) 4pE = x2 +Dv2.

By (2.5) and (2.7), E divides x, so we can write x = Eu for some integer u.
Consequently, (2.6) and (2.7) become

(2.8) α = (Eu+ iv
√
D)/2

and

(2.9) 4p = Eu2 + Fv2, D = EF,

for some integers u, v. Since D > 4, the integers u, v in (2.9) are unique up
to sign for each (split) p [1, Lemma 3.01]. Observe that as p varies, E can
be any one of the 2k positive divisors of D for which 4 - E and r - E.

Write

(2.10) −D = d0d1 · · · dk,

where d0 = (−1)(r−1)/2r and di is the prime discriminant corresponding to
the prime `i, i = 1, 2, . . . , k. Define the functions ψi, i = 0, 1, . . . , k, on the
set of primes q in terms of Kronecker symbols, as follows:

(2.11) ψi(q) =


(
di
q

)
, if q - di(

−D/di
q

)
, if q | di.
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Extend the definition by multiplicativity to define the functions ψi on all
positive integers. It is easily seen that for any prime q that splits or ramifies
in K,

(2.12)
k∏
i=0

ψi(q) = 1.

For a given split prime p, we now describe a quick (well-known) method for
determining the corresponding parameter E in (2.9). By (2.7), ψi(pE) = 1
for i = 1, 2, . . . , k (see for example [5, (2.12)]). Thus

(2.13) ψi(E) = ψi(p) =

(
di
p

)
, i = 1, 2, . . . , k.

Among the 2k possible choices of E, only one will satisfy (2.13), in view of
(2.12) and [5, (2.12)]. In other words E (and thus also F , |u|, and |v|) is
completely determined by p’s signature

(2.14)

((
d1

p

)
, . . . ,

(
dk
p

))
.

Example 2.1. Let D = 5460, r = 13, p = 1000003. Then the signature
(2.14) is

(2.15)

((
−4

p

)
,

(
−3

p

)
,

(
5

p

)
,

(
−7

p

))
= (−1, 1,−1, 1).

Examining the 16 possible values of E which divide 5460 with 4 - E, 13 - E,
we find that (2.13) holds for E = 42. As a check,

4p = 4000012 = 42 · 1732 + 130 · 512.

3 Eigenforms attached to Hecke characters

Choose a positive integer h and a Dirichlet character χ (mod r) for which
χ(−1) = (−1)h. Note that χ has conductor r1, where

r1 = 1 or r1 = r according as χ is trivial or nontrivial.
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For α ∈ K prime to r, there is a unique nonzero rational integer a (mod r)
such that α ≡ a (mod Pr), so we can extend χ to a character on the elements
of K prime to r by defining χ(α) = χ(a). We now create a complex-valued
multiplicative function φ on the group of fractional ideals of K prime to r,
by defining

(3.1) φ((α)) = αhχ(α), for α ∈ K prime to r,

(3.2) φ(P`) =
(
`hχ(`)

)1/2
, for ` ∈ L,

where we take a fixed branch of the square root, say the principal square
root. By (2.3), this completely defines φ. Note that the square of (3.2) is
consistent with (3.1), and φ is well-defined in (3.1) because χ(−1) = (−1)h.
The function φ is a weight h + 1 Hecke character on K. It gives rise to a
weight h+ 1 eigenform f for Γ0(r1D) with nebentypus χ(·)

(−D
·

)
, namely

(3.3) f(z) =
∑

A

φ(A)qN(A), q = e2πiz,

where A runs through all ideals of OK whose norm N(A) is prime to r; see
[9, p. 9]. These functions f(z), for all possible choices of D, r, h, and χ,
comprise an infinite class C of eigenforms attached to Hecke characters on
K. For f ∈ C, we wish to evaluate the Fourier coefficients b(n) in

(3.4) f(z) =
∞∑
n=1

b(n)qn.

By [6, (6.83)], it suffices to restrict our attention to prime n. Clearly

(3.5) b(r) = 0, b(n) = 0 for every prime n inert in K.

For ramified n = ` ∈ L, it follows from (3.2) that

(3.6) b(`) =
(
`hχ(`)

)1/2
.

It remains to evaluate b(p) for split p. Applying φ to (2.3), we have

(3.7) φ(Pp)
(
Ehχ(E)

)1/2
= αhχ(α),
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where the branch of the square root is specified by

(3.8)
(
Ehχ(E)

)1/2
=
∏
`|E

(
`hχ(`)

)1/2
.

Since α ≡ α (mod Pr) by (2.8), we have

(3.9) χ(α) = χ(α) = χ(uE/2).

Thus, applying φ to the complex conjugate of (2.3), we obtain

(3.10) φ(Pp)
(
Ehχ(E)

)1/2
= αhχ(α).

Consequently,

(3.11) b(p) = φ(Pp) + φ(Pp) = (αh + αh)χ(α)
(
Ehχ(E)

)−1/2
.

Therefore, by (2.8),

(3.12) b(p) = 2
(
Ehχ(E)

)1/2
(u/2)hχ(u/2)

∑
m≥0

(
h

2m

)(
−v2F

Eu2

)m
.

For brevity, write

(3.13) G = Eu2/4.

Since χ(G) = χ(p) by (2.9), we can rewrite (3.12) as

(3.14) b(p) = 2
√
χ(p)

∑
m≥0

(
h

2m

)
(G− p)mGh/2−m,

where the branch of
√
χ(p) =

√
χ(G) is determined by (3.8). We have thus

proved the following theorem.

Theorem 3.1. For D ∈ D, let K = Q(
√
−D). Choose any positive integer

h, an odd prime factor r of D, and a Dirichlet character χ (mod r) of con-
ductor r1 with χ(−1) = (−1)h. As in (3.3), define a weight h+ 1 eigenform
f for Γ0(r1D) with nebentypus χ(·)

(−D
·

)
attached to a weight h + 1 Hecke

character on K. Let C denote the set of all such eigenforms f . Then the
Fourier coefficients b(n) of any f ∈ C are completely determined by (3.5),
(3.6), and (3.14).
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Remark 3.2. Although 4 appears in the denominator of G in (3.13), it is
nevertheless the case that the members of (3.14) are algebraic integers, by
virtue of (3.11). It thus follows from (3.14) that when f has even weight (i.e.,
h is odd), b(p) is an integer multiple of

√
χ(p)E, whereas when f has odd

weight, b(p) is an integer multiple of
√
χ(p). Cf. (1.10).

Remark 3.3. The special cases of (3.14) for weights 2,3,4,5 are

(3.15) b(p) = u
√
χ(p)E, if h = 1,

(3.16) b(p) =
√
χ(p)(Eu2 − 2p), if h = 2,

(3.17) b(p) = u
√
χ(p)E(Eu2 − 3p), if h = 3,

(3.18) b(p) =
√
χ(p)(E2u4 − 4pEu2 + 2p2), if h = 4.

Remark 3.4. Theorem 3.1 shows that the coefficient field of any f ∈ C is

(3.19)

{
Q

(
(`1χ(`1))1/2 , . . . , (`kχ(`k))

1/2
)
, if h is odd

Q

(
χ(`1)1/2, . . . , χ(`k)

1/2
)
, if h is even.

In particular, when f has odd weight, the coefficient field is cyclotomic.

Example 3.5. Choose D = 3003, r = 13, and h = 1. Let p denote any

prime for which
(
−3003
p

)
= 1. Specify a quartic character χ (mod 13) by

setting χ(2) = i. We have

(3.20) 4p = Eu2 + Fv2, 13 - E

for 8 possible factors E of D = 3003 depending on the choice of p. By the
remarks above (2.14), these 8 possible factors correspond to the 8 possible
signatures

(3.21) s(p) :=

((
−3

p

)
,

(
−7

p

)
,

(
−11

p

))
.

Class C contains a weight 2 newform f for Γ0(39039) with a quartic neben-
typus χ(·)

(−3003
·

)
of conductor 3003. By (3.19), f has coefficient field

(3.22) Q(
√

3, ζ
√

7, ζ
√

11), ζ = e2πi/8

of degree 16 over Q. By (3.12) with h = 1, the p-th Fourier coefficients b(p)
of f are as given in Table 1. For primes n starting with n = 2, the list of
f ’s Fourier coefficients b(n) begins: 0,

√
3, 0, ζ

√
7, ζ
√

11, 0, 0, 0, 0, −
√

77,
−ζ
√

33, 0, −ζ
√

21, . . . .
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Table 1: The newform in Example 3.5

s(p) E F b(p)

1,1,1 1 3003 −iuχ(u)

1,1,-1 7 429 −ζuχ(u)
√

7

1,-1,1 33 91 −ζuχ(u)
√

33

1,-1,-1 231 13 −uχ(u)
√

231

-1,1,1 11 273 −ζuχ(u)
√

11

-1,1,-1 77 39 −uχ(u)
√

77

-1,-1,1 3 1001 −iuχ(u)
√

3

-1,-1,-1 21 143 −ζuχ(u)
√

21

4 Some non-CM newforms

This section offers examples of newforms which, although not attached to
Hecke characters, appear to have Fourier coefficients satisfying an analogue
of (1.10). For simplicity, we restrict our examples to those with weight
k ∈ {2, 3, 4}, level N divisible by exactly three primes `1 < `2 < `3, and
nebentypus χ of conductor

(4.1) c = |d1d2d3|,

where di is the prime discriminant corresponding to the prime `i, i = 1, 2, 3.
Table 2 gives 17 examples of such weight k, level N newforms with quadratic
nebentypus

(4.2) χ(·) =

(
d1d2d3

·

)
of conductor c, whose Fourier coefficients b(p) for primes p not dividing the
level have the form

(4.3) b(p) = m(p)
√
χ(p)w(p), if p - N, p < 5000,

where m(p) and w(p) are nonnegative integers such that w(p) depends only
on the signature

(4.4) S(p) :=

((
d1

p

)
,

(
d2

p

)
,

(
d3

p

))
.
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We conjecture that Table 2 could be extended to give infinitely many such
examples. Table 2 uses the notation w(p) = wi, where i = 1, 2, 3, 4, 5, 6, 7, 8
according as S(p) equals (1, 1, 1), (−1, 1, 1), (1, 1,−1), (−1, 1,−1), (1,−1, 1),
(−1,−1, 1), (1,−1,−1), (−1,−1,−1). We conjecture that the data in each
row of Table 2 is valid for all primes p - N , i.e., that the restriction p < 5000
in (4.3) can be dropped.

Table 2: 17 newforms not attached to Hecke characters

k N c w1 w2 w3 w4 w5 w6 w7 w8

2 180 60 4 60 6 10 2 30 12 20
4 300 60 4 60 100 60 80 1200 80 48
3 168 168 4 28 24 168 32 56 12 84
3 260 260 4 2496 48 52 624 4 52 48
3 336 84 4 12 66 22 2772 924 42 126
3 504 168 4 4 96 96 8 8 48 48
3 600 120 4 28 4 28 224 8 224 8
3 672 168 4 28 24 168 32 56 12 84
3 975 195 4 800 160 20 4 800 160 20
3 987 987 4 20 30 6 6 30 20 4
3 1008 84 4 84 48 112 18 42 24 2016
3 1197 399 4 8 10 20 684 38 190 3420
3 1232 308 1 115 690 6 69 15 10 46
3 1480 1480 4 348 58 6 6 58 348 4
3 1488 372 1 7 203 29 29 203 7 1
3 1508 1508 4 880 440 2 40 22 44 20
3 1584 132 4 220 10 22 2 110 20 44

The 17 newforms in Table 2 each have nebentypus of order 2, but there
are similar examples with higher order nebentypus as well. For instance,
consider the quartic character ψ of conductor 165 defined by

(4.5) ψ(·) =

(
33

·

)
χ(·),

where χ is a quartic character (mod 5) such that χ(2) = i. There is a
weight 3 newform for Γ0(825) with nebentypus ψ whose Fourier coefficients
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b(p) satisfy (4.3), but this time with w(p) depending only on the signature

(4.6)

((
33

p

)
, χ(p)

)
.

Specifically,

(4.7) w(p) =



1, if
(

33
p

)
= 1, χ(p) = 1

25, if
(

33
p

)
= 1, χ(p) = −1

7475, if
(

33
p

)
= −1, χ(p) = 1

299, if
(

33
p

)
= −1, χ(p) = −1

13, if
(

33
p

)
= 1,

(
5
p

)
= −1

23, if
(

33
p

)
= −1,

(
5
p

)
= −1.

In [3, Conj. 2.1], we gave a similar example for a weight 3 newform of level
525 with quartic nebentypus. (We associated a specific geometric object with
this level 525 newform, and it would be interesting if the same could be done
with the level 825 newform, as well as with the newforms in Table 2.) For the
level 525 newform, we also presented in [3] conjectural congruences for the
integers m(p) defined in (4.3). We have similar conjectural congruences for
m(p) for the level 825 newform and for each of the 17 newforms in Table 2.
These congruences, which depend only on the signature of p, have fascinating
connections with various quadratic representations of p. We content ourselves
with two examples: Conjecture 4.1 for the first newform in Table 2, and
Conjecture 4.2 for the last newform in Table 2. The congruences are valid
for p < 5000 but we conjecture that this restriction can be dropped.

Conjecture 4.1. For the weight 2, level 180 newform in Table 2, we have
the following congruences for m = m(p).

For S(p) = (1, 1, 1),

(4.8) m ≡ 1 (mod 3),

(4.9)

{
m 6≡ ±2 (mod 5), if p ≡ 1 (mod 5)

m 6≡ ±1 (mod 5), if p ≡ 4 (mod 5),
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(4.10)

{
m ≡ 0 (mod 5), if p = 9x2 + 25y2

m 6≡ 0 (mod 5), if p = x2 + 225y2.

For S(p) = (−1, 1, 1),

(4.11) m ≡ 1 (mod 2), if p ≡ 7 (mod 8),

(4.12)

{
m ≡ 1 (mod 2), if p ≡ 3 (mod 8), p = x2 + 90y2

m ≡ 0 (mod 2), if p ≡ 3 (mod 8), p = 9x2 + 10y2.

For S(p) = (1, 1,−1),

(4.13)

{
m ≡ ±1 (mod 5), if p ≡ 3 (mod 5)

m ≡ ±2 (mod 5), if p ≡ 2 (mod 5),

(4.14)

{
m ≡ 0 (mod 2), if p ≡ 1 (mod 8)

m ≡ 1 (mod 2), if p ≡ 5 (mod 8).

For S(p) = (−1, 1,−1),

(4.15) m ≡ 1 (mod 3),

(4.16)

{
m ≡ 0 (mod 2), if p ≡ 3 (mod 8)

m ≡ 1 (mod 2), if p ≡ 7 (mod 8).

For S(p) = (1,−1, 1),

(4.17) m ≡ 2 (mod 3),

(4.18)

{
m ≡ 0 (mod 2), if p ≡ 5 (mod 8)

m ≡ 1 (mod 2), if p ≡ 1 (mod 8),
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(4.19)

{
m ≡ ±1 (mod 5), if p ≡ 1 (mod 5)

m ≡ ±2 (mod 5), if p ≡ 4 (mod 5).

For S(p) = (−1,−1, 1),

(4.20)

{
m ≡ 0 (mod 2), if p ≡ 7 (mod 8)

m ≡ 1 (mod 2), if p ≡ 3 (mod 8).

For S(p) = (1,−1,−1),

(4.21) m ≡ 0 (mod 2), if p ≡ 1 (mod 8),

(4.22)

{
m ≡ 1 (mod 2), if p ≡ 5 (mod 8), p = 5x2 + 72y2

m ≡ 0 (mod 2), if p ≡ 5 (mod 8), p = 45x2 + 8y2,

(4.23)

{
m 6≡ ±2 (mod 5), if p ≡ 3 (mod 5)

m 6≡ ±1 (mod 5), if p ≡ 2 (mod 5),

(4.24)

{
m ≡ 0 (mod 5), if 2p = 9x2 + 25y2

m 6≡ 0 (mod 5), if 2p = x2 + 225y2.

For S(p) = (−1,−1,−1),

(4.25) m ≡ 1 (mod 3),

(4.26) m ≡ 0 (mod 2), if p ≡ 3 (mod 8),

(4.27)

{
m ≡ 1 (mod 2), if p ≡ 7 (mod 8), p = 5x2 + 18y2

m ≡ 0 (mod 2), if p ≡ 7 (mod 8), p = 2x2 + 45y2.
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Conjecture 4.2. For the weight 3, level 1584 newform in Table 2, we have
the following congruences for m = m(p).

For S(p) = (1, 1, 1),

(4.28)

{
m ≡ 1 (mod 2), if p ≡ 5 (mod 8)

m ≡ 0 (mod 2), if p ≡ 1 (mod 8),

(4.29) m 6≡ ±2p,±4p (mod 11),

(4.30)

{
m ≡ 0 (mod 5), if p ≡ ±2 (mod 5), p = x2 − 99y2

m ≡ ±2 (mod 5), if p ≡ ±2 (mod 5), p = 9x2 − 11y2,

(4.31)

{
m ≡ 0 (mod 5), if p ≡ ±1 (mod 5), p = 9x2 − 11y2

m ≡ ±1 (mod 5), if p ≡ ±1 (mod 5), p = x2 − 99y2.

While there are values of m in each of the three congruence classes
(mod 3), we further conjecture that asymptotically half of the values of m
are congruent to 2 (mod 3).

For S(p) = (−1, 1, 1),

(4.32) m ≡ 0 (mod 2), if p ≡ 3 (mod 8),

(4.33)

{
m ≡ 0 (mod 2), if p ≡ 7 (mod 8), p = x2 + 198y2

m ≡ 1 (mod 2), if p ≡ 7 (mod 8), p = 9x2 + 22y2.

While there are values of m in each of the three congruence classes
(mod 3), we further conjecture that asymptotically only one fifth of the
values of m are congruent to 0 (mod 3).

For S(p) = (1, 1,−1),

(4.34) m 6≡ 0,±p,±4p (mod 11),
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(4.35)

{
m ≡ 0 (mod 2), if p ≡ 1 (mod 8)

m ≡ 1 (mod 2), if p ≡ 5 (mod 8).

For S(p) = (−1, 1,−1),

(4.36) m ≡ ±p (mod 5),

(4.37)

{
m ≡ 0 (mod 2), if p ≡ 7 (mod 8)

m ≡ 1 (mod 2), if p ≡ 3 (mod 8).

For S(p) = (1,−1, 1),

(4.38) m 6≡ 0,±4p,±5p (mod 11),

(4.39) m ≡ ±p (mod 5), if p > 5,

(4.40)

{
m ≡ 0 (mod 2), if p ≡ 5 (mod 8)

m ≡ 1 (mod 2), if p ≡ 1 (mod 8).

We further conjecture that asymptotically half of the values of m are
congruent to 0 (mod 3).

For S(p) = (−1,−1, 1),

(4.41)

{
m ≡ 0 (mod 2), if p ≡ 3 (mod 8)

m ≡ 1 (mod 2), if p ≡ 7 (mod 8).

We further conjecture that asymptotically half of the values of m are
congruent to 0 (mod 3).

For S(p) = (1,−1,−1),

(4.42) m 6≡ ±p,±5p (mod 11),

(4.43) m ≡ 1 (mod 2), if p ≡ 1 (mod 8),
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(4.44)

{
m ≡ 0 (mod 2), if p ≡ 5 (mod 8), p = 11x2 + 18y2

m ≡ 1 (mod 2), if p ≡ 5 (mod 8), p = 2x2 + 99y2.

We further conjecture that asymptotically half of the values of m are
congruent to 0 (mod 3).

For S(p) = (−1,−1,−1),

(4.45)

{
m ≡ 0 (mod 5), if p ≡ ±2 (mod 5), p = 11x2 − 9y2

m ≡ ±2 (mod 5), if p ≡ ±2 (mod 5), p = 99x2 − y2,

(4.46)

{
m ≡ 0 (mod 5), if p ≡ ±1 (mod 5), p = 99x2 − y2

m ≡ ±1 (mod 5), if p ≡ ±1 (mod 5), p = 11x2 − 9y2,

(4.47) m ≡ 0 (mod 2), if p ≡ 7 (mod 8),

(4.48)

{
m ≡ 0 (mod 2), if p ≡ 3 (mod 8), p = 8x2 + 99y2

m ≡ 1 (mod 2), if p ≡ 3 (mod 8), p = 11x2 + 72y2.

We further conjecture that asymptotically half of the values of m are
congruent to 0 (mod 3).
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