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To Roger Howe on his sixtieth birthday.

Abstract. The purpose of this paper is to develop optimal strategies for a
simple integer choice game with a skew symmetric payoff matrix. The analysis
involves the calculation of certain Pfaffians associated with these matrices.

1. Introduction

Alice and Bob play a game where each secretly chooses a positive integer. If both
players choose the same integer then the game is a tie. Otherwise, the player that
chooses the smallest integer (say Bob) wins $1 (from Alice), unless the two integers
differ by 1, in which case Alice wins w dollars from Bob. Here w is an arbitrary
positive integer. This game was partially analyzed by Mendelsohn [4] about 60
years ago. It was also discussed in the book of Herstein and Kaplansky [3] and was
further popularized in a book of Martin Gardner [2, Chapter 9.3].

It will be convenient to use “negative payoffs”. For example, if Bob’s integer is
1 less than Alice’s, then Bob receives the negative payoff v = −w. That means that
Bob pays Alice w dollars. This game yields a skew-symmetric payoff matrix A(v)
for “the row player” Bob, with v on the first super-diagonal and all 1’s above. We
denote by Am(v) the m × m submatrix of A(v) consisting of the first m rows and
columns; for example,

A5(v) =


0 v 1 1 1
−v 0 v 1 1
−1 −v 0 v 1
−1 −1 −v 0 v
−1 −1 −1 −v 0

 .

If both players choose integers from the set {1, . . . , m} then Am(v) is the payoff
matrix for the row player Bob. For example, if Bob plays 3 and Alice plays 1, 2, 3,
4 or 5, then Bob wins −1, −v, 0, v or 1, respectively.

A strategy for a player of this game is a list of plays each with a corresponding
probability. For example, Bob could have the strategy of playing 1, 2, and 4 with
probabilities 2/3, 1/4, and 1/12, respectively (playing every other integer with
probability 0). A pure strategy is a strategy where one probability is 1 and all of
the rest are 0. For example, Bob’s strategy is pure if he plays 4 with probability 1.
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An optimal strategy is a strategy that beats or ties any other strategy. It is easily
seen that a strategy is optimal if and only if it beats or ties every pure strategy.

Mendelsohn [4] found numbers v4 < v3 < v2 < v1 = 0 (given below) such that:
if v2 < v < v1 then the unique optimal strategy entails playing only the integers
1, 2, 3; if v3 < v < v2 then the unique optimal strategy plays only the integers
1, 2, 3, 4, 5; and if v4 < v < v3 then the unique optimal strategy plays only the
integers 1, 2, 3, 4, 5, 6, 7. For example, v2 = (−1 −√

5)/2 and when v2 < v < 0, the
unique optimal strategy is to randomly choose the integers 1, 2, 3 with respective
probabilities v/(2v − 1), 1/(1 − 2v), v/(2v − 1). The aspect of this game that we
find to be most striking (and our main reason for studying it) is the radical change
in strategy that can be caused by a small change in the payoff v. In Theorem 1.1
below, we extend Mendelsohn’s results by explicitly determining the unique optimal
strategies for all v < 0 for which they exist. An equivalent (but less elegant) version
of Theorem 1.1 was stated without proof in [1, Appendix].

For m ≥ 1, set

vm = 1 − 1
2(1 − cos π

2m+1 )
.

This is consistent with the notation v1, v2, v3, v4 in the last paragraph. We have

0 = v1 > v2 > v3 > v4 > . . .

with

vm = −
(

2m + 1
π

)2

+ O(1),

so vm tends to −∞ quadratically.
We define a sequence of polynomials Fm = Fm(x) recursively as follows: F−1 = 0,

F0 = 1 and

Fm+1 = Fm + (x − 1)Fm−1, m ≥ 0.

The polynomials indexed by 1, 2, 3, 4, 5, 6 are respectively

1, x, 2x − 1, x2 + x − 1, 3x2 − 2x, x3 + 3x2 − 4x + 1.

For 1 ≤ j ≤ m we define rational functions in v by the formula

pj(m) = (−1)j+1 Fj−1(v)Fm−j(v)
Fm(v)

.

The advertised result, which is the main content of Theorem 3.4, is

Theorem 1.1. Suppose that there is an odd number k such that

vk+1 < v < vk.

Then pj(2k +1) > 0 for j = 1, . . . , 2k +1,
∑2k+1

j=1 pj(2k +1) = 1, and the unique
optimal strategy is to choose 1, 2, . . . , 2k + 1 with respective probabilities

p1(2k + 1), p2(2k + 1), . . . , p2k+1(2k + 1).

This integer choice game can be generalized so that for each i ≥ 1, whenever Bob
chooses i and Alice chooses i + 1, Bob’s payoff is an amount xi < 0 in lieu of the
constant amount v. We will call this more general version the “multivariate game”.
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The multivariate analogue of the payoff matrix An(v) is the skew-symmetric n× n
matrix

An = An(x1, . . . , xn−1) =



0 x1 1 1 ... 1 1
−x1 0 x2 1 ... 1 1
−1 −x2 0 x3 ... 1 1
−1 −1 −x3 0 ... 1 1
...

...
...

...
. . .

...
...

−1 −1 −1 −1 ... 0 xn−1

−1 −1 −1 −1 ... −xn−1 0


.

For indeterminates x0, x1, . . . , we can define multivariate analogues Fn = Fn(x1, . . . , xn−1)
of the polynomials Fn(x) recursively as follows: F−1 = 0, F0 = 1 and

Fm+1 = Fm + (xm − 1)Fm−1, m ≥ 0.

These polynomials are intimately related to the payoff matrices An. For example,
it will be seen in Section 5 that if n is even, Fn(x1, . . . , xn−1) is the Pfaffian of
An(x1, . . . , xn−1).

Let x denote the infinite vector (x1, x2, . . . ). In contrast with the single variable
case, we do not know an explicit characterization of the set of all vectors x such
that the multivariate game has a unique optimal strategy. However, in Theorem
4.2 we present the unique optimal strategy for the multivariate game in the special
case that the first 2m + 1 entries of x are contrained to the interior of an explicitly
given unit hypercube.

We collect together results on the polynomials Fn = Fn(x1, . . . , xn−1) and
the payoff matrices An = An(x1, . . . , xn−1) in the Appendix (Section 5). The
main result in the Appendix, Theorem 5.8, shows that if no xi equals 1, then
kerA2k+1(x1, . . . , x2k) is a one-dimensional space Rt where t is explicitly expressed
in terms of the polynomials Fn as well as in terms of Pfaffians of the diagonal minors
of A2k+1. Theorem 5.8 is instrumental in the proof of Proposition 2.2. Propositions
2.1 and 2.2 in Section 2 give a general analysis of optimal strategies for the multi-
variate game. Proposition 2.2 is applied to prove the main theorems in Sections 3
and 4 (Theorems 3.4 and 4.2).

As indicated above, this paper is dedicated to Roger Howe. We hope that he
enjoys it as much as we enjoyed writing it.

2. Strategies for the multivariate game

In this section, we provide methods for constructing optimal strategies for the
multivariate game described in Section 1.
Proposition 2.1. Suppose that there exists a vector p = (p1, . . . , p2k+1) ∈ R2k+1

such that

(2.1) kerA2k+1(x1, . . . , x2k) = Rp,

(2.2)
∑2k+1

i=1
pi = 1, with all pi > 0,

and

(2.3)
2k∑
i=1

pi + x2k+1p2k+1 > 0.
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Then the unique optimal strategy is to play i with probability pi, for 1 ≤ i ≤ 2k +1.
This strategy is still optimal (but not necessarily unique) if the inequalities in (2.2)
and (2.3) are not required to be strict.

Proof. Let Bob play j with probability pj for 1 ≤ j ≤ 2k + 1. Suppose that Alice
plays the pure strategy i. If i ≤ 2k + 1, then Bob’s payoff is

p1 + · · · + xi−1pi−1 − xipi+1 − pi+2 + · · ·
which vanishes by (2.1). If i > 2k + 2, then Bob’s payoff is 1. If i = 2k + 2, then
Bob’s payoff is

p1 + · · · + p2k + x2k+1p2k+1 > 0
by (2.3). Thus Bob beats or ties every pure strategy, so his strategy is optimal.
This argument shows that Bob’s strategy is still optimal if the inequalities in (2.2)
and (2.3) are not required to be strict.

We now prove uniqueness. Suppose that against Bob’s optimal strategy, Alice
plays an optimal strategy in which she chooses i with probability ri for i ≥ 1. We
have seen that Bob beats every pure strategy exceeding 2k + 1, so ri = 0 for every
i > 2k+1. For brevity, let A denote the payoff matrix in (2.1), and let r denote the
column vector (r1, . . . , r2k+1). Since Alice’s strategy is optimal, all 2k + 1 entries
in the vector Ar are ≤ 0. If at least one of these entries were strictly negative, then
by (2.2), we would have pAr < 0 . This is impossible, since pA = 0 by (2.1). Thus
Ar = 0. Hence by (2.1), r is a scalar multiple of p. Since the sum of the entries
of r and the sum of the entries of p both equal 1, we have r = p, which completes
the proof of uniqueness. ¤

We will now apply results in the Appendix to refine Proposition 2.1.
Proposition 2.2. Assume that xi < 0 for i ≥ 1 and that

(2.4) F2k+1(x1, . . . , x2k) 6= 0,

(2.5)

pi :=
(−1)i+1Fi−1(x1, . . . , xi−2)F2k+1−i(xi+1, . . . , x2k)

F2k+1(x1, . . . , x2k)
> 0, 1 ≤ i ≤ 2k + 1,

and

(2.6)
F2k+2(x1, . . . , x2k+1)
F2k+1(x1, . . . , x2k)

> 0.

Then p1+ · · ·+p2k+1 = 1 and the unique optimal strategy is to play i = 1, . . . , 2k+1
with probabilities p1, . . . , p2k+1, respectively. This strategy is still optimal if the
inequalities in (2.5) and (2.6) are not required to be strict.

Proof. In the notation of (2.5), write p = (p1, . . . , p2k+1). We need only check that
the three conditions of Proposition 2.1 hold. By (2.4) and (2.5) and Lemma 5.6, we
have pi > 0 and p1+· · ·+p2k+1 = 1. By Theorem 5.8, kerA2k+1(x1, . . . , x2k) = Rp.
Thus (2.1) and (2.2) are proved, and it remains to check (2.3). The left side of (2.3)
equals(

2k∑
i=1

(−1)i+1Fi−1(x1, . . . , xi−2)F2k+1−i(xi+1, . . . , x2k)

)
F2k+1(x1, . . . , x2k)

+
x2k+1F2k(x1, . . . , x2k−1)

F2k+1(x1, . . . , x2k)
=
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2k+1∑
i=1

(−1)i+1Fi−1(x1, . . . , xi−2)F2k+1−i(xi+1, . . . , x2k) + (x2k+1 − 1)F2k(x1, . . . , x2k−1)

F2k+1(x1, . . . , x2k)
and Lemma 5.6 implies that this expression is equal to

F2k+1(x1, . . . , x2k) + (x2k+1 − 1)F2k(x1, . . . , x2k−1)
F2k+1(x1, . . . , x2k)

.

By Lemma 5.4, this in turn equals the positive expression in (2.6). This completes
the proof of (2.3). ¤

We remark that Proposition 2.2 can also be proved by ad hoc methods which
are more elementary (but less elegant).

Consider the strategy of choosing i with probability pi for i ≥ 1. We say this
strategy is finite if pj = 0 for all sufficiently large j. The next result provides an
example of a game with an infinite but no finite optimal strategy.

Proposition 2.3. If xi = −(2i+1 − 3) for i = 1, 2, . . . then an optimal strategy
is to play i with probability 2−i for each i ≥ 1. This game has no finite optimal
strategy.

Proof. Let r = (r1, r2, . . . ) with ri = 2−i. The strategy of playing i with probability
ri for i ≥ 1 ties every pure strategy n, because

−
∑

i≤n−2

2−i − xn−121−n + xn2−n−1 +
∑

i>n+1

2−i = 0.

This infinite strategy is thus optimal.
Now consider another optimal strategy in which i is played with probability pi

for i ≥ 1, where 1 = p1 + p2 + · · · . Let p = (p1, p2, . . . ), viewed as an infinite
column vector. For the infinite payoff matrix A, we have 0 = rA = rAp. Since
all entries of Ap are ≤ 0, this implies that Ap = 0. Suppose for the purpose of
contradiction that pi = 0 for all i > N , where without loss of generality, N = 2m
is even. Then the submatrix A2m(x1, . . . , x2m−1) of A has a nontrivial kernel, so
its determinant and thus its Pfaffian vanishes. As was noted above Lemma 5.4,
the Pfaffian of A2m(x1, . . . , x2m−1) is F2m(x1, . . . , x2m−1). One can show using the
recurrence that

F2m(x1, . . . , x2m−1) = (−1)m(2 − 1)(23 − 1) · · · (22m−1 − 1).

Since this is nonzero, we have the desired contradiction to the assumption that a
finite optimal strategy exists. ¤

We remark that the optimal strategy given in Proposition 2.3 is not unique. In
fact, for any a with 0 ≤ a ≤ 1/2, it is optimal to play i with probability pi for
i ≥ 1, where the sequence pi is defined by the recurrence p1 = a, p2 = (1 − a)/2,
p3 = (1 + a)/12, and for n ≥ 4,

(2n − 2)pn = (2n−1 − 3)pn−1 + (2n−1 − 3)pn−2 + (2 − 2n−2)pn−3.

For each fixed a, we have 1 = p1+p2+· · · and pi > 0, except that p1 = 0 in the case
that a = 0. The case a = 1/2 gives the optimal strategy presented in Proposition
2.3.



6 RON EVANS AND NOLAN WALLACH

3. Strategies for the single variable game

In this section we will assume that all xi = v < 0. We will write An(v) for
An(v, v, . . . , v) and Fn(v) for Fn(v, v, . . . , v). Our goal is to prove Theorem 3.4.

We have the recurrence relation F−1 = 0, F0 = 1, F1 = 1 and for n ≥ 0,

Fn+2(v) = Fn+1(v) + (v − 1)Fn(v).

Since [
1 v − 1
1 0

] [
Fn+1(v)
Fn(v)

]
=

[
Fn+2(v)
Fn+1(v)

]
,

the standard argument implies that for λ±(v) = 1±√
4v−3
2 , we have

Fn(v) =
λ+(v)n+1 − λ−(v)n+1

λ+(v) − λ−(v)
.

One can also check directly that the right side satisfies the recurrence, using λ+λ− =
1 − v and λ+ + λ− = 1.
Lemma 3.1. For each n ≥ 2, the solutions to Fn(v) = 0 are

ξn,k = 1 − 1
2 + 2 cos( 2πk

n+1 )
, k = 1, . . . ,

[n

2

]
.

Proof. If Fn(v) = 0 then
λ+(v)n+1 = λ−(v)n+1

so λ+(v) = ζλ−(v) with ζn+1 = 1 and ζ 6= ±1. Thus ζλ−(v) + λ−(v) = 1, so
λ−(v) = 1

1+ζ and

1 − v = λ+λ− =
ζ

(1 + ζ)2
.

Hence

v =
1 + ζ + ζ2

1 + 2ζ + ζ2
=

1 + ζ + ζ−1

2 + ζ + ζ−1
.

Now substituting ζ =
(
e

2πi
n+1

)k

the lemma follows. ¤

Note that ξ2n,n is the leftmost zero of F2n and ξ2n+1,n is the leftmost zero of
F2n+1. The following properties of ξn,k are easily checked.
Lemma 3.2. We have
ξn,k < ξn,l if k > l,
ξ2n,n < ξ2m,m and ξ2n+1,n < ξ2m+1,m if n > m, and
ξ2n,n < ξ2n+1,n < ξ2n+2,n.

Set vn = ξ2n,n for n ≥ 1. This definition of vn agrees with that given in Section
1. Recall that 0 = v1 > v2 > . . . .
Lemma 3.3. If vk+1 < v < vk then

(3.1) (−1)[
n
2 ]Fn(v) > 0, 0 ≤ n ≤ 2k + 1,

(3.2) (−1)kF2k+2(v) > 0.

Moreover, (3.1) holds for all v < vk.
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Proof. Let v < vk. Then Lemma 3.2 implies that v is to the left of all the zeros of
Fn for n ≤ 2k + 1. Since the recurrence implies that the polynomial Fn has degree[

n
2

]
with positive leading coefficient, (3.1) follows. When also v > vk+1, (3.2) holds

because by Lemma 3.2, v is to the right of exactly one zero of F2k+2. ¤

We are now ready to prove the main result of this section.
Theorem 3.4. Let vk+1 ≤ v < vk. For 1 ≤ i ≤ 2k + 1, define

pi :=
(−1)i+1Fi−1(v)F2k+1−i(v)

F2k+1(v)
.

If vk+1 < v < vk, then all pi > 0 and the unique optimal strategy is to play i with
probability pi for 1 ≤ i ≤ 2k + 1. If v = vk+1, then this strategy is still optimal,
but it is not unique, since it is also optimal to play i + 1 with probability pi for
1 ≤ i ≤ 2k + 1.

Proof. By Lemma 3.3, the pi are all well-defined positive numbers. If vk+1 <
v < vk, then appealing again to Lemma 3.3, we see that the three conditions
of Proposition 2.2 are satisfied. Proposition 2.2 thus shows that playing i with
probability pi for 1 ≤ i ≤ 2k + 1 is the unique optimal strategy. Now suppose
that v = vk+1. Then this strategy is still optimal, but it is not unique, since by the
argument above with k+1 in place of k, it is also optimal to play j with probability

qj :=
(−1)j+1Fj−1(v)F2k+3−j(v)

F2k+3(v)

for 1 ≤ j ≤ 2k + 3. Observe that q1(v) = q2k+3(v) = 0, since F2k+2(v) = 0. It
remains to show that pi = qi+1. This can be proved by induction on i, using the
recurrence for Fn. ¤

4. Strategies for some constricted multivariate games

For k ≥ 1, let Vk be the set of infinite vectors (x1, x2, . . . ) with xi < 0 for all
i ≥ 1 that satisfy the three conditions of Proposition 2.2. When (x1, x2, . . . ) ∈ Vk,
Proposition 2.2 describes the unique optimal strategy for the corresponding game.
The uniqueness assertion implies that Vi ∩ Vj = ∅ for i 6= j.

Note that by Lemma 3.3 and Theorem 3.4, (v, v, v, . . . ) ∈ Vk if and only if
vk+1 < v < vk. We use this fact to give a class of multivariate games with unique
optimal strategy, in Theorem 4.2.
Proposition 4.1. Suppose that vk+1 < v < vk. Then there exists ε > 0 such that
if

|xi − v| < ε for i = 1, . . . , 2k + 2
then (x1, x2, . . . ) ∈ Vk.

Proof. We have (v, v, v, . . . ) ∈ Vk and Vk is open in R∞
<0. ¤

We next determine V1. The conditions defining this set are xi < 0 for all i ≥ 1
and

x2

x1 + x2 − 1
> 0,

−1
x1 + x2 − 1

> 0,
x1

x1 + x2 − 1
> 0,

x1x3 + x2 − 1
x1 + x2 − 1

> 0.

All of the conditions but the last are automatic if the xi are all negative. Thus

V1 = {(x1, x2, . . . ) ∈ R∞
<0 | x2 < min{0, 1 − x1x3}}.
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In particular, if C denotes the interior of a unit cube with vertices −(a, b, c), a, b, c ∈
{0, 1} then C × R∞

<0 is contained in V1. The following theorem extends this, by
giving for every m = 1, 2, . . . , an open unit hypercube C2m+1 in R2m+1

<0 such that
C2m+1 × R∞

<0 is contained in Vm. We will prove:
Theorem 4.2. For m = 1, 2, . . . , let

um =
2 cos( π

m+1 )
cos( π

m+1 ) − 1
.

If (x1, x2, . . . ) ∈ R∞
<0 satisfies

um > xi > um − 1, i = 1, . . . , 2m + 1

then (x1, x2, . . . ) ∈ Vm. In particular, Proposition 2.2 describes the unique optimal
strategy for the corresponding game.

The proof will occupy the rest of the section. We start with the following lemmas.
Lemma 4.3. Let w be an indeterminate. Then fixing w

1
2 , we have

(4.1)

F2n(w+1, w, w+1, . . . , w, w+1) =
1
2
(w

1
2 )n−1((w

1
2 +1)n+1+(w

1
2 −1)n+1), n ≥ 0,

(4.2) F2n(w,w+1, w, . . . , w+1, w) = wF2n−2(w+1, w, w+1, . . . , w, w+1), n ≥ 1.

Proof. Let hn denote the right side of (4.1). Direct calculation shows that

hn+2 = 2whn+1 − w(w − 1)hn.

The left side of (4.1) satisfies the same recurrence, by Lemma 5.4. Since both sides
equal 1 for n = 0 and 1 + w for n = 1, we obtain (4.1). Each side of (4.2) also
satisfies the recurrence above. Since both sides equal w for n = 0 and w(w + 1) for
n = 1, we obtain (4.2). ¤

Lemma 4.4. For fixed m > 0, set u = um and w = um − 1, in the notation of
Theorem 4.2. Then for 0 ≤ n < m

(4.3) (−1)nF2n(u,w, u, w, . . . , u) > 0,

(4.4) F2m(u,w, u, w, . . . , u) = 0,

(4.5) F2m+2(w, u,w, u, . . . , w) = 0.

Proof. We note that if

t =
cos( π

m+1 ) + 1
sin( π

m+1 )
then

t2 =
cos( π

m+1 ) + 1
1 − cos( π

m+1 )
= −w.

By Lemma 4.3 with w
1
2 = it,

F2n(u,w, u, w, . . . , u) =
1
2
(it)n−1((it + 1)n+1 + (it − 1)n+1).

After some simplification, the right side reduces to 1
2 (−1)n (cos π

m+1+1)n−1

(sin π
m+1 )2n H, where

H = (1 + ζ2)n+1 + (1 + ζ−2)n+1 = (ζ + ζ−1)n+1(ζn+1 + ζ−n−1), ζ = e
πi

2m+2 .
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Thus, to prove (4.3), we must show that H > 0. If n < m, these factors in H
involve positive cosines, while if n = m, the rightmost factor in H vanishes. This
proves (4.3) and (4.4). Finally, (4.5) follows from (4.2). ¤

We are now ready to prove Theorem 4.2. Assume that um − 1 < xi < um for
1 ≤ i ≤ 2m + 1. To satisfy the three conditions of Proposition 2.2, it suffices to
prove that

(−1)[
h
2 ]Fh(x1, . . . , xh−1) > 0, 0 ≤ h ≤ 2m + 1

and
(−1)mF2m+2(x1, . . . , x2m+1) > 0.

It is convenient to work with Gn(x1, . . . , xn−1) := (−1)[
n
2 ]Fn(x1, . . . , xn−1). Lemma

5.7 implies that for 1 ≤ j < 2n we have

(−1)j ∂

∂xj
G2n(x1, . . . , x2n−1) = Gj−1(x1, . . . , xj−2)G2n−j−1(xj+2, . . . , x2n−1).

We first use this formula to prove by induction that Gh(x1, . . . , xh−1) > 0 for
0 ≤ h ≤ 2m + 1. Clearly this holds for h = 0 and h = 1. Assume that it holds
for all h < 2n for some n with 1 ≤ n ≤ m. We will prove that it holds for h = 2n
and h = 2n + 1. By the induction hypothesis and the derivative formula above,
G2n(x1, . . . , x2n−1) is strictly decreasing in x1, strictly increasing in x2, strictly
decreasing in x3, etc. Hence

G2n(x1, . . . , x2n−1) > G2n(um, um − 1, . . . , um, um − 1, um) ≥ 0

by (4.3) and (4.4). This proves the result for h = 2n. By the induction hypothesis,

G2n+1(x1, . . . , x2n) = G2n(x1, . . . , x2n−1) + (1 − x2n)G2n−1(x1, . . . , x2n−2) > 0,

so the result holds for h = 2n + 1 as well.
It remains to prove that G2m+2(x1, . . . , x2m+1) < 0. Applying Lemma 5.7 again

we find that G2m+2 has the same monotonicity properties (decreasing in the odd
variables, increasing in the even ones), hence

G2m+2(x1, . . . , x2m+1) < G2n(um − 1, um, . . . , um − 1, um, um − 1) = 0,

by (4.5). This completes the proof of Theorem 4.2.

5. Appendix: Pfaffians associated with payoff matrices

In this section we will analyze the following skew-symmetric m × m matrices
over a field F of characteristic 0:

Am = Am(x1, . . . , xm−1) =



0 x1 1 1 ... 1 1
−x1 0 x2 1 ... 1 1
−1 −x2 0 x3 ... 1 1
−1 −1 −x3 0 ... 1 1
...

...
...

...
. . .

...
...

−1 −1 −1 −1 ... 0 xm−1

−1 −1 −1 −1 ... −xm−1 0


.

Here the superdiagonal has indeterminate entries x1, x2, . . . , xm−1 and all of the en-
tries above the superdiagonal are 1’s. In Theorem 5.8 below, we determine kerA2k+1

when no xi equals 1, and we express the Pfaffians of the diagonal minors of A2k+1
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in terms of the polynomials Fn(x1, . . . , xn−1) defined in Section 1. We first need to
recall some material about Grassmann algebras.

Let V be an m-dimensional vector space over F with choice of non-zero ele-
ment Ωm in the one-dimensional space

∧m
V . With this choice there is natural

isomorphism T of
∧m−1

V to the dual V ∗ given by the formula

x ∧ η = T (η)(x)Ωm

for η ∈
∧m−1

V and x ∈ V . Let e1, . . . , em be a basis of V so that Ωm = e1∧· · ·∧em.

A basis of
∧m−1

V is given by the elements e1∧· · ·∧êj · · ·∧em, where the circumflex

indicates deletion. Thus if x =
∑m

j=1
xjej and if η =

∑m

j=1
ηj(e1∧· · ·∧ êj · · ·∧em)

then T (η)(x) =
∑m

j=1
(−1)j−1ηjxj .

If A is a skew-symmetric matrix of size m × m with entries aij then we define

ωA =
∑
i<j

aijei ∧ ej .

We note if g is an m × m matrix with transpose gT then

ωgAgT =
(∧2

g

)
ωA

where (∧k
g

)
(v1 ∧ · · · ∧ vk) = gv1 ∧ · · · ∧ gvk.

If m = 2n with n an integer, then the Pfaffian of A, Pf(A), is given by the
formula

ωn
A

n!
= Pf(A)Ω2n;

here the n-th power is in the Grassmann algebra. If A is a 2n + 1 × 2n + 1 skew-

symmetric matrix then ωn
A

n! is in
∧2n

F 2n+1. Thus, as above, we have an element

T (ωn
A

n! ) ∈ (
F 2n+1

)∗. Using the standard form (x, y) =
∑

xiyi, we can identify(
F 2n+1

)∗ with F 2n+1.
If A is a matrix then we denote by Ar,s the matrix gotten by deleting the r-th

row and the s-th column. Note that when A is skew-symmetric, so is Arr. The
following lemma is standard but not easily referenced.
Lemma 5.1. Let A be a 2n + 1× 2n + 1 skew symmetric matrix. Then, using the
standard form to view T (ωn

A

n! ) as an element in F 2n+1, we have

(5.1) A is of rank 2n if and only if
ωn

A

n!
6= 0. Furthermore, AT (

ωn
A

n!
) = 0.

Also, as an element of F 2n+1,

(5.2) T (
ωn

A

n!
) =

∑2n+1

i=1
(−1)i+1Pf(Aii)ei.

Proof. We note that there exists g ∈ GL(2n + 1, F ) such that

ωgAgT =
∧2

g ωA =
∑l

i=1
e2i−1 ∧ e2i
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with 2l equal to the rank of A. We therefore see that ωn
A

n! 6= 0 if and only if l = n.
To see that

AT (
ωn

A

n!
) = 0

it is enough to show that

(Ax) ∧ ωn
A

n!
= 0

for all x ∈ F 2n+1. For g as above, we must show that

0 =
(∧2n+1

g

)
(Ax) ∧ ωn

A

n!
= (gAx) ∧ ωn

gAgT

n!
.

That is, we must show that for all x,

((gAgT )(gT )−1x) ∧ ωn
gAgT

n!
= 0.

This follows because the image of gAgT is contained in the span of {e1, e2, . . . , e2l}
and

ωn

gAgT

n! is either zero or a nonzero scalar multiple of Ω2n. This proves (5.1).
For each j we write

ωA = ωj +
2n+1∑
i=1

aijei ∧ ej = ωj + βj .

Then we note that ωj is ωAjj
in the basis e1, . . . , ej−1, ej+1, . . . , e2n+1, and βj∧βj =

0. Thus
ωn

A

n!
=

ωn
j

n!
+ n

ωn−1
j

n!
βj .

Since the last term is a multiple of ej in the Grassmann algebra, we see that the
coefficient of e1 ∧ · · · ∧ êj · · · ∧ e2n+1 is Pf(Ajj). This proves (5.2). ¤

Set

f0 = 1, fn = fn(x1, . . . , x2n−1) = Pf(A2n(x1, . . . , x2n−1)), n ≥ 1.

Lemma 5.2. We have

fn = x2n−1fn−1 + (x2n−2 − 1)fn−2 + (x2n−2 − 1)(x2n−4 − 1)fn−3 + · · ·+
(x2n−2 − 1) · · · (x4 − 1)f1 + (x2n−2 − 1) · · · (x4 − 1)(x2 − 1).

Proof. Before working with fn, we investigate properties of the following expres-
sions:

µn =
2n−1∑
i=1

xiei ∧ ei+1,

γn =
∑

1≤i<j−1<2n

ei ∧ ej ,

νn = x2n−2e2n−2 ∧ e2n−1 + x2n−1e2n−1 ∧ e2n,

ξn =
∑

i≤2n−3

ei ∧ e2n−1 +
∑

i≤2n−2

ei ∧ e2n

and
δj,2n =

∑
i≤j

ei ∧ ej+1 ∧ ej+2 ∧ · · · ∧ e2n.
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We have
ωA2n

= µn + γn

with
µn = µn−1 + νn

and
γn = γn−1 + ξn.

We will write the Grassmann multiplication of elements in the (commutative) even
part of the Grassmann algebra without the wedge. We note that

ν2
n = 0

and
ξ2
n = 2

∑
i≤2n−3

∑
j≤2n−2

ei ∧ e2n−1 ∧ ej ∧ e2n =

−2
∑

i≤2n−3

∑
j≤2n−2

ei ∧ ej ∧ e2n−1 ∧ e2n =

−2
∑

i≤2n−3

∑
j≤2n−3

ei ∧ ej ∧ e2n−1 ∧ e2n − 2
∑

i≤2n−3

ei ∧ e2n−2 ∧ e2n−1 ∧ e2n =

−2
∑

i≤2n−3

ei ∧ e2n−2 ∧ e2n−1 ∧ e2n

since the first sum in the penultimate expression is 0. We write this as

ξ2
n = −2δ2n−3,2n.

Also
νnξn = x2n−2δ2n−3,2n.

Similarly, for 1 < j < n, one calculates

(νj + ξj)2δ2j−1,2n = 0

and
(νj + ξj)δ2j−1,2n = (x2j−2 − 1)δ2j−3,2n.

We are now ready to derive the formula for fn. We have

fnΩ2n =
(µn + γn)n

n!
=

(µn−1 + γn−1 + νn + ξn)n

n!
=

(µn−1 + γn−1)n

n!
+ n

(µn−1 + γn−1)n−1

n!
(νn + ξn)+(

n

2

)
(µn−1 + γn−1)n−2

n!
(νn + ξn)2 = C1 + C2 + C3.

Since C1 is of degree 2n in e1, . . . , e2n−2 it is 0. We have

C2 = fn−1Ω2n−2(νn + ξn) = x2n−1fn−1Ω2n.

We now look at C3. Since

(νn + ξn)2 = 2νnξn + ξ2
n = 2(x2n−2 − 1)δ2n−3,2n,
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we have

C3 = (x2n−2 − 1)
(µn−1 + γn−1)n−2

(n − 2)!
δ2n−3,2n.

We now have our “bootstrap”:

(µn−1 + γn−1)n−2

(n − 2)!
δ2n−3,2n =

(µn−2 + γn−2 + νn−1 + ξn−1)n−2

(n − 2)!
δ2n−3,2n

=
(µn−2 + γn−2)n−2

(n − 2)!
δ2n−3,2n + (n − 2)

(µn−2 + γn−2)n−3

(n − 2)!
(νn−1 + ξn−1)δ2n−3,2n =

fn−2Ω2n +
(µn−2 + γn−2)n−3

(n − 3)!
(x2n−4 − 1)δ2n−5,2n.

Now repeat the argument on the second term, and continue in this manner, to
obtain Lemma 5.2. ¤

The next result simplifies the recurrence relation for fn.
Proposition 5.3. We have

fn = (x2n−1 + x2n−2 − 1)fn−1 − (x2n−2 − 1)(x2n−3 − 1)fn−2

with f0 = 1 and f1 = x1.

Proof. The initial conditions are clear. We write the formula in Lemma 5.2 as

fn = x2n−1fn−1 + (x2n−2 − 1)(fn−2 + (x2n−4 − 1)fn−3 + · · ·+
(x2n−4 − 1) · · · (x4 − 1)f1 + (x2n−4 − 1) · · · (x4 − 1)(x2 − 1)).

This expression is (applying Lemma 5.2 with n − 1 replacing n)

fn = x2n−1fn−1 + (x2n−2 − 1)((1 − x2n−3)fn−2 + fn−1) =

(x2n−1 + x2n−2 − 1)fn−1 − (x2n−2 − 1)(x2n−3 − 1)fn−2,

as asserted. ¤

Define the polynomials

F2n = F2n(x1, . . . , x2n−1) = fn(x1, . . . , x2n−1)

and
F2n+1 = F2n+1(x1, . . . , x2n) = fn+1(x1, . . . , x2n, 1).

In particular, F2m(x1, . . . , x2m−1) equals the Pfaffian of A2m(x1, . . . , x2m−1). The
following result shows that these Fm are the same multivariate polynomials that
were defined by the recurrence in Section 1.
Lemma 5.4. The polynomials Fn(x1, . . . , xn−1) as defined above are the solution
to the recurrence relation

F−1 = 0, F0 = F1 = 1

and
Fn+2 = Fn+1 + (xn+1 − 1)Fn, n ≥ 0.

Furthermore,

Fn+2 = (xn+1 + xn − 1)Fn − (xn − 1)(xn−1 − 1)Fn−2, n ≥ 1.
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Proof. We begin by proving the first recurrence in the even case n = 2k. Writing
fn = fn(x1, . . . , x2n−1), we have

F2k+1(x1, . . . , x2k) = fk+1(x1, . . . , x2k, 1) =

x2kfk − (x2k − 1)(x2k−1 − 1)fk−1 =
(x2k+1 + x2k − 1)fk − (x2k − 1)(x2k−1 − 1)fk−1 − (x2k+1 − 1)fk =

fk+1 − (x2k+1 − 1)fk = F2k+2 − (x2k+1 − 1)F2k.

Thus
F2k+2 = F2k+1 + (x2k+1 − 1)F2k.

We next look at the odd case n = 2k + 1. Then

F2k+3(x1, . . . , x2k+2) = fk+2(x1, . . . , x2k+2, 1) =

x2k+2fk+1 − (x2k+2 − 1)(x2k+1 − 1)fk =
fk+1 + (x2k+2 − 1)(fk+1 − (x2k+1 − 1)fk).

Now fk+1 − (x2k+1 − 1)fk = F2k+1(x1, . . . , x2k) by the first part of this argument.
Hence

F2k+3 = F2k+2 + (x2k+2 − 1)F2k+1.

Since the initial values are obvious, this completes the proof of the first recurrence.
To prove the second recurrence, note that

Fn+2 = Fn+1 + (xn+1 − 1)Fn = Fn + (xn − 1)Fn−1 + (xn+1 − 1)Fn =

(xn+1 + xn − 1)Fn + (xn − 1)(−Fn + Fn−1) =
(xn+1 + xn − 1)Fn − (xn − 1)(xn−1 − 1)Fn−2.

This completes the proof of the second recurrence. ¤

Lemma 5.5. Let n ≥ 2. For 1 ≤ i ≤ n − 1,

Fn(x1, . . . , xi−1, 1, xi+1, . . . , xn−1) = Fi(x1, . . . , xi−1)Fn−i(xi+1, . . . , xn−1).

Proof. We prove this by induction on n. If n = 2, this says that 1 = F1F1, which
is true. We have

Fn(x1, . . . , xn−2, 1) = Fn−1 + (1 − 1)Fn−2 = Fn−1.

Since F1 = 1 this proves the formula for i = n − 1. Now

Fn(x1, . . . , xn−3, 1, xn−1) = Fn−1(x1, . . . , xn−3, 1) + (xn−1 − 1)Fn−2 =

Fn−2 + (xn−1 − 1)Fn−2 = Fn−2F2(xn−1).
This proves the formula for i = n − 2. In particular, we now know the formula is
valid for n = 3. Suppose that i < n − 2 with n > 3. Then

Fn(x1, . . . , xi−1, 1, xi+1, . . . , xn−1) = Fn−1(x1, . . . , xi−1, 1, xi+1, . . . , xn−2)

+(xn−1 − 1)Fn−2(x1, . . . , xi−1, 1, xi+1, . . . , xn−3).
The induction hypothesis implies that this is equal to

Fi(x1, . . . , xi−1)(Fn−1−i(xi+1, . . . , xn−2) + (xn−1 − 1)Fn−2−i(xi+1, . . . , xn−3))

= Fi(x1, . . . , xi−1)Fn−i(xi+1, . . . , xn−1).
¤

We now examine F2k+1 = F2k+1(x1, . . . , x2k) and A2k+1 = A2k+1(x1, . . . , x2k).
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Lemma 5.6. We have

T

(
ωk

A2k+1

k!

)
=

2k+1∑
i=1

(−1)i+1Fi−1(x1, . . . , xi−2)F2k+1−i(xi+1, . . . , x2k)ei.

Furthermore

F2k+1(x1, . . . , x2k) =
2k+1∑
i=1

(−1)i+1Fi−1(x1, . . . , xi−2)F2k+1−i(xi+1, . . . , x2k).

Proof. For i = 1, . . . , 2k + 1, we consider A2k+1(x1, . . . , x2k)ii (with notation as in
Lemma 5.1). One checks that if i = 1 then

A2k+1(x1, . . . , x2k)11 = A2k(x2, . . . , x2k)

and if i = 2k + 1 then

A2k+1(x1, . . . , x2k)2k+1,2k+1 = A2k(x1, . . . , x2k−1).

For 1 < i < 2k + 1 we have

A2k+1(x1, . . . , x2k)ii = A2k(x1, . . . , xi−2, 1, xi+1, . . . , x2k).

The first part of the result now follows from Lemmas 5.1 and 5.5 in light of

Pf(A2k(x1, . . . , x2k−1)) = F2k(x1, . . . , x2k−1).

We now turn to the formula for F2k+1. This formula is easily checked for k =
0, 1, 2. Let k ≥ 3. We will induct on k. By the second part of Lemma 5.4, we have

F2k+1(x1, . . . , x2k) = (x2k + x2k−1 − 1)F2k−1 − (x2k−1 − 1)(x2k−2 − 1)F2k−3.

We now apply the induction hypothesis to F2k−1 and F2k−3 to see that F2k+1 equals

2k+1∑
i=1

(−1)i+1Fi−1 ((x2k + x2k−1 − 1)H2k−1−i − (x2k−1 − 1)(x2k−2 − 1)H2k−3−i)

where we ignore all terms in which negative subscripts occur, and where H2k−1−i =
F2k−1−i(xi+1, . . . , x2k−2) and H2k−3−i = F2k−3−i(xi+1, . . . , x2k−4). Applying the
second part of Lemma 5.4 with n = 2k − 1 − i for each i ≤ 2k − 2, we readily
complete the induction. ¤

The following lemma will be used in the proof of Theorem 4.2.

Lemma 5.7. For 1 ≤ i ≤ m

∂

∂xi
Fm+1(x1, . . . , xm) = Fi−1(x1, . . . , xi−2)Fm−i(xi+2, . . . , xm).

Proof. This result is proved by essentially the same argument as in the proof of
Lemma 5.5. ¤

Theorem 5.8. Suppose that xi 6= 1 for all i ≥ 1. Write A = A2k+1(x1, . . . , x2k).
Then ker A = Rt, where t = (t1, . . . , t2k+1) with

ti = Pf(Aii) = Fi−1(x1, . . . , xi−2)F2k+1−i(xi+1, . . . , x2k), 1 ≤ i ≤ 2k + 1.
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Proof. By Lemmas 5.1 and 5.6, the vector t described above lies in kerA, and so
by Lemma 5.1, it remains to show that t is nonzero. Assume that t is zero. Then
F2k(x1, . . . , x2k−1) = t2k+1 and F2k−1(x1, . . . , x2k−2) = t2k both vanish. But by the
first recurrence for the sequence Fn in Lemma 5.4, the vanishing of two consecutive
terms of the sequence implies the vanishing of all the terms, since xi 6= 1 for all i.
This contradicts the fact that F0 = 1. ¤

We remark that Theorem 5.8 is false if one deletes the hypothesis that xi 6= 1
for all i ≥ 1. For example, kerA5(0, 1, 0, 1) and kerA5(0, 1, 1/2, 1/2) both have
dimension 3.
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