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Abstract

A conjecture connected with quantum physics led N. Katz to dis-
cover some amazing mixed character sum identities over a field of q
elements, where q is a power of a prime p > 3. His proof required deep
algebro-geometric techniques, and he expressed interest in finding a
more straightforward direct proof. Such a proof has been given by
Evans and Greene in the case q ≡ 3 (mod 4), and in this paper we
give a proof for the remaining case q ≡ 1 (mod 4). Moreover, we show
that the identities are valid for all characteristics p > 2.
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1 Introduction

Let Fq be a field of q elements, where q is a power of an odd prime p.
Throughout this paper, A, B, C, D, χ, λ, ν, µ, ε, φ, A4, A8 denote complex
multiplicative characters on F∗q, extended to map 0 to 0. Here ε and φ always
denote the trivial and quadratic characters, respectively, while A4 denotes a
fixed quartic character when q ≡ 1 (mod 4) and A8 denotes a fixed octic
character such that A2

8 = A4 when q ≡ 1 (mod 8). Define δ(A) to be 1 or 0
according as A is trivial or not, and let δ(j, k) denote the Kronecker delta.

For y ∈ Fq, let ψ(y) denote the additive character

ψ(y) := exp

(
2πi

p

(
yp + yp

2

+ · · ·+ yq
))

.

Recall the definitions of the Gauss and Jacobi sums

G(A) =
∑
y∈Fq

A(y)ψ(y), J(A,B) =
∑
y∈Fq

A(y)B(1− y).

These sums have the familiar properties

G(ε) = −1, J(ε, ε) = q − 2,

and for nontrivial A,

G(A)G(A) = A(−1)q, J(A,A) = −A(−1), J(ε, A) = −1.

Gauss and Jacobi sums are related by [3, p. 59]

J(A,B) =
G(A)G(B)

G(AB)
, if AB 6= ε

and

J(A,C) =
A(−1)G(A)G(AC)

G(C)
= A(−1)J(A,AC), if C 6= ε.

The Hasse–Davenport product relation [3, p. 351] yields

(1.1) A(4)G(A)G(Aφ) = G(A2)G(φ).
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As in [8, p. 82], define the hypergeometric 2F1 function over Fq by

(1.2) 2F1

(
A,B
C

x

)
=
ε(x)

q

∑
y∈Fq

B(y)BC(y − 1)A(1− xy), x ∈ Fq.

For j, k ∈ Fq and a ∈ F∗q, Katz [9, p. 224] defined the mixed exponential
sum

P (j, k) : = δ(j, k) + φ(−1)δ(j,−k)+

1

G(φ)

∑
x∈F∗q

φ(a/x− x)ψ(x(j + k)2 + (a/x)(j − k)2).(1.3)

Note that P (j, k) = P (k, j) and P (−j, k) = φ(−1)P (j, k). Katz proved
an equidistribution conjecture of Wootters [9, p. 226], [1] connected with
quantum physics by constructing explicit character sums V (j) [9, pp. 226–
229]) for which the identities

(1.4) P (j, k) = V (j)V (k)

hold for all j, k ∈ Fq. (The q-dimensional vector (V (j))j∈Fq is a minimum
uncertainty state, as described by Sussman and Wootters [10].) Katz’s proof
[9, Theorem 10.2] of the identities (1.4) required the characteristic p to ex-
ceed 3, in order to guarantee that various sheaves of ranks 2, 3, and 4 have
geometric and arithmetic monodromy groups which are SL(2), SO(3), and
SO(4), respectively.

As Katz indicated in [9, p. 223], his proof of (1.4) is quite complex,
invoking the theory of Kloosterman sheaves and their rigidity properties, as
well as results of Deligne [4] and Beilinson, Bernstein, Deligne [2]. Katz [9, p.
223] wrote, “It would be interesting to find direct proofs of these identities.”

The goal of this paper is to respond to Katz’s challenge by giving a direct
proof of (1.4) ( a “character sum proof” not involving algebraic geometry)
in the case q ≡ 1 (mod 4). This has the benefit of making the demonstra-
tion of his useful identities accessible to a wider audience of mathematicians
and physicists. Another advantage of our proof is that it works for all odd
characteristics p, including p = 3. As a bonus, we obtain some interesting
character sum evaluations in terms of Gauss sums; see for example Theorems
2.1, 3.2, and 5.5.

Our method of proof is to show (see Sections 4 and 6) that the Mellin
transforms of both sides of (1.4) are equal. A key feature of our proof is the
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application in Lemma 5.1 of the following hypergeometric 2F1 transformation
formula over Fq for q ≡ 1 (mod 4) [5, Theorem 3] :

(1.5) 2F1

(
D,DA4

A4
z4

)
= D

4
(z − 1)2F1

(
D,D2φ

Dφ
−
(
z + 1

z − 1

)2
)
,

which holds for every character D on Fq and every z ∈ F∗q with z /∈ {1,−1}.
The proof of (1.5) depends on a recently proved finite field analogue [5,
Theorem 2], [7, Theorem 17] of a classical quadratic transformation formula
of Gauss.

For q ≡ 1 (mod 4), Katz’s character sums V (j) are defined in (1.6)–(1.7)
below. In the case q ≡ 3 (mod 4), the sums V (j) have a more complex
definition, in that they are sums over Fq2 [9, p. 228]. A direct proof of (1.4)
for the case q ≡ 3 (mod 4) has been given by Evans and Greene [6].

From here on, let q ≡ 1 (mod 4), so that there exists a primitive fourth
root of unity i ∈ Fq. Thus φ(−1) = φ(i2) = 1 and A4(−4) = A4((1+i)4) = 1.

For a as in (1.3), define

τ = −
√
qA4(−a),

where the choice of square root is fixed. For q ≡ 1 (mod 4), the sums V (j)
are defined as follows:

(1.6) V (j) := τ−1
∑
x∈F∗q

A4(x)ψ(x+ aj4/x), j ∈ F∗q,

while for j = 0,

(1.7) V (0) := G(A4)/τ + τ/G(A4).

2 Mellin transform of the sums V (j)

For any character χ, define the Mellin transform

(2.1) S(χ) :=
∑
j∈F∗q

χ(j)V (j).

The next theorem gives an evaluation of S(χ) in terms of Gauss sums.
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Theorem 2.1. If χ is not a fourth power, then S(χ) = 0. On the other
hand, if χ = ν4, then

(2.2) S(χ) = τ−1ν(a)
3∑

m=0

A4(a)1−mG(νAm−1
4 )G(νAm4 ).

Proof. By (1.6),
V (j) = V (ji), j ∈ F∗q.

Thus S(χ) = 0 when χ(i) 6= 1, i.e., when χ is not a fourth power.
Now set χ = ν4 for some character ν, and write λ = ν2A4. By (1.6),

τV (j) = φ(j)
∑
x∈F∗q

A4(x)ψ(j2(x+ a/x)),

so

τS(χ) =
∑
j,x∈F∗q

λ(j2)A4(x)ψ(j2(x+ a/x))

=
∑
j,x∈F∗q

λ(j)A4(x)ψ(j(x+ a/x))(1 + φ(j)).
(2.3)

First suppose that λ2 is nontrivial. Then for the sums in (2.3), there is
no contribution from the terms where x+ a/x = 0. Thus

(2.4) τS(χ) = G(λ)Y (λ) +G(λφ)Y (λφ),

where

(2.5) Y (λ) :=
∑
x∈F∗q

A4(x)λ(x+ a/x).

By (2.5),

Y (λ) = Y (ν2A4) =
∑
x∈F∗q

A4(x)ν2A4(x+ a/x) =
∑
x∈F∗q

ν(x2)ν2A4(x2 + a)

=
∑
x∈F∗q

ν(x)ν2A4(x+ a)(1 + φ(x))

= ν(−a){A4(a)J(ν, ν2A4) + A4(a)J(νφ, ν2A4)}.
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Since J(B,C) = B(−1)J(B,BC) for all characters B, C, we see that

J(ν, ν2A4) = ν(−1)J(ν, νA4), J(νφ, ν2A4) = ν(−1)J(νφ, νA4).

Thus

(2.6) Y (λ) = ν(a){A4(a)J(ν, νA4) + A4(a)J(νφ, νA4)}.

Similarly, we have

(2.7) Y (λφ) = Y (ν2A4) = ν(a){J(ν, νA4) + φ(a)J(νφ, νA4)}.

Putting (2.6)–(2.7) into (2.4), we easily see that (2.2) holds in the case that
λ2 is nontrivial.

Finally, assume that λ2 is trivial, so that ν4 = χ = φ. Then q ≡ 1
(mod 8) and ν is an odd power of A8. By (2.3),

τS(χ) =
∑
j∈Fq

∑
x∈F∗q

A4(x)ψ(j2(x+ a/x))

= q
∑
x∈F∗q

x+a/x=0

A4(x) + G(φ)
∑
x∈F∗q

A4(x)φ(x+ a/x).
(2.8)

The first of the two terms on the far right of (2.8) vanishes when φ(−a) = −1,
and so this term equals q(A8(−a) + A5

8(−a)). Thus (2.8) yields

τS(χ) = q(A8(−a) + A5
8(−a)) +G(φ)

∑
x∈Fq

A8(x)φ(a+ x)(1 + φ(x))

= q(A8(−a) + A5
8(−a)) +G(φ){A3

8(−a)J(A8, φ) + A8(−a)J(A3
8, φ)}.

It follows that

τS(χ) = A8(a)G(A8)G(A8) + A5
8(a)G(A3

8)G(A
3

8)

+ A3
8(a)G(A8)G(A

3

8) + A8(a)G(A8)G(A3
8).

(2.9)

No matter which odd power of A8 is substituted for ν in (2.2), we see that
(2.2) matches (2.9). Thus the proof of (2.2) is complete.
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3 Mellin transform of the sums P (j, 0)

For any character χ, define the Mellin transform

(3.1) T (χ) :=
∑
j∈F∗q

χ(j)P (j, 0).

Theorem 3.2 below gives an evaluation of T (χ) in terms of Gauss sums. We
will need the following lemma.

Lemma 3.1. When ν4 is nontrivial,

2F1

(
ν2, νA4

νA4
− 1

)
=
A4(−1)G(νA4)

qG(φ)G(ν2)
{G(ν)G(A4) +G(νφ)G(A4)}.

Proof. This follows by first permuting the numerator parameters by means
of [8, Corollary 3.21] and then applying a finite field analogue [8, (4.11)] of a
classical summation formula of Kummer.

Theorem 3.2. If χ is not a fourth power, then T (χ) = 0. On the other
hand, if χ = ν4, then

T (χ) = q−1A4(−1){A4(a)G(A4) +G(A4)} ×

× ν(a)
3∑

m=0

A4(a)1−mG(νAm4 )G(νAm−1
4 ).

(3.2)

Proof. By (3.1) and (1.3),

G(φ)T (χ) =
∑
j,x∈F∗q

φ(x− a/x)χ(j)ψ(j2(x+ a/x)).

Therefore T (χ) = 0 unless χ is a square, so suppose that χ = (λA4)2 for
some character λ. Then

G(φ)T (χ) =
∑
j,x∈F∗q

φ(x− a/x)λA4(j)ψ(j(x+ a/x))(1 + φ(j))

= U(λ) +W (λ) +W (λφ),

(3.3)

where

(3.4) U(λ) =
∑
x∈F∗q

x+a/x=0

φ(x− a/x)
∑
j∈F∗q

(λA4(j) + λA4(j))
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and

(3.5) W (λ) = G(λA4)
∑
x∈F∗q

φ(x− a/x)λA4(x+ a/x).

Thus T (χ) = 0 unless λA4 = ν2 for some character ν, i.e., unless χ = ν4.
This proves the first part of Theorem 3.2. For the remainder of this proof,
assume that

λA4 = ν2, χ = ν4.

First consider the case where χ = ν4 is nontrivial. Then U(λ) = 0, since
λA4 and λA4 are nontrivial.

We have

W (λ)/G(ν2) =
∑
x∈F∗q

φ(x− a/x)ν2(x+ a/x)

=
∑
x∈F∗q

ν2φ(x)φ(a− x2)ν2(a+ x2)

=
∑
x∈F∗q

νA4(x)φ(a− x)ν2(a+ x)(1 + φ(x))

= qνA4(a)2F1

(
ν2, νA4

νA4
− 1

)
+ qνA4(a)2F1

(
ν2, νA4

νA4
− 1

)
.

(3.6)

By Lemma 3.1,

W (λ) =

q−1A4(−1)G(νA4)G(φ)νA4(a){G(ν)G(A4) +G(νφ)G(A4)}
+ q−1A4(−1)G(νA4)G(φ)νA4(a){G(νφ)G(A4) +G(ν)G(A4)}.

(3.7)

Similarly,

W (λφ) =

q−1A4(−1)G(νφ)G(φ)νφ(a){G(νA4)G(A4) +G(νA4)G(A4)}
+ q−1A4(−1)G(ν)G(φ)ν(a){G(νA4)G(A4) +G(νA4)G(A4)}.

(3.8)

By (3.3), (3.7), and (3.8), we arrive at the desired result (3.2) in the case
where χ = ν4 is nontrivial.
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Finally, suppose that χ = ν4 is trivial, so that either λA4 = ε or λA4 = φ.
We must show that∑

j∈F∗q

P (j, 0) = q−1A4(−1){A4(a)G(A4) +G(A4)} ×

×
3∑

m=0

A4(a)1−mG(Am4 )G(Am−1
4 ).

(3.9)

Straightforward computations show that

(3.10) U(λ) = (q − 1)(A4(a) + A4(a))

and

W (λ) +W (λφ) =A4(a) + A4(a)− A4(a)J(A4, φ)− A4(a)J(A4, φ)

− 2G(φ) + φ(a)J(A4, φ)G(φ) + φ(a)J(A4, φ)G(φ).

(3.11)

The desired result (3.9) now follows from (3.3), (3.10), and (3.11).

4 Proof of (1.4) when jk = 0

We first consider the case where j = k = 0. By (1.3),

G(φ)(P (0, 0)− 2) =
∑
x∈F∗q

φ(x)φ(x2 − a) =
∑
u∈F∗q

A4(u)φ(u− a)(1 + φ(u))

= 2 ReA4(a)J(A4, φ) = 2 ReA4(4/a)J(A4, A4),

where the last equality follows from the Hasse–Davenport formula (1.1). Di-
viding by G(φ) and using the fact that A4(4) = A4(−1), we have

P (0, 0) = 2 + 2 ReG(A4)2/(qA4(−a)).

It now follows easily from (1.7) that P (0, 0) = V (0)2.
To complete the proof of (1.4) for jk = 0, it remains to prove that

(4.1) P (j, 0) = V (0)V (j), j ∈ F∗q,

since P is symmetric in its two arguments. By Theorems 2.1 and 3.2, the
Mellin transforms of the left and right sides of (4.1) are the same for all
characters. By taking inverse Mellin transforms, we see that (4.1) holds, so
the proof of (1.4) for jk = 0 is complete.
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5 Double Mellin Transform of P (j, k)

For characters χ1, χ2, define the double Mellin transform

(5.1) T = T (χ1, χ2) :=
∑
j,k∈F∗q

χ1(j)χ2(k)P (j, k).

Note that T (χ1, χ2) is symmetric in χ1, χ2. In this section we will evaluate T .
Theorem 5.4 shows that T = 0 when χ1 and χ2 are not both fourth powers.
Theorem 5.5 evaluates T when χ1 and χ2 are both fourth powers.

Since P (j, k) = P (−j, k), we have T = 0 unless χ1 and χ2 are squares, so
we set

(5.2) χi = (λiA4)2 = λ2
iφ, i = 1, 2

for characters λi (which are well-defined up to factors of φ).
From the definitions of T and P (j, k), we have

G(φ){T − (2q − 2)δ(λ2
1λ

2
2)} =∑

j,k,x∈F∗q

λ2
1φ(j)λ2

2φ(k)φ(x− a/x)ψ(x(j + k)2 + a(j − k)2/x).

Replace j by jk to obtain

G(φ){T − (2q − 2)δ(λ2
1λ

2
2)} =∑

j,k,x∈F∗q

λ2
1φ(j)λ2

1λ
2
2(k)φ(x− a/x)ψ(k2α(j, x)) =

∑
j,k,x∈F∗q

λ2
1φ(j)λ1λ2(k)φ(x− a/x)ψ(kα(j, x))(1 + φ(k)),

(5.3)

where

(5.4) α(j, x) := x(j + 1)2 + a(j − 1)2/x.

Note that α(j, x) cannot vanish when j = ±1. By (5.3).

G(φ){T − (2q − 2)δ(λ2
1λ

2
2)} =

δ(λ2
1λ

2
2)(q − 1)H(λ1) +G(λ1λ2)E(λ1, λ2) +G(λ1λ2φ)E(λ1, λ2φ),

(5.5)
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where

(5.6) H(λ1) :=
∑
j,x∈F∗q
α(j,x)=0

λ2
1φ(j)φ(x− a/x)

and

(5.7) E(λ1, λ2) :=
∑
j,x∈F∗q

λ2
1φ(j)φ(x− a/x)λ1λ2(α(j, x)).

For a character D and j ∈ F∗q, define

(5.8) h(D, j) :=
∑
x∈F∗q

D(x)φ(1− x)D
2
φ(x(j + 1)2 + (j − 1)2).

By (5.7),

(5.9) E(λ1, λ2) =
∑
j∈F∗q

χ1(j)β(λ1, λ2, j),

where

(5.10) β(λ1, λ2, j) :=
∑
x∈F∗q

φ(a− x2)λ1λ2φ(x)λ1λ2(x2(j + 1)2 + a(j − 1)2).

If λ1λ2φ is odd, i.e., if χ1χ2 = λ2
1λ

2
2 is not a fourth power, then we’d have

δ(λ2
1λ

2
2) = 0 and

(5.11) β(λ1, λ2, j) = β(λ1, λ2φ, j) = 0,

so that T = 0 by (5.5). Thus we may assume that

(5.12) λ1λ2φ = µ2

for some character µ which is well defined up to factors of A4. By (5.10),

β(λ1, λ2, j) =
∑
x∈F∗q

φ(a− x)µ2φ(x(j + 1)2 + a(j − 1)2){µ(x) + µφ(x)}

= µ(a)h(µ, j) + µφ(a)h(µφ, j)

(5.13)
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and (by replacing λ2 by λ2φ)

β(λ1, λ2φ, j) =
∑
x∈F∗q

φ(a− x)µ2(x(j + 1)2 + a(j − 1)2){µA4(x) + µA4(x)}

= µA4(a)h(µA4, j) + µA4(a)h(µA4, j).

(5.14)

Thus (5.5) is equivalent to

G(φ){T − (2q − 2)δ(µ4)} = δ(µ4)(q − 1)H(λ1)

+ µ(a)
3∑

m=0

G(µ2φm+1)A
m

4 (a)
∑
j∈F∗q

χ1(j)h(µAm4 , j).
(5.15)

For D ∈ {ε, A4, A4} and j ∈ F∗q, we can evaluate h(D, j) directly from
definition (5.8), as follows:

(5.16) h(ε, j) = −2 + qδ(j2,−1) + δ(j2, 1),

(5.17) h(A4, j) = J(A4, φ)− φ(j4 − 1),

(5.18) h(A4, j) = J(A4, φ)− φ(j4 − 1).

For D /∈ {ε, A4, A4}, the following lemma expresses h(D, j) in terms of a
hypergeometric character sum.

Lemma 5.1. For D /∈ {ε, A4, A4} and j ∈ F∗q,

(5.19) h(D, j) =
G(D)2G(φ)

G(D2φ)
2F1

(
D,DA4

A4
j4

)
.

Proof. First consider the case where j 6= ±1. By (1.2),

(5.20) h(D, j) = qD
4
(j − 1)2F1

(
D2φ,D

Dφ
−
(
j + 1

j − 1

)2
)
.
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Since D /∈ {ε, A4, A4}, we can permute the two numerator parameters by
means of [8, Corollary 3.21] to obtain

(5.21) h(D, j) :=
G(D)2G(φ)

G(D2φ)
D

4
(j − 1)2F1

(
D,D2φ

Dφ
−
(
j + 1

j − 1

)2
)
.

Now (5.19) for j 6= ±1 follows from (1.5).
Finally, let j = ±1. By a finite field analogue [8, Theorem 4.9] of Gauss’s

classical summation formula,

(5.22) 2F1

(
D,DA4

A4
j4

)
=
D(−1)G(DA4)G(D

2
)

qG(DA4)
.

Thus by the Hasse-Davenport formula (1.1) with A = DA4,

(5.23) 2F1

(
D,DA4

A4
j4

)
=

D(4)G(D
2
)

G(D
2
φ)G(φ)

.

From (5.8) with j = ±1,

h(D, j) = D(4)2J(D,φ) = D(4)G(D)2/G(D2),

where the last equality follows from (1.1). Together with (5.23), this com-
pletes the proof of (5.19) for j = ±1.

Lemma 5.2. If χ1 is not a fourth power, then H(λ1) = 0. On the other
hand, if χ1 = ν4

1 , then

(5.24) H(λ1) = (A4(a) + A4(a))
3∑

m=0

J(ν1A
m
4 , φ).

Proof. We have

H(λ1) = (A4(−a) + A4(−a))
∑
j 6=±1

χ1(j)φ(
j − 1

j + 1
+
j + 1

j − 1
)

= (A4(−a) + A4(−a))
∑
j∈F∗q

χ1(j)φ(2)φ(j2 + 1)φ(j2 − 1)

= (A4(a) + A4(a))
∑
j∈F∗q

χ1(j)φ(j4 − 1).
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If χ1 is not a fourth power, then replacement of j by ji shows that H(λ1) = 0.
On the other hand, if χ1 = ν4

1 , then

H(λ1) = (A4(a) + A4(a))
∑
j∈F∗q

ν1(j)φ(1− j)
3∑

m=0

Am4 (j),

which proves (5.24)

Lemma 5.3. If µ4 is nontrivial and χ1 is not a fourth power, then T = 0.

Proof. Suppose that µ is not a power of A4. It follows from Lemma 5.1 that
each expression h(µAm4 , j) in (5.15) is unchanged when j is replaced by ji.
If χ1 is not a fourth power, then each sum on j in (5.15) vanishes, and hence
T vanishes.

Theorem 5.4. T (χ1, χ2) = 0 when the characters χ1 and χ2 are not both
fourth powers.

Proof. Since T (χ1, χ2) is symmetric in the arguments χ1, χ2, it suffices to
prove that T = 0 under the assumption that χ1 is not a fourth power. In
view of Lemma 5.3, we may also assume that µ4 is trivial, i.e., µAn4 is trivial
for some n ∈ {0, 1, 2, 3}. By (5.16)–(5.19), h(µAm4 , j) is unchanged when j
is replaced by ji, unless m = n. Since H(λ1) = 0 by Lemma 5.2, it follows
from (5.15) and (5.16) that

(5.25) G(φ)T = G(φ)(2q− 2) +G(φ)
∑
j∈F∗q

χ1(j){−2 + qδ(j2,−1) + δ(j2, 1)}.

Thus

(5.26) T = (2q − 2) + qχ1(i) + qχ1(−i) + χ1(1) + χ1(−1).

Since χ1 is a square by (5.2),

χ1(i) = χ1(−i) = −1, χ1(−1) = χ1(1) = 1,

so that (5.26) yields the desired result T = 0.

The next theorem evaluates T (χ1, χ2) when χ1 and χ2 are both fourth
powers. By (5.2), we may assume that

(5.27) λiA4 = ν2
i , χi = ν4

i , i = 1, 2,
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for characters ν1 and ν2 (which are well-defined up to factors of A4). By
(5.12), (ν1ν2)2 = µ2, and we may assume that

(5.28) µ = ν1ν2,

otherwise replace each νi with νiA4.

Theorem 5.5. Suppose that χi = ν4
i for i = 1, 2. Then

(5.29)

T =
A4(−a)

q

3∑
m=0

3∑
n=0

µA
m+n

4 (a)G(ν1A
n−1
4 )G(ν1A

n
4 )G(ν2A

m−1
4 )G(ν2A

m
4 ).

Proof. First assume that µ4 is nontrivial. By (5.15),

(5.30) G(φ)T =
3∑

m=0

G(µ2φm+1)µA
m

4 (a)
∑
j∈F∗q

χ1(j)h(µAm4 , j).

By Lemma 5.1 and (1.2),

(5.31) h(µAm4 , j) =
G(µAm4 )2G(φ)

qG(µ2φm+1)

∑
x∈F∗q

µAm+1
4 (x)µA

m

4 (x− 1)µA
m

4 (1− xj4).

Thus ∑
j∈F∗q

χ1(j)h(µAm4 , j) =
G(µAm4 )2G(φ)

qG(µ2φm+1)
×

×
∑
x∈F∗q

µAm+1
4 (x)µA

m

4 (x− 1)
3∑

n=0

∑
j∈F∗q

ν1A
n
4 (j)µA

m

4 (1− xj).
(5.32)

Replacing j by j/x on the right side of (5.32), we see from (5.30) that

T =
3∑

m=0

3∑
n=0

µA
m

4 (a)G(µAm4 )2

q

∑
x∈F∗q

µν1A
m−n+1
4 (x)µA

m

4 (x− 1)J(ν1A
n
4 , µA

m

4 )

=
3∑

m=0

3∑
n=0

µA
m

4 (a)G(µAm4 )2

q
µAm4 (−1)J(µν1A

m−n+1
4 , µA

m

4 )J(ν1A
n
4 , µA

m

4 ).

(5.33)
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Since µAm4 is nontrivial for each m, (5.33) yields
(5.34)

T =
3∑

m=0

3∑
n=0

µA
m

4 (a)A4(−1)

q
G(ν1A

n−1
4 )G(ν2A

m−n
4 )G(ν2A

m+1−n
4 )G(ν1A

n
4 ),

in view of the first equality above (1.1). Replacing m by m+n− 1 in (5.34),
we complete the proof of (5.29) in the case that µ4 is nontrivial.

Next suppose that µ4 is trivial, i.e., µ is a power of A4. By (5.15) and
Lemma 5.2,

G(φ)T = G(φ)(2q − 2) + (q − 1)(A4(a) + A4(a))
3∑

m=0

J(ν1A
m
4 , φ)

− A4(a)
∑
j∈F∗q

χ1(j)h(A4, j)− A4(a)
∑
j∈F∗q

χ1(j)h(A4, j)

+G(φ)
∑
j∈F∗q

χ1(j)h(ε, j) + φ(a)G(φ)
∑
j∈F∗q

χ1(j)h(φ, j).

(5.35)

The formula (5.35) can be rewritten as

(5.36) T =
3∑

k=0

RkA
k
4(a),

where

(5.37) R0 = (2q − 2) +
∑
j∈F∗q

χ1(j)h(ε, j),

(5.38) R1 = G(φ)−1{(q − 1)
3∑

m=0

J(ν1A
m
4 , φ)−

∑
j∈F∗q

χ1(j)h(A4, j)},

(5.39) R3 = G(φ)−1{(q − 1)
3∑

m=0

J(ν1A
m
4 , φ)−

∑
j∈F∗q

χ1(j)h(A4, j)},

(5.40) R2 =
∑
j∈F∗q

χ1(j)h(φ, j).
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By (5.16),

(5.41) R0 = 4q − (2q − 2)δ(χ1).

By (5.18),

(5.42) R1 = G(φ)−1{q
3∑

m=0

J(ν1A
m
4 , φ)− δ(χ1)(q − 1)J(A4, φ)}.

By (5.17),

(5.43) R3 = G(φ)−1{q
3∑

m=0

J(ν1A
m
4 , φ)− δ(χ1)(q − 1)J(A4, φ)}.

By Lemma 5.1 and (1.2),

(5.44) R2 =
3∑

m=0

J(ν1A
m+1

4 , φ)J(ν1A
m
4 , φ).

A lengthy but straightforward computation now shows that for each k in
{0, 1, 2, 3},

(5.45) Rk = q−1A4(−1)
∑

G(ν1A
n−1
4 )G(ν1A

n
4 )G(ν1A

m−1
4 )G(ν1A

m
4 ),

where the sum is over all m,n ∈ {0, 1, 2, 3} for which A
m+n−1

4 = Ak4. Putting
(5.45) into (5.36), we obtain
(5.46)

T =
A4(−a)

q

3∑
m=0

3∑
n=0

A
m+n

4 (a)G(ν1A
n−1
4 )G(ν1A

n
4 )G(ν1A

m−1
4 )G(ν1A

m
4 ).

Since µ = A`4 for some `, we may substitute ν2A
`
4 for ν1 in (5.46). Then upon

replacing m by m− `, we complete the proof of (5.29) in the case that µ4 is
trivial.

6 Proof of Katz’s identities (1.4)

The proof for jk = 0 was given in Section 4, so we may assume that jk 6= 0.
Let

(6.1) S(χ1, χ2) :=
∑
j∈F∗q

∑
k∈F∗q

χ1(j)χ2(k)V (j)V (k)
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denote the double Mellin transform of V (j)V (k). In the notation of (2.1),

(6.2) S(χ1, χ2) = S(χ1)S(χ2).

If χ1 and χ2 are not both fourth powers, then

(6.3) S(χ1, χ2) = T (χ1, χ2),

since both members of (6.3) vanish by Theorems 2.1 and 5.4. On the other
hand, if χ1 = ν4

1 and χ2 = ν4
2 , then (6.3) holds by Theorems 2.1 and 5.5.

Thus the Mellin transforms of the left and right sides of (1.4) are the same
for all characters. By taking inverse Mellin transforms, we see that (1.4)
holds for jk 6= 0, which completes the proof of (1.4).
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