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Abstract. An episode of the television series Futurama features a two-body mind-switching
machine, which will not work more than once on the same pair of bodies. After the Futurama
community engages in a mind-switching spree, the question is asked, “Can the switching
be undone so as to restore all minds to their original bodies?” Ken Keeler found an algo-
rithm that undoes any mind-scrambling permutation with the aid of two “outsiders.” We refine
Keeler’s result by providing a more efficient algorithm that uses the smallest possible num-
ber of switches. We also present best possible algorithms for undoing two natural sequences
of switches, each sequence effecting a cyclic mind-scrambling permutation in the symmetric
group Sn . Finally, we give necessary and sufficient conditions on m and n for the identity
permutation to be expressible as a product of m distinct transpositions in Sn .

1. INTRODUCTION. “The Prisoner of Benda” [13], an acclaimed episode of the
animated television series Futurama, features a two-body mind-switching machine.
Any pair can enter the machine to swap minds, but there is one serious limitation: The
machine will not work more than once on the same pair of bodies.

After the Futurama community indulges in a mind-switching frenzy, the question
is raised: “Can the switching be undone so as to restore all minds to their original
bodies?” The show provides an answer using what is known in the popular culture as
“Keeler’s theorem” [5]. The theorem is the brainchild of the show’s writer Ken Keeler
[8], who earned a Ph.D. in applied mathematics from Harvard University in 1990 [10]
before becoming a television writer/producer. For “The Prisoner of Benda,” Keeler
garnered a 2011 Writers Guild Award [14].

The problem of undoing the switching can be modeled in terms of group theory.
Represent the bodies involved in the switching frenzy by {1, 2, . . . , n}. The symmetric
group Sn consists of the n! permutations of {1, 2, . . . , n}. Let I denote the identity
permutation. A 2-cycle (ab) is called a transposition; it represents the permutation
that switches the minds of bodies a and b. The k-cycle (a1 . . . ak) is the permutation
that sends a1’s mind to a2, a2’s mind to a3, . . . , and ak’s mind to a1. Following the
convention in [1], we compute products (i.e., compositions) in Sn from right to left.
For example, (123) = (12)(23) = (13)(12) = (23)(13).

The successive swapping of minds during the switching frenzy can be represented
by a product P of distinct transpositions in Sn . (The transpositions must be distinct due
to the limitation of the machine.) In addition to viewing P formally as a product, we
can also view P as a permutation. It will be assumed that this permutation is nontrivial;
otherwise, nothing needs to be undone. For an example of P, suppose that 2 switches
minds with 3 and then 2 switches minds with 1; this corresponds to the product P =
(12)(23), yielding the mind-scrambling permutation P = (123).

To restore all minds to their original bodies, we must find a product σ of distinct
transpositions such that the permutation σ P equals I , and such that the transposition
factors in the product σ are distinct from those in the product P . Such a σ is said to
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undo P . From now on, the phrase “transposition factors” will be shortened simply to
“factors”.

In the aftermath of a switching frenzy, the community may have no recollection of
the sequence of switches that had taken place. It is then expedient to find a product
σ that is guaranteed to undo the mind-scrambling permutation P ∈ Sn regardless of
which sequence of transpositions in Sn had effected P . Keeler’s theorem explicitly
produces such a product σ ∈ Sn+2. Each factor in Keeler’s σ contains at least one
entry in the set {x, y}, where

x := n + 1 and y := n + 2;

hence the factors in σ are distinct from whatever transpositions had effected P . We
can view x and y as altruistic outsiders who had never entered the machine during the
frenzy, but who are subsequently willing to endure frequent mind switches in order to
help others restore their minds to their original bodies.

Viewed as a permutation, P can be expressed (uniquely up to ordering) as the prod-
uct P = C1 · · ·Cr of nontrivial disjoint cycles C1, . . . ,Cr in Sn [1, p. 77]. For each
i = 1, . . . , r , let ki denote the length of cycle Ci . While discussing Keeler’s theorem
and our refinement (Theorem 1), we will assume that k1 + · · · + kr = n. This presents
no loss of generality, since if k1 + · · · + kr = m < n, then we could relabel the bodies
and mimic the arguments using m in place of n.

We now describe Keeler’s method for constructing a product σ ∈ Sn+2 that un-
does P = C1 · · ·Cr . For convenience of notation, write k = k1, so that C1 is a k-cycle
(a1 . . . ak) with each ai ∈ {1, 2, . . . , n}. It is easily checked that σ1C1 = (xy), where
σ1 is the product of k + 2 transpositions given by

σ1 = (xa1)(xa2) · · · (xak−1) · (yak)(xak)(ya1). (1)

For each Ci , define analogous products σi of ki + 2 transpositions satisfying

σi Ci = (xy) for i = 1, . . . , r.

Note that every factor of σi has the form (xu) or (yu) for some entry u in Ci .
Since disjoint cycles commute, (xy) commutes with every transposition in Sn , so
τ := σr · · · σ2σ1 is a product of distinct transpositions for which τ P = (xy)r . Taking

σ =

{
(xy)τ, if r is odd
τ, if r is even,

(2)

we find that σ undoes P and σ is a product of distinct transpositions in Sn+2, each
containing at least one entry in {x, y}, as desired.

By (1) and (2), the number of factors in Keeler’s σ is either n + 2r + 1 or n + 2r ,
according to whether r is odd or even. In Theorem 1 of the next section, we refine
Keeler’s method by showing that P can be undone via a product of only n + r + 2
distinct transpositions, each containing at least one entry in {x, y}. We show, moreover,
that this result is best possible in the sense that n + r + 2 cannot be replaced by a
smaller number. Thus, Keeler’s algorithm is optimal for r = 1 and r = 2, but for no
other r .

With the aim of finding interesting classes of products that can be undone using
fewer than two outsiders, we examined what are undoubtedly the two most natural
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products P in Sn effecting the cycle (12 . . . n), namely [1, p. 81]

P1 = (12)(23)(34) · · · (n − 1, n) and P2 = (n − 1, n) · · · (3n)(2n)(1n).

Theorems 2 and 3 determine how many outsiders and how many mind switches are
necessary and sufficient to undo each of these two products. Theorem 2 shows that
for n ≥ 5, P1 can be undone without any outsiders, using only n + 1 switches, where
n + 1 is best possible. Theorem 3 shows that for n ≥ 3, P2 can be undone using only
one outsider, again with n + 1 switches, where n + 1 is best possible.

Suppose for the moment that n ≥ 5. While P1 and P2 can both be undone with
fewer than two outsiders, there are other products P3(n) in Sn effecting (12 . . . n) for
which two outsiders are required to undo P3(n). For an example with n = 5, let

P3(5) := (54)(53)(52)(51)(12)(23)(14)(13)(24)(34) = (12345).

Note that all ten transpositions in S5 are factors of P3(5). Suppose, for the purpose
of contradiction, that P3(5) can be undone by a product σ in S6, i.e., with just one
outsider. Every entry in P3(5) must appear in σ , so σ must be a product of the five
factors (61), (62), (63), (64), (65) in some order. The permutation σ thus fails to fix
the entry 6, which yields the contradiction σ P3(5) 6= I . The argument for n = 5 works
the same way for all n ≥ 5 of the form 4k + 1 or 4k + 2. Simply take P3(n) := P2 J ,
where P2 is defined in Theorem 3, and J is the identity formulated as a product of all(n−1

2

)
transpositions in Sn−1, as in Theorem 4. We omit the argument for n of the form

4k or 4k + 3, as it’s a bit more involved.
The products P1 and P2 each have the property that no two consecutive factors are

disjoint. In contrast, consider the product of m disjoint factors

P(m) := (12)(34) . . . (2m − 1, 2m).

We call P(m) the Stargate switch because P(2) represents a sequence of mind swaps
featured in an episode of the sci-fi television series Stargate SG-1 [4]. The first and
second authors [3] have given an optimal algorithm for undoing P(m); for m > 1, the
algorithm requires no outsiders.

When n ≥ 5, Theorem 2 provides equalities of the form σ P1 = I , which express
the identity I as a product of 2n distinct transpositions in Sn . Such equalities lead to
the question: What are necessary and sufficient conditions on m and n for I to be
expressible as a product of m distinct transpositions in Sn? Theorem 4 provides the
answer. It is necessary and sufficient that m be an even integer with 6 ≤ m ≤

(n
2

)
.

In order to prove Theorems 2–4, we require some properties of cycles proved via
graph theory in Lemma 1. The proof of Lemma 1(c) incorporates an idea of Jacques
Verstraete in a proof due to Isaacs [7]. We are grateful for their permission to include
it here, as our original proof was considerably less elegant.

We will also need the well-known “Parity theorem,” which shows that the identity
permutation I cannot equal a product of an odd number of transpositions. Two proofs
of the Parity theorem may be found in [1, pp. 82, 149]; for an elegant recent proof, see
Oliver [12].

2. AN OPTIMAL REFINEMENT OF KEELER’S METHOD. Keeler’s algo-
rithm was designed to undo every mind-scrambling permutation P = C1 · · ·Cr that is
effected by an unknown sequence of mind swaps. In this section, we present another
such algorithm. While Keeler’s algorithm is optimal only for r ≤ 2, we prove that our
algorithm is optimal for all r .
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Theorem 1. Let P = C1 · · ·Cr be a product of r disjoint ki -cycles Ci in Sn , with ki ≥ 2
and n = k1 + · · · + kr . Define x = n + 1 and y = n + 2. Then P can be undone by
a product λ of n + r + 2 distinct transpositions in Sn+2, each containing at least one
entry in {x, y}. Moreover, this result is best possible in the sense that n + r + 2 cannot
be replaced by a smaller number.

Proof. Write k = k1, so that C1 is a k-cycle (a1 . . . ak). Corresponding to the cycle C1,
define

G1(x) = (a1x)(a2x) · · · (ak x) and F1(x) = (a1x).

Corresponding to each cycle Ci for i = 1, . . . , r , define G i (x) and Fi (x) analogously.
Set

λ = (xy) · Gr (x) · · ·G2(x) · (ak x)G1(y)(a1x) · F2(y) · · · Fr (y).

It is readily checked that λ undoes P and that λ is a product of n + r + 2 distinct
transpositions in Sn+2, each containing at least one entry in {x, y}.

It remains to prove optimality. Suppose, for the purpose of contradiction, that P
can be undone by a product σ of t < n + r + 2 distinct transpositions in Sn+2, each
containing at least one entry in {x, y}. Then by the Parity theorem, t ≤ n + r .

On the other hand, we have the lower bound t ≥ n, since each of the n entries in P
must occur (coupled with x or y) in a factor of σ . Let A denote the set of entries in
C1 = (a1 . . . ak), and let a denote the rightmost element of A appearing in the product
σ . Since P maps a to some other element of A, it follows that a appears twice in σ ,
i.e., σ has both of the factors (ax) and (ay). The same argument shows that each of
the r cycles Ci contains an entry that appears twice in σ . Thus, the inequality t ≥ n
can be strengthened to t ≥ n + r . Consequently, t = n + r . It follows that each of the
r cycles Ci contains exactly one entry that appears twice in σ , and the other n − r
entries appear only once. This accounts for all n + r factors of σ , so in particular, (xy)
cannot be a factor of σ .

Let a′ denote the leftmost element of A appearing in the product σ . Since P maps
some element of A to a′, it follows that a′ appears twice in σ . Since a is the only
element of A that appears twice in σ , we must have a = a′. Consequently, we have
shown the following two properties of C1:

(i) there is a unique entry a in C1 for which the transpositions (ax) and (ay) both
occur as factors of σ , and

(ii) each entry of C1 other than a occurs in exactly one factor of σ , and that factor
lies strictly between (ax) and (ay).

These two properties are similarly shared by each of the r cycles Ci .
Let N1 denote the number of transpositions in σ that lie strictly between its factors

(ax) and (ay). Define Ni similarly for each of the r cycles Ci . We may assume without
loss of generality that N1 ≤ Ni for all i . We may also assume that the factor (ax) in σ
lies to the left of the factor (ay), and that a = ak .

Let My denote the set of factors in σ that contain the entry y and that lie between
(ak x) and (ak y) inclusive. Suppose, for the purpose of contradiction, that every trans-
position in My has the form (ai y) for some ai ∈ A. Since σ must send ai+1 to ai for
each i = 1, . . . , k − 1, it follows that the elements of My have to occur in the following
order in σ :

(a1 y), (a2 y), . . . , (ak−1 y), (ak y).
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But then σ could not send a1 to ak , a contradiction. Thus some transposition in My

must have the form (hy), where h /∈ A. Consider the rightmost (hy) ∈ My with h /∈

A. For some fixed j > 1, h is an entry of the cycle C j . Among all the elements
(ai y) ∈ My that lie to the right of (hy), let (am y) denote the one closest to (hy). As σ
cannot send am to h, it follows that the entry h occurs twice between (ak x) and (ak y),
i.e., σ has factors (hx) and (hy) both lying strictly between (ak x) and (ak y). Thus,
N j < N1. This violates the minimality of N1, giving us the desired contradiction.

3. A LEMMA ON FACTORIZATIONS OF CYCLES.

Lemma 1. For 2 ≤ k ≤ n, suppose that the k-cycle (a1 . . . ak) ∈ Sn equals a product
P of t transpositions in Sn . Then

(a) t ≥ k − 1,
(b) when t = k − 1, the set of entries in P is V := {a1, . . . , ak}, and
(c) when t = k − 1, at least one factor of P has the form (ai ai+1) with 1 ≤ i < k.

Proof. Since (i j)(ab)(i j) equals a transposition, a product of nondistinct transposi-
tions reduces to a shorter product of distinct transpositions. Thus, it suffices to prove
the result when the factors of P are distinct. Let W denote the set of entries in the
product P . Note that W contains the set V := {a1 . . . ak}. Define a graph G with ver-
tex set W and with t edges [i, j] corresponding to the t transposition factors (i j) of
P . Since P = (a1 . . . ak) is a product of these t transpositions, the graph G has a con-
nected component H whose vertex set contains V . A connected graph with M vertices
has at least M − 1 edges [2, Theorem 11.2.1, p. 163], so H and hence G must have
at least |V | − 1 = k − 1 edges. Thus t ≥ k − 1. This proves part (a). (For another
proof of part (a), see [6, p. 77]. For a generalization proved via linear algebra, see
[9].)

For the rest of this proof, suppose that t = k − 1. Then H has t edges, so G = H
and G is connected. If V were strictly contained in W , then again by [2, Theorem
11.2.1, p. 163], G would have at least k edges. Thus V = W , which proves part (b).
(For a generalization of part (b), see [11].)

To prove part (c), it remains to prove that one of the k − 1 edges of G has the form
[ai , ai+1] with 1 ≤ i < k. This is clear for k = 2, so we let k ≥ 3 and induct on k. A
connected graph with k vertices is a tree if and only if it has k − 1 edges [2, Theorem
11.2.1, p. 163]. Thus G is a tree. Let (auav) denote the rightmost factor of P , with
u < v. Write w = v − u. If w = 1, we are done, so assume that w > 1. Define the
disjoint cycles

r = (au+1 . . . av) and s = (a1 . . . au, av+1, . . . , ak),

so that r is a w-cycle and s is a (k − w)-cycle. If v = k, then s is interpreted as
(a1 . . . au), which in turn is interpreted as the identity permutation when u = 1.
Define P ′ to be the product obtained from P by removing the rightmost factor (auav).
Let G ′ be the graph obtained from G by removing the edge [au, av]. Then P ′ has
k − 2 factors and G ′ has k − 2 edges. Since P = sr(auav), we have P ′ = sr . It fol-
lows that G ′ is a forest of two trees R and S, where R is a tree on the w vertices
au+1, . . . , av, and S is a tree on the remaining vertices in V . The w-cycle r equals
a product Q of the w − 1 factors of P corresponding to the w − 1 edges of R. Since
w < k, it follows by induction that Q, and hence P , has a factor of the required form
(ai ai+1).
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4. OPTIMAL METHODS TO UNDO P1 AND P2.

Theorem 2. For n ≥ 5, let P1 denote the product of n − 1 transpositions in Sn given
by P1 = (12)(23)(34) · · · (n − 1, n). There exists a product σ of n + 1 distinct trans-
positions in Sn that undoes P1, and this result is best possible in the sense that no such
σ can have fewer than n + 1 distinct factors.

Proof. Define

σ = (3n)(2, n − 1)(1n)(14)(2n)(13) · (35) · · · (3, n − 1),

where, when n = 5, the empty product (35) · · · (3, n − 1) is interpreted as the identity.
It is easily checked that σ P1 = I and that σ is a product of n + 1 distinct transpositions
in Sn , all distinct from the n − 1 transpositions in P1. It remains to prove optimality.

Suppose, for the purpose of contradiction, that there exists a product E of k < n + 1
distinct transpositions in Sn for which E P1 = I and for which the k transpositions in
E are distinct from the n − 1 transpositions in P1. Since E P1 = I , the Parity theorem
shows that k ≤ n − 1. On the other hand, since P1 = (12 . . . n), Lemma 1(a) gives
k ≥ n − 1. Thus, the number of transpositions in the product E is exactly n − 1. Note
that E−1 is a product of these same n − 1 transpositions in reverse order, and E−1

=

P1 = (12 . . . n). Hence by Lemma 1(c), one of these n − 1 transpositions in E has
the form (i, i + 1) with 1 ≤ i < n. This contradicts the distinctness of the factors of
E from those in P1, since by definition P1 is a product of all n − 1 transpositions
(i, i + 1) with 1 ≤ i < n.

Theorem 3. For n ≥ 3, let P2 denote the product of n − 1 transpositions in Sn given
by P2 = (n, n − 1) · · · (n3)(n2)(n1). There exists a product τ of n + 1 distinct trans-
positions in Sn+1 that undoes P2, and this result is best possible in the sense that no
such τ can have fewer than n + 1 distinct factors.

Proof. Define

τ = (2, n + 1)(3, n + 1)(4, n + 1) · · · (n, n + 1) · (1, 2)(1, n + 1).

It is easily checked that τ P2 = I and that τ is a product of n + 1 distinct transpositions
in Sn+1, all distinct from the n − 1 transpositions in P2. It remains to prove optimality.

Suppose, for the purpose of contradiction, that there exists a product F of k < n + 1
transpositions in Sn+1 for which F P2 = I and for which the k transpositions in F
are distinct from the n − 1 transpositions in P2. Since F P2 = I , the Parity theorem
shows that k ≤ n − 1. On the other hand, since P2 = (1, 2 . . . n), Lemma 1(a) gives
k ≥ n − 1. Thus, the number of transpositions in the product F is exactly n − 1. Note
that F−1 is a product of these same n − 1 transpositions in reverse order, and F−1

=

P2 = (1, 2, . . . , n). Hence, by Lemma 1(b), the entries in these n − 1 transpositions
all lie in the set {1, 2 . . . n}. Since the permutation F moves n, it follows that one of
these n − 1 transpositions in F has the form (in) with 1 ≤ i < n. This contradicts the
distinctness of the factors of F from those in P2, since by definition, P2 is a product of
all n − 1 transpositions (in) with 1 ≤ i < n.

Remark. When n = 2, two outsiders are required to undo P1 = P2 = (12), and
an optimal σ is given by (34)(23)(14)(24)(13). In the cases n = 3 and n = 4, one
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outsider is required to undo P1, and optimal σ ’s are given by (14)(13)(24)(34) and
(14)(25)(24)(35)(45), respectively.

5. I AS A PRODUCT OF m DISTINCT TRANSPOSITIONS IN Sn.

Theorem 4. For the identity I to be expressible as a product of m distinct transposi-
tions in Sn , it is necessary and sufficient that m be an even integer with 6 ≤ m ≤

(n
2

)
.

Proof. We begin by showing that the conditions are necessary. First, m must be even by
the Parity theorem, and it is not hard to show that m cannot equal 2 or 4. Furthermore,
m cannot exceed

(n
2

)
, since

(n
2

)
is the number of distinct transpositions in Sn . This

proves necessity, and it remains to show sufficiency.
Define f (a, b, c) = (ac)(ab)(bc), which we view formally as a product of three

transpositions, while noting that f (a, b, c) equals (ab) when viewed as a permutation.
If a product λ of transpositions has a factor (ab), then formally replacing (ab) by
f (a, b, c) increases the number of λ’s factors by 2, without altering λ as a permutation.

For even m in the appropriate range, we now show how to express I explicitly as a
product of m distinct transpositions in S4, S5, S6, S7, and S8. An analogous treatment
will then inductively express I as a product of m distinct transpositions in S4k , S4k+1,
S4k+2, S4k+3, and S4k+4 for all k ≥ 2, thus completing the proof.

For m = 6, we have the base case

I = (12)(23)(14)(13)(24)(34) in S4.

This equality uses all six transpositions in S4, so to consider the values m = 8, 10, we
move up to S5. For m = 8, replace the first transposition (12) above by f (1, 2, 5) to
obtain

I = (15)(12)(25)(23)(14)(13)(24)(34) in S5.

For m = 10, replace the transposition (34) above by f (3, 4, 5) to obtain

I = (15)(12)(25)(23)(14)(13)(24)(35)(34)(45) in S5.

This equality uses all ten transpositions in S5, so to consider the values m = 12, 14,
we move up to S6. For m = 12, replace (23) above by f (2, 3, 6) to obtain

I = (15)(12)(25)(26)(23)(36)(14)(13)(24)(35)(34)(45) in S6.

For m = 14, replace (45) above by f (4, 5, 6) to obtain

I = (15)(12)(25)(26)(23)(36)(14)(13)(24)(35)(34)(46)(45)(56) in S6.

This equality uses all of the fifteen transpositions in S6 except for (16), so to consider
the values m = 16, 18, 20, we move up to S7. For m = 16, m = 18, and m = 20,
successively replace (12) by f (1, 2, 7), (34) by f (3, 4, 7), and (56) by f (5, 6, 7),
respectively. This yields the following for m = 20:

I = (15)(17)(12)(27)(25)(26)(23)(36)(14)(13)(24)(35)

× (37)(34)(47)(46)(45)(57)(56)(67) in S7.
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This equality uses all of the twenty-one transpositions in S7 except for (16), so to
consider the values m = 22, 24, 26, 28, we move up to S8. For m = 22, m = 24,
and m = 26, successively replace (23) by f (2, 3, 8), (45) by f (4, 5, 8), and (67) by
f (6, 7, 8), respectively. This yields the following for m = 26:

I = (15)(17)(12)(27)(25)(26)(28)(23)(38)(36)(14)(13)(24)(35)(37)

× (34)(47)(46)(48)(45)(58)(57)(56)(68)(67)(78) in S8.

This equality uses all twenty-eight transpositions in S8 except (16) and (18). This
suggests that we make the atypical replacement of (68) by f (6, 8, 1) to obtain the
following for m = 28:

I = (15)(17)(12)(27)(25)(26)(28)(23)(38)(36)(14)(13)(24)(35)(37)

× (34)(47)(46)(48)(45)(58)(57)(56)(16)(68)(18)(67)(78) in S8.

This equality uses all twenty-eight transpositions in S8. From here, we can repeat the
procedure.
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Non-recursive Polynomial Formula for the
Sum of the Powers of the Integers

There are recursive formulas for the sum Sn of the pth powers of the first n
positive integers. Here we present a non-recursive polynomial formula P(n).

Theorem. If Sn = 1p
+ · · · + n p (where n, p ∈ N0, and S0 = 0), then Sn =

P(n), where P(n) is the polynomial P(n) =
∑p+1

i=1 Si Qi (n)/Qi (i) of degree
deg P(n) = p + 1 and Qi (n) =

∏p+1
j=0
j 6=i

(n − j).

Proof. We have Sn = P(n) for n = 0, . . . , p + 1 by definition of P(n) and
Qi (n). So P(n) − P(n − 1) = n p for the p + 1 values n = 1, . . . , p + 1.
But deg(P(n) − P(n − 1)), deg n p < p + 1; thus (∗) P(n) − P(n − 1) = n p.
Therefore, Sn = P(n) by induction on n. We have deg P(n) = p + 1, otherwise
deg(P(n)− P(n − 1)) < p, contradicting (∗).

Example. We have

12
+· · ·+n2

=



12 (n−0)(n−2)(n−3)

(1−0)(1−2)(1−3)
+

(12
+22)

(n−0)(n−1)(n−3)

(2−0)(2−1)(2−3)
+

(12
+22
+32)

(n−0)(n−1)(n−2)

(3−0)(3−1)(3−2)


=

n(n+1)(2n+1)

6
.
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