Math 120A Test $1 \quad 100$ points February 1, 2013
Directions: Justify ALL answers.
Notation: Let \mathbb{C} denote the field of complex numbers. Let $z \in \mathbb{C}$. As usual, write $z=x+i y=r e^{i \theta}$. Let $f: \mathbb{C} \rightarrow \mathbb{C}$. As usual, write $f(z)=u+i v$. Here x, y, u, v, r, θ are all real numbers. Write $x=\Re z$, the real part of z.
Points: The first two problems are worth 10 points each, and the others are worth 20 points each.
(1) True or False: As $z \rightarrow 0$, the limit of $\left(\frac{e^{z}}{z}-\frac{1}{z^{2}}\right)$ equals ∞.

SOLUTION: Subtract the two fractions to get a single fraction with denominator z^{2} and numerator $z e^{z}-1$. The numerator approaches -1 and the denominator approaches 0 , so the fraction approaches infinity. Thus the answer is "True".
(2) Complete each of the following two sentences:
A. $f(z)$ is differentiable at $z=0$ means that the limit of \ldots...
B. $f(z)$ is analytic at $z=0$ means that \ldots.

SOLUTION:

A. $\ldots(f(h)-f(0)) / h$ exists in \mathbb{C} as $h \rightarrow 0$.
B. $\ldots f(z)$ is differentiable at every point in some neighborhood of 0 .
(3) List, in polar form $r e^{i \theta}$, all the solutions to the equation $z^{4}+1+i=0$.

SOLUTION: $-1-i=\sqrt{2} e^{-3 i \pi / 4}$, so the four 4th roots of $-1-i$ are

$$
2^{1 / 8} e^{-3 i \pi / 16+i k \pi / 2}, \quad k=0,1,2,3
$$

(4) Find every point $z \in \mathbb{C}$ at which the function $f(z)=z(\Re z)^{2}$ is differentiable. Justify.

SOLUTION: Here $u=x^{3}$ and $v=y x^{2}$. Thus $u_{x}=3 x^{2}, u_{y}=0, v_{x}=2 x y$, and $v_{y}=x^{2}$. The Cauchy-Riemann equations hold only when $x=0$, i.e., only for points z on the imaginary axis. The partials are clearly continuous
everywhere. Thus $f(z)$ is differentiable at each point on the imaginary axis, but it fails to be differentiable anywhere else. (In particular, there is no point at which $f(z)$ is analytic.)
(5) Let D denote the right half plane, i.e., $D=\{z: \Re z>0\}$. For $z \in D$, define $f(z)=\ln (r)+i \theta$, with $-\pi / 2<\theta<\pi / 2$. Show that $f(z)$ is analytic on D, and find $f^{\prime}(z)$. Hint: $r u_{r}=v_{\theta}$.

SOLUTION: Here $u=\ln r$ and $v=\theta$. Thus $u_{r}=1 / r, u_{\theta}=0, v_{r}=0$, and $v_{\theta}=1$ on D. The two Cauchy-Riemann equations for polar coordinates are both satisfied on D, and the partials are continuous on D. Thus $f(z)$ is differentiable on D and $f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)=e^{-i \theta} / r=1 / z$ for each $z \in D$.
(6) Let D denote the right half plane as in the previous problem. If $f^{\prime}(z)=0$ for all $z \in D$, prove that $f(z)$ is constant on D. Hint: Apply the Mean Value theorem for u and for v.

SOLUTION: It suffices to show that $f(z)$ has the same value at any two points $a+b i$ and $c+d i$ in D. Since $f^{\prime}(z)=0$, all the partials of u and v are 0 on D. First we move horizontally and note that $f(a+b i)=f(c+b i)$ by the Mean Value Theorem applied to u and v, since $u_{x}=0$ and $v_{x}=0$. Next we move vertically and note that $f(c+b i)=f(c+d i)$ by the Mean Value Theorem applied to u and v, since $u_{y}=0$ and $v_{y}=0$. Thus $f(a+b i)=f(c+d i)$, as desired.

