Math 120A Test $2 \quad 100$ points March 1, 2013
Directions: Justify all answers. If you appeal to a theorem, show that the hypotheses of that theorem are justified. Avoid messy computations; look for elegant solutions. Each problem is worth 20 points.
(1) Let L be the horizontal line segment of length 23 which starts at $3 i$ and ends at $3 i+23$. Show that $|I|<1$, where

$$
I:=\int_{L} \frac{d z}{z^{3}+3 i} .
$$

SOLUTION: The denominator of the integrand has absolute value greater or equal to $|z|^{3}-3$, which is greater or equal to $3^{3}-3=24$ when z is on L. Thus the integrand has absolute value less than or equal to $1 / 24$, so $|I| \leq 23 / 24<1$.
(2) Anna claims that the function $\sin (\cos (z))$ is bounded on \mathbb{C}. Explain carefully how you know that Anna is wrong.

SOLUTION: The composite of two analytic functions is analytic. Thus if Anna were correct, then this composite function would be constant, by Liouville's Theorem. However, the function has different values at $z=0$ and $z=\pi / 2$, so it is not constant. Thus Anna is wrong.
(3) Let T be a triangle in \mathbb{C} containing the point i in its interior. Explain in detail why

$$
\int_{T} \frac{d z}{z-i}=2 \pi i
$$

where the integral goes once counterclockwise around the boundary of T.
SOLUTION: This follows from the theorem on p . 164, since T is a simple closed contour, and $f=1$ is analytic everywhere. If you wish to start with the easier Cauchy Integral Formula on circular paths, then pick a circle C of radius r centered at i, where r is so small that the circle is contained in the interior of T. If the integral were on C instead of on (the boundary of) T, then the given equality would be true by the Cauchy Integral Formula
for circular paths applied to the constant function 1 . Since the integrand is analytic everywhere outside C, deformation of paths shows that the equality is also valid when one integrates over T instead of over C. Yet another way to do this for a circular path is to plug in the parameterization $i+\exp i t$ for z, thus reducing to an integral of the constant i from $t=0$ to $t=2 \pi$.
(4) Let C denote a circle of radius 1 centered at i. Evaluate the integral

$$
\int_{C} \frac{d z}{\left(z^{2}+1\right)^{2}}
$$

where the integral goes once counterclockwise around C. Justify. Hint: Factor $z^{2}+1$. The answer is a number between 1 and 2 .

SOLUTION: Apply the Cauchy Integral Formula for the derivative of f, where $f(z)=(z+i)^{-2}$. This shows that the integral equals $2 \pi i f^{\prime}(i)=\pi / 2$.
(5) Given a continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$, suppose that for any $z \in \mathbb{C}$,

$$
F(z):=\int_{0}^{z} f(u) d u
$$

is a path-independent integral. Using the limit definition of derivative, prove that $F^{\prime}(z)=f(z)$.

SOLUTION: See proof on page 148.

