Directions: Justify all answers. If you appeal to a theorem, show that the hypotheses of that theorem are justified. An integral $\int_{|z|=r}$ is interpreted to go once counterclockwise around the given circle.
Problems 1, 4 are worth 26 points each; problems 2, 3, 5, 6, 7 are worth 20 points each.
(1) (A) Find the residues of $f(z)=\frac{1}{z-z^{3}}$ at 0 , at 1 , and at ∞.
(B) For f as above, evaluate

$$
\int_{|z|=2} f(z) d z
$$

SOLUTION: The Laurent series for $f(z)$ about 0,1 , and -1 are:
$1 / z+z+z^{3}+\ldots$,
$(-1 / 2) /(z-1)+3 / 4-(7 / 8)(z-1)+\ldots, \quad$ and $(-1 / 2) /(z+1)-3 / 4-(7 / 8)(z+1)+\ldots$.

Thus the residues at 0,1 , and -1 are $1,-1 / 2$, and $-1 / 2$, respectively. Moreover, $f(1 / z) / z^{2}=z /\left(z^{2}-1\right)$ is analytic, so its residue at 0 equals 0 . Thus the residue of $f(z)$ at ∞ equals 0 . This last fact alone shows that the answer to part (B) is 0 .
(2) Anna said: "If $g(z)$ has an antiderivative in the annulus $1<|z|<3$, then

$$
\int_{|z|=2} g(z) d z=0
$$

and consequently, since $1 / z$ has an antiderivative $\log z$, we can conclude that

$$
\int_{|z|=2} \frac{d z}{z}=0 . "
$$

Show that Anna's conclusion is false, and also discuss where her logic first broke down.

SOLUTION: Anna's conclusion is false because the integral equals $2 \pi i$ by the residue theorem. The logic first broke down when she said that $1 / z$ has an antiderivative $\log z$. Note that $\log z$ is not even continuous on the circle, let alone differentiable.
(3) Let $|z|<1$. Write down the Taylor series (about 0$)$ for $1 /(1+z)$ and then integrate to derive the Taylor series (about 0) for $\log (1+z)$. Carefully justify every step.

SOLUTION: $1 /(1+z)=\sum_{k=0}^{\infty}(-1)^{k} z^{k}$. Integrate along a straight line joining 0 to some point z with $|z|<1$, to get $\log (1+z)=\sum_{k=0}^{\infty}(-1)^{k} z^{k+1} /(k+1)$. We are allowed to integrate term by term as long as $|z|<1$, and the path was chosen so that every integral could be evaluated using the antiderivative of the integrand.
(4) For each of the four values $k=0,1,2,3$, evaluate the integral

$$
\int_{|z|=1} \frac{d z}{z^{k-1} \sin z},
$$

and justify.

SOLUTION: $z / \sin z=1 /\left(1-z^{2} / 6+\ldots\right)$ is analytic for $|z|<\pi$. Using derivative formulas for the coefficients, or alternatively simply dividing the denominator into the numerator 1 , we get the Maclaurin expansion $z / \sin z$ $=\left(1+z^{2} / 6+\ldots\right)$. Thus when we divide by z^{k} for $k=0,1,2,3$, we get the residues (at 0) equal to $0,1,0,1 / 6$, respectively. The corresponding integrals thus equal (by the residue theorem) $0,2 \pi i, 0, \pi i / 3$, respectively.
(5) Let $h(z)=1-z^{3}$ for $|z| \leq 1$.
(A) Prove that for $|z| \leq 1$, we have $|h(z)| \leq 2$.
(B) Find all z with $|z| \leq 1$ for which $|h(z)|=2$.

SOLUTION: Part (A) follows from the triangle inequality, since $\left|z^{3}\right|=$ $|z|^{3} \leq 1$. For part (B), note that that h attains its maximum value 2 when
$z=-1$. But is this the only answer for z ? By the maximum modulus principle, the maximum value 2 of $|h|$ can only occur at certain points z of the form $z=\exp (i \theta)$. We want to find θ such that $4=|h(z)|^{2}=1+|z|^{6}-2 \Re z^{3}=$ $2-2 \cos (3 \theta)$. Thus we want to solve $\cos (3 \theta)=-1$. The solution is $\theta=d \pi / 3$ where d is any odd integer. Thus $|h|=2$ when z is either -1 or $\exp (\pm i \pi / 3)$.
(6) Suppose that f is entire. For fixed u with $|u|<2$, prove that as $N \rightarrow \infty$,

$$
u^{N} \int_{|z|=2} \frac{f(z) d z}{(z-u) z^{N}} \rightarrow 0
$$

SOLUTION: See top of page 192.
(7) For nonzero z with $|\operatorname{Arg} z|<\pi$, explain in detail how you know that $f(z)=\log z$ is analytic, and find the derivative f^{\prime}.

SOLUTION: See page 95.

