Classification of certain types of maximal matrix subalgebras

John Eggers
Department of Mathematics
University of California at San Diego
La Jolla, CA 92093-0112
jeggers@ucsd.edu
Ron Evans
Department of Mathematics
University of California at San Diego
La Jolla, CA 92093-0112
revans@ucsd.edu
Mark Van Veen
Varasco LLC
2138 Edinburg Avenue
Cardiff by the Sea, CA 92007
mark@varasco.com

2010 Mathematics Subject Classification. 15B33, 16S50
Key words and phrases. matrix ring over a field, intersection of matrix subalgebras, nonunital intersections, subalgebras of maximum dimension, parabolic subalgebra, semi-simple Lie algebra, radical

Abstract

Let $\mathcal{M}_{n}(K)$ denote the algebra of $n \times n$ matrices over a field K of characteristic zero. A nonunital subalgebra $\mathcal{N} \subset \mathcal{M}_{n}(K)$ will be called a nonunital intersection if \mathcal{N} is the intersection of two unital subalgebras of $\mathcal{M}_{n}(K)$. Appealing to recent work of Agore, we show that for $n \geq 3$, the dimension (over K) of a nonunital intersection is at most $(n-1)(n-2)$, and we completely classify the nonunital intersections of maximum dimension $(n-1)(n-2)$. We also classify the unital subalgebras of maximum dimension properly contained in a parabolic subalgebra of maximum dimension in $\mathcal{M}_{n}(K)$.

1 Introduction

Let $\mathcal{M}_{n}(F)$ denote the algebra of $n \times n$ matrices over a field F. For some interesting sets Λ of subspaces $\mathcal{S} \subset \mathcal{M}_{n}(F)$, those $\mathcal{S} \in \Lambda$ of maximum dimension over F have been completely classified. For example, a theorem of Gerstenhaber and Serezhkin [7, Theorem 1] states that when Λ is the set of subspaces $\mathcal{S} \subset \mathcal{M}_{n}(F)$ for which every matrix in \mathcal{S} is nilpotent, then each $\mathcal{S} \in \Lambda$ of maximum dimension is conjugate to the algebra of all strictly upper triangular matrices in $\mathcal{M}_{n}(F)$. For another example, it is shown in [1, Prop. 2.5] that when Λ is the set of proper unital subalgebras $\mathcal{S} \subset \mathcal{M}_{n}(F)$ and F is an algebraically closed field of characteristic zero, then each $\mathcal{S} \in \Lambda$ of maximum dimension is a parabolic subalgebra of maximum dimension in $\mathcal{M}_{n}(F)$.

The goal of this paper is to classify the elements in Λ of maximum dimension in the cases $\Lambda=\Gamma$ and $\Lambda=\Omega$, where the sets Γ and Ω are defined below. First we need some definitions.

Write $\mathcal{M}=\mathcal{M}_{n}=\mathcal{M}_{n}(K)$, where K is a field of characteristic zero. (It would be interesting to know if this restriction on the characteristic can be relaxed for the results in this paper.) In the spirit of [3, p. viii], we define a subalgebra of \mathcal{M} to be a vector subspace of \mathcal{M} over K closed under the multiplication of \mathcal{M} (cf. [3, p. 2]); thus a subalgebra need not have a unity, and the unity of a unital subalgebra need not be a unity of the parent algebra. Subalgebras $\mathcal{A}, \mathcal{B} \subset \mathcal{M}$ are said to be similar if $\mathcal{A}=\left\{S^{-1} B S: B \in \mathcal{B}\right\}$ for some invertible $S \in \mathcal{M}$.

In Isaac's text [4, p. 161], every ring is required to have a unity, but the unity in a subring need not be the same as the unity in its parent ring. Under
this definition, a ring may have subrings whose intersection is not a subring. This motivated us to study examples of pairs of unital subalgebras in \mathcal{M} whose intersection \mathcal{N} is nonunital. We call such \mathcal{N} a nonunital intersection and we let Γ denote the set of all nonunital intersections $\mathcal{N} \subset \mathcal{M}$. Note that Γ is closed under transposition and conjugation, i.e., if $\mathcal{N} \in \Gamma$, then $\mathcal{N}^{\mathrm{T}} \in \Gamma$ and $S^{-1} \mathcal{N} S \in \Gamma$ for any invertible $S \in \mathcal{M}$.

In order to define Ω, we need to establish additional notation. Let $\mathcal{M}\left[R_{n}\right]$ denote the subalgebra of \mathcal{M} consisting of those matrices whose n-th row is zero. Similarly, $\mathcal{M}\left[R_{n}, C_{n}\right]$ indicates that the n-th row and n-th column are zero, etc. For $1 \leq i, j \leq n$, let $E_{i, j}$ denote the elementary matrix in \mathcal{M} with a single entry 1 in row i, column j, and 0 in each of the other $n^{2}-1$ positions. The identity matrix in \mathcal{M} will be denoted by I. For the maximal parabolic subalgebra $\mathcal{P}:=\mathcal{M}\left[R_{n}\right]+K E_{n, n}$ in \mathcal{M}, define Ω to be the set of proper subalgebras \mathcal{B} of \mathcal{P} with $\mathcal{B} \neq \mathcal{M}\left[R_{n}\right]$.

We now describe Theorems 3.1-3.3, our main results. Theorem 3.1 shows that $\operatorname{dim} \mathcal{N} \leq(n-1)(n-2)$ for each $\mathcal{N} \in \Gamma$. Theorem 3.2 shows that up to similarity, $\mathcal{W}:=\mathcal{M}\left[R_{n}, R_{n-1}, C_{n}\right]$ and $\mathcal{W}^{\mathrm{T}}:=\mathcal{M}\left[R_{n}, C_{n-1}, C_{n}\right]$ are the only subalgebras in Γ having maximum dimension $(n-1)(n-2)$. In Theorem 3.3, we show that $\operatorname{dim} \mathcal{B} \leq n^{2}-2 n+3$ for each $\mathcal{B} \in \Omega$, and we classify all $\mathcal{B} \in \Omega$ of maximum dimension $n^{2}-2 n+3$.

The proofs of our theorems depend on four lemmas, which are proved in Section 2. Lemma 2.1 shows that \mathcal{W} (and hence also \mathcal{W}^{T}) is a nonunital intersection of dimension $(n-1)(n-2)$ when $n \geq 3$. Lemmas 2.2 and 2.3 show that $\operatorname{dim} \mathcal{L} \leq n(n-1)$ for any nonunital subalgebra $\mathcal{L} \subset \mathcal{M}$, and when equality holds, \mathcal{L} must be similar to $\mathcal{M}\left[R_{n}\right]$ or $\mathcal{M}\left[C_{n}\right]$. (Thus if Λ denotes the set of nonunital subalgebras $\mathcal{L} \subset \mathcal{M}$, Lemmas 2.2 and 2.3 classify those $\mathcal{L} \in \Lambda$ of maximum dimension.) Lemma 2.4 shows that if $\mathcal{U} \subset \mathcal{M}$ is a subalgebra with unity different from I, then some conjugate of \mathcal{U} is contained in $\mathcal{M}\left[R_{n}, C_{n}\right]$.

2 Lemmas

Recall the definition $\mathcal{W}:=\mathcal{M}\left[R_{n}, R_{n-1}, C_{n}\right]$.
Lemma 2.1. For $n \geq 3, \mathcal{W} \in \Gamma$ and $\operatorname{dim} \mathcal{W}=(n-1)(n-2)$.
Proof. For $n>1$, define $A \in \mathcal{M}$ by $A=I+E_{n, n-1}$. Note that $A^{-1}=$ $I-E_{n, n-1}$. A computation shows that for $M \in \mathcal{M}\left[R_{n}, C_{n}\right]$, the conjugate
$A M A^{-1}$ is obtained from M by replacing the (zero) bottom row of M by the ($n-1$)-th row of M. Since the bottom two rows of $A M A^{-1}$ are identical, it follows that

$$
A M A^{-1} \in \mathcal{M}\left[R_{n}, C_{n}\right] \cap A \mathcal{M}\left[R_{n}, C_{n}\right] A^{-1} \text { if and only if } A M A^{-1} \in \mathcal{W}
$$

Since $\mathcal{W}=A^{-1} \mathcal{W} A$, this shows that \mathcal{W} is the intersection of the unital subalgebras $A^{-1} \mathcal{M}\left[R_{n}, C_{n}\right] A$ and $\mathcal{M}\left[R_{n}, C_{n}\right]$. To see that \mathcal{W} is nonunital, note that $E_{1, n-1}$ is a nonzero matrix in \mathcal{W} for which $E_{1, n-1} W$ is the zero matrix for each $W \in \mathcal{W}$; thus \mathcal{W} cannot have a right identity, so $\mathcal{W} \in \Gamma$. Finally, it follows from the definition of \mathcal{W} that $\operatorname{dim} \mathcal{W}=(n-1)(n-2)$.

Remark: The same proof shows that $\mathcal{W} \in \Gamma$ when the field K is replaced by an arbitrary ring R with $1 \neq 0$. If R happens to be commutative, then the dimension of the algebra \mathcal{W} over R is well defined [8, p. 483] and it equals $(n-1)(n-2)$.

Lemma 2.2. For any nonunital subalgebra $\mathcal{L} \subset \mathcal{M}, \operatorname{dim} \mathcal{L} \leq n(n-1)$.
Proof. If $\mathcal{L}+K I=\mathcal{M}$, then \mathcal{L} would be a two-sided proper ideal of \mathcal{M}, contradicting the fact that \mathcal{M} is a simple ring [8, p. 280]. Fergus Gaines [2, Lemma 4] proved that for any field F, the F-dimension of a proper unitary subalgebra of $\mathcal{M}_{n}(F)$ is at most $n^{2}-n+1$. (Agore [1, Cor. 2.6] proved this only for fields of characteristic zero.) Since $\mathcal{L}+K I$ is a proper subalgebra of \mathcal{M} containing the unity I, it follows that

$$
\operatorname{dim} \mathcal{L}=-1+\operatorname{dim}(\mathcal{L}+K I) \leq n(n-1)
$$

Lemma 2.3. Any nonunital subalgebra $\mathcal{L} \subset \mathcal{M}$ with $\operatorname{dim} \mathcal{L}=n(n-1)$ must be similar to either $\mathcal{M}\left[R_{n}\right]$ or $\mathcal{M}\left[C_{n}\right]=\mathcal{M}\left[R_{n}\right]^{\mathrm{T}}$.

Proof. Consider the two parabolic subalgebras $\mathcal{P}, \mathcal{P}^{\prime} \subset \mathcal{M}$ defined by

$$
\mathcal{P}=\mathcal{P}_{K}=\mathcal{M}\left[R_{n}\right]+K E_{n, n}, \quad \mathcal{P}^{\prime}=\mathcal{P}_{K}^{\prime}=\mathcal{M}\left[C_{1}\right]+K E_{1,1}
$$

Note that \mathcal{P}^{\prime} is similar to the transpose \mathcal{P}^{T}. Since $\mathcal{L}+K I$ is a proper subalgebra of \mathcal{M} of dimension $n(n-1)+1$, it follows from Agore [1, Prop. 2.5] that $\mathcal{L}+K I$ is similar to \mathcal{P} or \mathcal{P}^{\prime}, under the condition that K is algebraically closed. However, Nolan Wallach [9] has proved that this condition can be
dropped; see the Appendix. Thus, replacing \mathcal{L} by a conjugate if necessary, we may assume that $\mathcal{L}+K I=\mathcal{P}$ or $\mathcal{L}+K I=\mathcal{P}^{\mathrm{T}}$. We will assume that $\mathcal{L}+K I=\mathcal{P}$, since the proof for \mathcal{P}^{T} is essentially the same. It suffices to show that \mathcal{L} is similar to $\mathcal{M}\left[R_{n}\right]$ or $\mathcal{M}\left[C_{1}\right]$, since $\mathcal{M}\left[C_{1}\right]$ is similar to $\mathcal{M}\left[C_{n}\right]$.

Assume temporarily that each $L \in \mathcal{L}$ has all entries 0 in its upper left $(n-1) \times(n-1)$ corner. Then $n=2$, because if $n \geq 3$, then every matrix in \mathcal{P} would have a zero entry in row 1 , column 2 , contradicting the definition of \mathcal{P}. Since $\mathcal{L} \subset \mathcal{M}_{2}\left[C_{1}\right]$ and both sides have dimension 2 , we have $\mathcal{L}=\mathcal{M}_{2}\left[C_{1}\right]$, which proves the theorem under our temporary assumption.

When the temporary assumption is false, there exists $L \in \mathcal{L}$ with the entry 1 in row i, column j for some fixed pair i, j with $1 \leq i, j \leq n-1$. Since $E_{i, i}$ and $E_{j, j}$ are in $\mathcal{P}=\mathcal{L}+K I$ and \mathcal{L} is a two-sided ideal of \mathcal{P}, we have $E_{i, j}=E_{i, i} L E_{j, j} \in \mathcal{L}$. Consequently, $E_{a, b}=E_{a, i} E_{i, j} E_{j, b} \in \mathcal{L}$ for all pairs a, b with $1 \leq a \leq n-1$ and $1 \leq b \leq n$. Therefore

$$
\mathcal{M}\left[R_{n}\right]=\sum_{a=1}^{n-1} \sum_{b=1}^{n} K E_{a, b} \subset \mathcal{L},
$$

and since both $\mathcal{M}\left[R_{n}\right]$ and \mathcal{L} have the same dimension $n(n-1)$, we conclude that $\mathcal{L}=\mathcal{M}\left[R_{n}\right]$.

Remark: Any subalgebra $\mathcal{B} \subset \mathcal{M}$ properly containing $\mathcal{M}\left[R_{n}\right]$ must also contain I. To see this, note that \mathcal{B} contains a nonzero matrix of the form

$$
B:=\sum_{i=1}^{n} c_{i} E_{n, i}, \quad c_{i} \in K
$$

If $c_{j}=0$ for all $j<n$, then $E_{n, n} \in \mathcal{B}$, so $I \in \mathcal{B}$. On the other hand, if $c_{j} \neq 0$ for some $j<n$, then $E_{n, n}=c_{j}^{-1} B E_{j, n} \in \mathcal{B}$, so again $I \in \mathcal{B}$.
Lemma 2.4. Suppose that a subalgebra $\mathcal{U} \subset \mathcal{M}$ has a unity $e \neq I$. Then $S^{-1} \mathcal{U} S \subset \mathcal{M}\left[R_{n}, C_{n}\right]$ for some invertible $S \in \mathcal{M}$.
Proof. Let r be the rank of the matrix e. Note that e is idempotent, so by [6, p. 27], there exists an invertible $S \in \mathcal{M}$ for which $S^{-1} e S=D_{r}$, where D_{r} is a diagonal matrix with entries 1 in rows 1 through r, and entries 0 elsewhere. Replacing \mathcal{U} by $S^{-1} \mathcal{U} S$ if necessary, we may assume that $e=D_{r}$. Since $r \leq n-1$, we have

$$
\mathcal{U}=e \mathcal{U} e \subset e \mathcal{M} e=D_{r} \mathcal{M} D_{r} \subset D_{n-1} \mathcal{M} D_{n-1}=\mathcal{M}\left[R_{n}, C_{n}\right] .
$$

3 Theorems

Recall that Γ is the set of all nonunital intersections in \mathcal{M}.
Theorem 3.1. If $\mathcal{N} \in \Gamma$, then $\operatorname{dim} \mathcal{N} \leq(n-1)(n-2)$.
Proof. Let $\mathcal{N} \in \Gamma$, so that $\mathcal{N}=\mathcal{U} \cap \mathcal{V}$ for some pair of unital subalgebras $\mathcal{U}, \mathcal{V} \subset \mathcal{M}$. Since \mathcal{N} is nonunital, one of \mathcal{U}, \mathcal{V}, say \mathcal{U}, does not contain I. Thus \mathcal{U} contains a unity $e \neq I$. Define S as in Lemma 2.4. Replacing \mathcal{U}, \mathcal{V}, \mathcal{N} by $S^{-1} \mathcal{U} S, S^{-1} \mathcal{V} S, S^{-1} \mathcal{N} S$, if necessary, we deduce from Lemma 2.4 that \mathcal{U} is contained in $\mathcal{M}\left[R_{n}, C_{n}\right]$. Since \mathcal{N} is a nonunital subalgebra of $\mathcal{U} \subset \mathcal{M}\left[R_{n}, C_{n}\right]$, it follows from Lemma 2.2 with $(n-1)$ in place of n that $\operatorname{dim} \mathcal{N} \leq(n-1)(n-2)$.

Theorem 3.2. Let $n \geq 3$. Then up to similarity, \mathcal{W} and \mathcal{W}^{T} are the only subalgebras of \mathcal{M} in Γ having dimension $(n-1)(n-2)$.

Proof. By Lemma 2.1, every subalgebra of \mathcal{M} similar to \mathcal{W} or \mathcal{W}^{T} lies in Γ and has dimension $(n-1)(n-2)$. Conversely, let $\mathcal{N} \in \Gamma$ with $\operatorname{dim} \mathcal{N}=$ $(n-1)(n-2)$. We must show that \mathcal{N} is similar to \mathcal{W} or \mathcal{W}^{T}.

We may assume, as in the proof of Theorem 3.1, that \mathcal{N} is a nonunital subalgebra of $\mathcal{M}\left[R_{n}, C_{n}\right]$. Let \mathcal{L} be the subalgebra of \mathcal{M}_{n-1} consisting of those matrices in the upper left $(n-1) \times(n-1)$ corners of the matrices in \mathcal{N}. Since $\operatorname{dim} \mathcal{L}=\operatorname{dim} \mathcal{N}=(n-1)(n-2)$, it follows from Lemma 2.3 that \mathcal{L} is similar to $\mathcal{M}_{n-1}\left[R_{n-1}\right]$ or $\mathcal{M}_{n-1}\left[C_{n-1}\right]$. Thus \mathcal{N} is similar to $\mathcal{W}=\mathcal{M}\left[R_{n}, R_{n-1}, C_{n}\right]$ or $\mathcal{W}^{\mathrm{T}}=\mathcal{M}\left[R_{n}, C_{n-1}, C_{n}\right]$.

Recall that Ω denotes the set of proper subalgebras $\mathcal{B} \neq \mathcal{M}\left[R_{n}\right]$ in \mathcal{P}.
Theorem 3.3. Let $\mathcal{B} \in \Omega$. Then $\operatorname{dim} \mathcal{B} \leq n^{2}-2 n+3$. If \mathcal{B} has maximum dimension $n^{2}-2 n+3$, then \mathcal{B} is similar to one of

$$
\mathcal{M} E_{n, n}+\mathcal{M}\left[R_{n}, C_{1}\right]+K E_{1,1}, \quad \mathcal{M} E_{n, n}+\mathcal{M}\left[R_{n}, R_{n-1}\right]+K E_{n-1, n-1}
$$

Proof. Let $e \in \mathcal{M}$ denote the diagonal matrix of rank $n-1$ with entry 0 in row n and entries 1 in the remaining rows. Because e is a left identity in $\mathcal{M}\left[R_{n}\right]$ and $\mathcal{B} e \subset \mathcal{M}\left[R_{n}, C_{n}\right]$, it follows that $\mathcal{B} e$ is an algebra.

First suppose that $\mathcal{B} e=\mathcal{M}\left[R_{n}, C_{n}\right]$. Then $\mathcal{P}=\mathcal{C}+\mathcal{D}$, where

$$
\mathcal{C}=\mathcal{B}+K E_{n, n}, \quad \mathcal{D}=\mathcal{M}\left[R_{n}\right] E_{n, n}
$$

We proceed to show that $\mathcal{C} \cap \mathcal{D}$ is zero. Assume for the purpose of contradiction that there exists a nonzero matrix $B \in \mathcal{C} \cap \mathcal{D}$. Then $B \in \mathcal{B}$. We have $\mathcal{B} B=\mathcal{D}$, since the matrices in \mathcal{B} have all possible submatrices in their upper left $(n-1)$ by $(n-1)$ corners. Thus $\mathcal{D} \subset \mathcal{B} \subset \mathcal{C}$, which implies that $\mathcal{M}\left[R_{n}\right] \subset \mathcal{B}$ and $\mathcal{P}=\mathcal{C}=\mathcal{B}+K E_{n, n}$. If $K E_{n, n} \subset \mathcal{B}$, then $\mathcal{B}=\mathcal{P}$, and if $K E_{n, n}$ is not contained in \mathcal{B}, then $\mathcal{B}=\mathcal{M}\left[R_{n}\right]$; either case contradicts the fact that $\mathcal{B} \in \Omega$.

Since $\mathcal{C} \cap \mathcal{D}$ is zero,
$\operatorname{dim} \mathcal{B} \leq \operatorname{dim} \mathcal{C}=\operatorname{dim} \mathcal{P}-\operatorname{dim} \mathcal{D}=\left(n^{2}-n+1\right)-(n-1)=n^{2}-2 n+2$.
Thus

$$
\operatorname{dim} \mathcal{B}<n^{2}-2 n+3
$$

so the desired upper bound for $\operatorname{dim} \mathcal{B}$ holds when $\mathcal{B} e=\mathcal{M}\left[R_{n}, C_{n}\right]$.
Next suppose that $\mathcal{B} e$ is a proper subalgebra of $\mathcal{M}\left[R_{n}, C_{n}\right]$. We proceed to show that

$$
d:=\operatorname{dim} \mathcal{B} e \leq(n-1)(n-2)+1,
$$

by showing that

$$
\operatorname{dim} \mathcal{L} \leq(n-1)(n-2)+1
$$

for every proper subalgebra \mathcal{L} of \mathcal{M}_{n-1}. If \mathcal{L} is nonunital, then

$$
\operatorname{dim} \mathcal{L} \leq(n-1)(n-2)<(n-1)(n-2)+1
$$

by Lemma 2.2 (with $n-1$ in place of n). If \mathcal{L} contains a unit different from the identity of \mathcal{M}_{n-1}, then by Lemma 2.4 (with \mathcal{L} in place of \mathcal{U}),

$$
\operatorname{dim} \mathcal{L} \leq \operatorname{dim} \mathcal{M}\left[R_{n-1}, C_{n-1}\right]=(n-2)^{2}<(n-1)(n-2)+1
$$

If \mathcal{L} contains the identity of \mathcal{M}_{n-1}, then by [2, Lemma 4$]$,

$$
\operatorname{dim} \mathcal{L} \leq(n-1)(n-2)+1
$$

This completes the demonstration that $d \leq(n-1)(n-2)+1$.
Let $B_{1} e, B_{2} e, \ldots, B_{d} e$ be a basis for $\mathcal{B} e$, with $B_{i} \in \mathcal{B}$. Since \mathcal{B} is a subspace of the vector space spanned by the $d+n$ matrices

$$
B_{1}, \ldots, B_{d}, E_{1, n}, \ldots, E_{n, n}
$$

it follows that

$$
\operatorname{dim} \mathcal{B} \leq d+n \leq(n-1)(n-2)+1+n=n^{2}-2 n+3
$$

Thus the desired upper bound for $\operatorname{dim} \mathcal{B}$ holds in all cases.
The argument above shows that when we have the equality

$$
\operatorname{dim} \mathcal{B}=d+n=(n-1)(n-2)+1+n=n^{2}-2 n+3
$$

then

$$
\mathcal{B}=\mathcal{B} e+\mathcal{M} E_{n, n}
$$

Moreover, from the equality $d=\operatorname{dim} \mathcal{B} e=(n-1)(n-2)+1$, it follows from Agore [1, Prop. 2.5] (again appealing to the Appendix to dispense with the condition of algebraic closure) that there is an invertible matrix S in the set $\mathcal{M}\left[R_{n}, C_{n}\right]+E_{n, n}$ such that $S^{-1} \mathcal{B} e S$ is equal to one of

$$
\mathcal{M}\left[R_{n}, C_{n}, C_{1}\right]+K E_{1,1}, \quad \mathcal{M}\left[R_{n}, C_{n}, R_{n-1}\right]+K E_{n-1, n-1} .
$$

Since $S^{-1} \mathcal{M} E_{n, n} S=\mathcal{M} E_{n, n}$, we achieve the desired classification of Ω.

4 Appendix

Let F be a field of characteristic 0 with algebraic closure \bar{F}. Given a proper subalgebra $\mathcal{C} \subset \mathcal{M}_{n}(F)$ of maximum dimension, Agore [1, Prop. 2.5, Cor. 2.6] proved that the \bar{F}-span of \mathcal{C} is similar over \bar{F} to the \bar{F}-span of \mathcal{D} for some parabolic subalgebra \mathcal{D} of maximum dimension in $\mathcal{M}_{n}(F)$. The purpose of this Appendix is to deduce that \mathcal{C} is similar over F to \mathcal{D}.

Lemma 4.1. (Wallach) Let \mathcal{A} be a subspace of $\mathcal{M}_{n}(F)$ of dimension $n-1$ such that $\mathcal{A} \otimes_{F} \bar{F}$ has basis of one of the following two forms:
a) $x_{1} \otimes \lambda_{1}, x_{2} \otimes \lambda_{1}, \ldots, x_{n-1} \otimes \lambda_{1}$, with $\lambda_{1} \in\left(\bar{F}^{n}\right)^{*}, x_{j} \in \bar{F}^{n}$ and $\lambda_{1}\left(x_{j}\right)=0$,
b) $x_{1} \otimes \lambda_{1}, x_{1} \otimes \lambda_{2}, \ldots, x_{1} \otimes \lambda_{n-1}$, with $\lambda_{j} \in\left(\bar{F}^{n}\right)^{*}, x_{1} \in \bar{F}^{n}$ and $\lambda_{j}\left(x_{1}\right)=0$. Then in case a) \mathcal{A} is F-conjugate (i.e., under $\mathrm{GL}(n, F)$) to the span of the matrices $E_{i, n}$ with $i=1, \ldots, n-1$, and in case b) \mathcal{A} is F-conjugate to the span of the matrices $E_{n, i}$ with $i=1, \ldots, n-1$.

Proof. In either case, if $X, Y \in \mathcal{A}$ then $X Y=0$ and X has rank 1. For X of rank 1, we have $X F^{n}=F y$ for some $y \neq 0$. Thus there exists $\mu \in\left(F^{n}\right)^{*}$
with $X z=\mu(z) y=(y \otimes \mu)(z)$ for all z. We conclude that \mathcal{A} has a basis over F of the form $X_{i}=y_{i} \otimes \mu_{i}$ for $i=1, \ldots, n-1$.

We now assume that case a) is true (the argument for the other case is essentially the same). In case a), there exists $z \in \bar{F}^{n}$ such that

$$
\left\{X_{1}(z), \ldots, X_{n-1}(z)\right\}
$$

is linearly independent over \bar{F}. This implies that

$$
\mu_{1}(z) \cdots \mu_{n-1}(z) y_{1} \wedge \cdots \wedge y_{n-1} \neq 0
$$

Thus y_{1}, \ldots, y_{n-1} are linearly independent. But $0=X_{i} X_{j}=\mu_{i}\left(y_{j}\right) y_{i} \otimes \mu_{j}$. Thus $\mu_{i}\left(y_{j}\right)=0$ for all $j=1, \ldots, n-1$. Let ν be a non-zero element of $\left(F^{n}\right)^{*}$ such that $\nu\left(y_{i}\right)=0$ for all $i=1, \ldots, n-1$. Then ν is unique up to non-zero scalar multiple. Thus $y_{i} \otimes \nu, i=1, \ldots, n-1$ is an F-basis of \mathcal{A}. There exists $g \in \operatorname{GL}(n, F)$ such that if e_{1}, \ldots, e_{n} is the standard basis and ξ_{1}, \ldots, ξ_{n} is the dual basis then $g y_{i}=e_{i}$ and $\nu \circ g=\xi_{n}$. This completes the proof in case a).

Proposition 4.2. (Wallach) Suppose that $\mathcal{L} \subset \mathcal{M}_{n}(F)$ is a subalgebra such that $\mathcal{L} \otimes_{F} \bar{F}$ is either:
a) conjugate to the parabolic subalgebra $\mathcal{P}_{\bar{F}}$,
b) conjugate to the parabolic subalgebra $\left(\mathcal{P}_{\bar{F}}\right)^{\mathrm{T}}$.

In case a) \mathcal{L} is F-conjugate to \mathcal{P}_{F}. In case b) \mathcal{L} is F-conjugate to $\mathcal{P}_{F}^{\mathrm{T}}$.
Proof. We just do case a) as case b) is proved in the same way. We look upon \mathcal{L} as a Lie algebra over F. Then Levi's theorem [5, p. 91] implies that $\mathcal{L}=S \oplus R$ with S a semi-simple Lie algebra and R the radical (the maximal solvable ideal). Thus $\mathcal{L} \otimes_{F} \bar{F}=S \otimes_{F} \bar{F} \oplus R \otimes_{F} \bar{F}$. Therefore $R \otimes_{F} \bar{F}$ is the radical of $\mathcal{L} \otimes_{F} \bar{F}$. If we conjugate $\mathcal{L} \otimes_{F} \bar{F}$ to $\mathcal{P}_{\bar{F}}$ via $h \in \mathrm{GL}(n, \bar{F})$, then we see that

$$
h\left[R \otimes_{F} \bar{F}, R \otimes_{F} \bar{F}\right] h^{-1}
$$

has basis $E_{i, n}, i=1, \ldots, n-1$. Thus hypothesis a) of Lemma 4.1 is satisfied for $\mathcal{A}=[R, R]$. There exists therefore $g \in \mathrm{GL}(n, F)$ such that $g \mathcal{A} g^{-1}$ has basis $E_{i, n}, i=1, \ldots, n-1$. Assume that we have replaced \mathcal{L} with $g \mathcal{L} g^{-1}$. Then \mathcal{A} has basis $E_{i, n}, i=1, \ldots, n-1$. Since $[\mathcal{L}, \mathcal{A}] \subset \mathcal{A}$ and \mathcal{P}_{F} is exactly the set of elements X of $\mathcal{M}_{n}(F)$ such that $[X, \mathcal{A}] \subset \mathcal{A}$, we have $\mathcal{L} \subset \mathcal{P}_{F}$. Thus $\mathcal{L}=\mathcal{P}_{F}$, as both sides have the same dimension.

Acknowledgment

We are very grateful to Nolan Wallach for providing the Appendix and for many helpful suggestions.

References

[1] A. L. Agore, The maximal dimension of unital subalgebras of the matrix algebra, Forum Math. 29 (2017), 1-5.
[2] F. Gaines, Some generators for the algebra of $n \times n$ matrices, Linear Multilinear Algebra 5 (1977/78), no. 2, 95-98.
[3] B. J. Gardner and R. Wiegandt, Radical Theory of Rings, M. Dekker, NY, 2004.
[4] I. M. Isaacs, Algebra: A Graduate Course, Brooks/Cole, Pacific Grove, CA, 1994.
[5] N. Jacobson, Lie Algebras, Courier Dover Publications, NY, 1979.
[6] K. O'Meara, J. Clark, and C. Vinsonhaler, Advanced Topics in Linear Algebra, Oxford University Press, 2011.
[7] C. S. Pazzis, On Gerstenhaber's theorem for spaces of nilpotent matrices over a skew field, Linear Algebra Appl. 438 (2013), 4426-4438.
[8] J. Rotman, Advanced Modern Algebra: Third Edition, Part I, AMS, Providence, RI, 2015.
[9] N. Wallach, email dated 2/20/2017.

