Classification of certain types of maximal matrix subalgebras

John Eggers Department of Mathematics University of California at San Diego La Jolla, CA 92093-0112 jeggers@ucsd.edu

Ron Evans Department of Mathematics University of California at San Diego La Jolla, CA 92093-0112 revans@ucsd.edu

> Mark Van Veen Varasco LLC 2138 Edinburg Avenue Cardiff by the Sea, CA 92007 mark@varasco.com

2010 Mathematics Subject Classification. 15B33, 16S50

Key words and phrases. matrix ring over a field, intersection of matrix subalgebras, nonunital intersections, subalgebras of maximum dimension, parabolic subalgebra, semi-simple Lie algebra, radical

Abstract

Let $\mathcal{M}_n(K)$ denote the algebra of $n \times n$ matrices over a field Kof characteristic zero. A nonunital subalgebra $\mathcal{N} \subset \mathcal{M}_n(K)$ will be called a *nonunital intersection* if \mathcal{N} is the intersection of two unital subalgebras of $\mathcal{M}_n(K)$. Appealing to recent work of Agore, we show that for $n \geq 3$, the dimension (over K) of a nonunital intersection is at most (n-1)(n-2), and we completely classify the nonunital intersections of maximum dimension (n-1)(n-2). We also classify the unital subalgebras of maximum dimension properly contained in a parabolic subalgebra of maximum dimension in $\mathcal{M}_n(K)$.

1 Introduction

Let $\mathcal{M}_n(F)$ denote the algebra of $n \times n$ matrices over a field F. For some interesting sets Λ of subspaces $\mathcal{S} \subset \mathcal{M}_n(F)$, those $\mathcal{S} \in \Lambda$ of maximum dimension over F have been completely classified. For example, a theorem of Gerstenhaber and Serezhkin [7, Theorem 1] states that when Λ is the set of subspaces $\mathcal{S} \subset \mathcal{M}_n(F)$ for which every matrix in \mathcal{S} is nilpotent, then each $\mathcal{S} \in \Lambda$ of maximum dimension is conjugate to the algebra of all strictly upper triangular matrices in $\mathcal{M}_n(F)$. For another example, it is shown in [1, Prop. 2.5] that when Λ is the set of proper unital subalgebras $\mathcal{S} \subset \mathcal{M}_n(F)$ and F is an algebraically closed field of characteristic zero, then each $\mathcal{S} \in \Lambda$ of maximum dimension is a parabolic subalgebra of maximum dimension in $\mathcal{M}_n(F)$.

The goal of this paper is to classify the elements in Λ of maximum dimension in the cases $\Lambda = \Gamma$ and $\Lambda = \Omega$, where the sets Γ and Ω are defined below. First we need some definitions.

Write $\mathcal{M} = \mathcal{M}_n = \mathcal{M}_n(K)$, where K is a field of characteristic zero. (It would be interesting to know if this restriction on the characteristic can be relaxed for the results in this paper.) In the spirit of [3, p. viii], we define a subalgebra of \mathcal{M} to be a vector subspace of \mathcal{M} over K closed under the multiplication of \mathcal{M} (cf. [3, p. 2]); thus a subalgebra need not have a unity, and the unity of a unital subalgebra need not be a unity of the parent algebra. Subalgebras $\mathcal{A}, \ \mathcal{B} \subset \mathcal{M}$ are said to be similar if $\mathcal{A} = \{S^{-1}BS : B \in \mathcal{B}\}$ for some invertible $S \in \mathcal{M}$.

In Isaac's text [4, p. 161], every ring is required to have a unity, but the unity in a subring need not be the same as the unity in its parent ring. Under

this definition, a ring may have subrings whose intersection is not a subring. This motivated us to study examples of pairs of unital subalgebras in \mathcal{M} whose intersection \mathcal{N} is nonunital. We call such \mathcal{N} a *nonunital intersection* and we let Γ denote the set of all nonunital intersections $\mathcal{N} \subset \mathcal{M}$. Note that Γ is closed under transposition and conjugation, i.e., if $\mathcal{N} \in \Gamma$, then $\mathcal{N}^{\mathrm{T}} \in \Gamma$ and $S^{-1}\mathcal{N}S \in \Gamma$ for any invertible $S \in \mathcal{M}$.

In order to define Ω , we need to establish additional notation. Let $\mathcal{M}[R_n]$ denote the subalgebra of \mathcal{M} consisting of those matrices whose *n*-th row is zero. Similarly, $\mathcal{M}[R_n, C_n]$ indicates that the *n*-th row and *n*-th column are zero, etc. For $1 \leq i, j \leq n$, let $E_{i,j}$ denote the elementary matrix in \mathcal{M} with a single entry 1 in row *i*, column *j*, and 0 in each of the other $n^2 - 1$ positions. The identity matrix in \mathcal{M} will be denoted by *I*. For the maximal parabolic subalgebra $\mathcal{P} := \mathcal{M}[R_n] + KE_{n,n}$ in \mathcal{M} , define Ω to be the set of proper subalgebras \mathcal{B} of \mathcal{P} with $\mathcal{B} \neq \mathcal{M}[R_n]$.

We now describe Theorems 3.1–3.3, our main results. Theorem 3.1 shows that dim $\mathcal{N} \leq (n-1)(n-2)$ for each $\mathcal{N} \in \Gamma$. Theorem 3.2 shows that up to similarity, $\mathcal{W} := \mathcal{M}[R_n, R_{n-1}, C_n]$ and $\mathcal{W}^{\mathrm{T}} := \mathcal{M}[R_n, C_{n-1}, C_n]$ are the only subalgebras in Γ having maximum dimension (n-1)(n-2). In Theorem 3.3, we show that dim $\mathcal{B} \leq n^2 - 2n + 3$ for each $\mathcal{B} \in \Omega$, and we classify all $\mathcal{B} \in \Omega$ of maximum dimension $n^2 - 2n + 3$.

The proofs of our theorems depend on four lemmas, which are proved in Section 2. Lemma 2.1 shows that \mathcal{W} (and hence also \mathcal{W}^{T}) is a nonunital intersection of dimension (n-1)(n-2) when $n \geq 3$. Lemmas 2.2 and 2.3 show that dim $\mathcal{L} \leq n(n-1)$ for any nonunital subalgebra $\mathcal{L} \subset \mathcal{M}$, and when equality holds, \mathcal{L} must be similar to $\mathcal{M}[R_n]$ or $\mathcal{M}[C_n]$. (Thus if Λ denotes the set of nonunital subalgebras $\mathcal{L} \subset \mathcal{M}$, Lemmas 2.2 and 2.3 classify those $\mathcal{L} \in \Lambda$ of maximum dimension.) Lemma 2.4 shows that if $\mathcal{U} \subset \mathcal{M}$ is a subalgebra with unity different from I, then some conjugate of \mathcal{U} is contained in $\mathcal{M}[R_n, C_n]$.

2 Lemmas

Recall the definition $\mathcal{W} := \mathcal{M}[R_n, R_{n-1}, C_n].$

Lemma 2.1. For $n \ge 3$, $\mathcal{W} \in \Gamma$ and dim $\mathcal{W} = (n-1)(n-2)$.

Proof. For n > 1, define $A \in \mathcal{M}$ by $A = I + E_{n,n-1}$. Note that $A^{-1} = I - E_{n,n-1}$. A computation shows that for $M \in \mathcal{M}[R_n, C_n]$, the conjugate

 AMA^{-1} is obtained from M by replacing the (zero) bottom row of M by the (n-1)-th row of M. Since the bottom two rows of AMA^{-1} are identical, it follows that

$$AMA^{-1} \in \mathcal{M}[R_n, C_n] \cap A\mathcal{M}[R_n, C_n]A^{-1}$$
 if and only if $AMA^{-1} \in \mathcal{W}$.

Since $\mathcal{W} = A^{-1}\mathcal{W}A$, this shows that \mathcal{W} is the intersection of the unital subalgebras $A^{-1}\mathcal{M}[R_n, C_n]A$ and $\mathcal{M}[R_n, C_n]$. To see that \mathcal{W} is nonunital, note that $E_{1,n-1}$ is a nonzero matrix in \mathcal{W} for which $E_{1,n-1}W$ is the zero matrix for each $W \in \mathcal{W}$; thus \mathcal{W} cannot have a right identity, so $\mathcal{W} \in \Gamma$. Finally, it follows from the definition of \mathcal{W} that dim $\mathcal{W} = (n-1)(n-2)$. \Box

Remark: The same proof shows that $\mathcal{W} \in \Gamma$ when the field K is replaced by an arbitrary ring R with $1 \neq 0$. If R happens to be commutative, then the dimension of the algebra \mathcal{W} over R is well defined [8, p. 483] and it equals (n-1)(n-2).

Lemma 2.2. For any nonunital subalgebra $\mathcal{L} \subset \mathcal{M}$, dim $\mathcal{L} \leq n(n-1)$.

Proof. If $\mathcal{L} + KI = \mathcal{M}$, then \mathcal{L} would be a two-sided proper ideal of \mathcal{M} , contradicting the fact that \mathcal{M} is a simple ring [8, p. 280]. Fergus Gaines [2, Lemma 4] proved that for any field F, the F-dimension of a proper unitary subalgebra of $\mathcal{M}_n(F)$ is at most $n^2 - n + 1$. (Agore [1, Cor. 2.6] proved this only for fields of characteristic zero.) Since $\mathcal{L} + KI$ is a proper subalgebra of \mathcal{M} containing the unity I, it follows that

$$\dim \mathcal{L} = -1 + \dim (\mathcal{L} + KI) \le n(n-1).$$

Lemma 2.3. Any nonunital subalgebra $\mathcal{L} \subset \mathcal{M}$ with dim $\mathcal{L} = n(n-1)$ must be similar to either $\mathcal{M}[R_n]$ or $\mathcal{M}[C_n] = \mathcal{M}[R_n]^{\mathrm{T}}$.

Proof. Consider the two parabolic subalgebras $\mathcal{P}, \mathcal{P}' \subset \mathcal{M}$ defined by

$$\mathcal{P} = \mathcal{P}_K = \mathcal{M}[R_n] + KE_{n,n} , \quad \mathcal{P}' = \mathcal{P}'_K = \mathcal{M}[C_1] + KE_{1,1}$$

Note that \mathcal{P}' is similar to the transpose \mathcal{P}^{T} . Since $\mathcal{L} + KI$ is a proper subalgebra of \mathcal{M} of dimension n(n-1)+1, it follows from Agore [1, Prop. 2.5] that $\mathcal{L}+KI$ is similar to \mathcal{P} or \mathcal{P}' , under the condition that K is algebraically closed. However, Nolan Wallach [9] has proved that this condition can be dropped; see the Appendix. Thus, replacing \mathcal{L} by a conjugate if necessary, we may assume that $\mathcal{L} + KI = \mathcal{P}$ or $\mathcal{L} + KI = \mathcal{P}^{\mathrm{T}}$. We will assume that $\mathcal{L} + KI = \mathcal{P}$, since the proof for \mathcal{P}^{T} is essentially the same. It suffices to show that \mathcal{L} is similar to $\mathcal{M}[R_n]$ or $\mathcal{M}[C_1]$, since $\mathcal{M}[C_1]$ is similar to $\mathcal{M}[C_n]$.

Assume temporarily that each $L \in \mathcal{L}$ has all entries 0 in its upper left $(n-1) \times (n-1)$ corner. Then n = 2, because if $n \geq 3$, then every matrix in \mathcal{P} would have a zero entry in row 1, column 2, contradicting the definition of \mathcal{P} . Since $\mathcal{L} \subset \mathcal{M}_2[C_1]$ and both sides have dimension 2, we have $\mathcal{L} = \mathcal{M}_2[C_1]$, which proves the theorem under our temporary assumption.

When the temporary assumption is false, there exists $L \in \mathcal{L}$ with the entry 1 in row *i*, column *j* for some fixed pair *i*, *j* with $1 \leq i, j \leq n-1$. Since $E_{i,i}$ and $E_{j,j}$ are in $\mathcal{P} = \mathcal{L} + KI$ and \mathcal{L} is a two-sided ideal of \mathcal{P} , we have $E_{i,j} = E_{i,i}LE_{j,j} \in \mathcal{L}$. Consequently, $E_{a,b} = E_{a,i}E_{i,j}E_{j,b} \in \mathcal{L}$ for all pairs a, b with $1 \leq a \leq n-1$ and $1 \leq b \leq n$. Therefore

$$\mathcal{M}[R_n] = \sum_{a=1}^{n-1} \sum_{b=1}^n KE_{a,b} \subset \mathcal{L},$$

and since both $\mathcal{M}[R_n]$ and \mathcal{L} have the same dimension n(n-1), we conclude that $\mathcal{L} = \mathcal{M}[R_n]$.

Remark: Any subalgebra $\mathcal{B} \subset \mathcal{M}$ properly containing $\mathcal{M}[R_n]$ must also contain *I*. To see this, note that \mathcal{B} contains a nonzero matrix of the form

$$B := \sum_{i=1}^{n} c_i E_{n,i} , \quad c_i \in K.$$

If $c_j = 0$ for all j < n, then $E_{n,n} \in \mathcal{B}$, so $I \in \mathcal{B}$. On the other hand, if $c_j \neq 0$ for some j < n, then $E_{n,n} = c_j^{-1} B E_{j,n} \in \mathcal{B}$, so again $I \in \mathcal{B}$.

Lemma 2.4. Suppose that a subalgebra $\mathcal{U} \subset \mathcal{M}$ has a unity $e \neq I$. Then $S^{-1}\mathcal{U}S \subset \mathcal{M}[R_n, C_n]$ for some invertible $S \in \mathcal{M}$.

Proof. Let r be the rank of the matrix e. Note that e is idempotent, so by [6, p. 27], there exists an invertible $S \in \mathcal{M}$ for which $S^{-1}eS = D_r$, where D_r is a diagonal matrix with entries 1 in rows 1 through r, and entries 0 elsewhere. Replacing \mathcal{U} by $S^{-1}\mathcal{U}S$ if necessary, we may assume that $e = D_r$. Since $r \leq n-1$, we have

$$\mathcal{U} = e \mathcal{U} e \subset e \mathcal{M} e = D_r \mathcal{M} D_r \subset D_{n-1} \mathcal{M} D_{n-1} = \mathcal{M}[R_n, C_n].$$

3 Theorems

Recall that Γ is the set of all nonunital intersections in \mathcal{M} .

Theorem 3.1. If $\mathcal{N} \in \Gamma$, then dim $\mathcal{N} \leq (n-1)(n-2)$.

Proof. Let $\mathcal{N} \in \Gamma$, so that $\mathcal{N} = \mathcal{U} \cap \mathcal{V}$ for some pair of unital subalgebras $\mathcal{U}, \mathcal{V} \subset \mathcal{M}$. Since \mathcal{N} is nonunital, one of \mathcal{U}, \mathcal{V} , say \mathcal{U} , does not contain I. Thus \mathcal{U} contains a unity $e \neq I$. Define S as in Lemma 2.4. Replacing \mathcal{U} , \mathcal{V}, \mathcal{N} by $S^{-1}\mathcal{U}S, S^{-1}\mathcal{V}S, S^{-1}\mathcal{N}S$, if necessary, we deduce from Lemma 2.4 that \mathcal{U} is contained in $\mathcal{M}[R_n, C_n]$. Since \mathcal{N} is a nonunital subalgebra of $\mathcal{U} \subset \mathcal{M}[R_n, C_n]$, it follows from Lemma 2.2 with (n-1) in place of n that $\dim \mathcal{N} \leq (n-1)(n-2)$.

Theorem 3.2. Let $n \geq 3$. Then up to similarity, \mathcal{W} and \mathcal{W}^{T} are the only subalgebras of \mathcal{M} in Γ having dimension (n-1)(n-2).

Proof. By Lemma 2.1, every subalgebra of \mathcal{M} similar to \mathcal{W} or \mathcal{W}^{T} lies in Γ and has dimension (n-1)(n-2). Conversely, let $\mathcal{N} \in \Gamma$ with dim $\mathcal{N} = (n-1)(n-2)$. We must show that \mathcal{N} is similar to \mathcal{W} or \mathcal{W}^{T} .

We may assume, as in the proof of Theorem 3.1, that \mathcal{N} is a nonunital subalgebra of $\mathcal{M}[R_n, C_n]$. Let \mathcal{L} be the subalgebra of \mathcal{M}_{n-1} consisting of those matrices in the upper left $(n-1) \times (n-1)$ corners of the matrices in \mathcal{N} . Since dim $\mathcal{L} = \dim \mathcal{N} = (n-1)(n-2)$, it follows from Lemma 2.3 that \mathcal{L} is similar to $\mathcal{M}_{n-1}[R_{n-1}]$ or $\mathcal{M}_{n-1}[C_{n-1}]$. Thus \mathcal{N} is similar to $\mathcal{W} = \mathcal{M}[R_n, R_{n-1}, C_n]$ or $\mathcal{W}^{\mathrm{T}} = \mathcal{M}[R_n, C_{n-1}, C_n]$. \Box

Recall that Ω denotes the set of proper subalgebras $\mathcal{B} \neq \mathcal{M}[R_n]$ in \mathcal{P} .

Theorem 3.3. Let $\mathcal{B} \in \Omega$. Then dim $\mathcal{B} \leq n^2 - 2n + 3$. If \mathcal{B} has maximum dimension $n^2 - 2n + 3$, then \mathcal{B} is similar to one of

$$\mathcal{M}E_{n,n} + \mathcal{M}[R_n, C_1] + KE_{1,1}, \qquad \mathcal{M}E_{n,n} + \mathcal{M}[R_n, R_{n-1}] + KE_{n-1,n-1}.$$

Proof. Let $e \in \mathcal{M}$ denote the diagonal matrix of rank n-1 with entry 0 in row n and entries 1 in the remaining rows. Because e is a left identity in $\mathcal{M}[R_n]$ and $\mathcal{B}e \subset \mathcal{M}[R_n, C_n]$, it follows that $\mathcal{B}e$ is an algebra.

First suppose that $\mathcal{B}e = \mathcal{M}[R_n, C_n]$. Then $\mathcal{P} = \mathcal{C} + \mathcal{D}$, where

$$\mathcal{C} = \mathcal{B} + KE_{n,n}, \quad \mathcal{D} = \mathcal{M}[R_n]E_{n,n}$$

We proceed to show that $\mathcal{C} \cap \mathcal{D}$ is zero. Assume for the purpose of contradiction that there exists a nonzero matrix $B \in \mathcal{C} \cap \mathcal{D}$. Then $B \in \mathcal{B}$. We have $\mathcal{B}B = \mathcal{D}$, since the matrices in \mathcal{B} have all possible submatrices in their upper left (n-1) by (n-1) corners. Thus $\mathcal{D} \subset \mathcal{B} \subset \mathcal{C}$, which implies that $\mathcal{M}[R_n] \subset \mathcal{B}$ and $\mathcal{P} = \mathcal{C} = \mathcal{B} + KE_{n,n}$. If $KE_{n,n} \subset \mathcal{B}$, then $\mathcal{B} = \mathcal{P}$, and if $KE_{n,n}$ is not contained in \mathcal{B} , then $\mathcal{B} = \mathcal{M}[R_n]$; either case contradicts the fact that $\mathcal{B} \in \Omega$.

Since $\mathcal{C} \cap \mathcal{D}$ is zero,

dim
$$\mathcal{B} \leq \dim \mathcal{C} = \dim \mathcal{P} - \dim \mathcal{D} = (n^2 - n + 1) - (n - 1) = n^2 - 2n + 2.$$

Thus

$$\dim \mathcal{B} < n^2 - 2n + 3,$$

so the desired upper bound for dim \mathcal{B} holds when $\mathcal{B}e = \mathcal{M}[R_n, C_n]$.

Next suppose that $\mathcal{B}e$ is a proper subalgebra of $\mathcal{M}[R_n, C_n]$. We proceed to show that

$$d := \dim \mathcal{B}e \le (n-1)(n-2) + 1,$$

by showing that

$$\dim \mathcal{L} \le (n-1)(n-2) + 1$$

for every proper subalgebra \mathcal{L} of \mathcal{M}_{n-1} . If \mathcal{L} is nonunital, then

dim
$$\mathcal{L} \le (n-1)(n-2) < (n-1)(n-2) + 1$$

by Lemma 2.2 (with n-1 in place of n). If \mathcal{L} contains a unit different from the identity of \mathcal{M}_{n-1} , then by Lemma 2.4 (with \mathcal{L} in place of \mathcal{U}),

dim
$$\mathcal{L} \le \dim \mathcal{M}[R_{n-1}, C_{n-1}] = (n-2)^2 < (n-1)(n-2) + 1.$$

If \mathcal{L} contains the identity of \mathcal{M}_{n-1} , then by [2, Lemma 4],

$$\dim \mathcal{L} \le (n-1)(n-2) + 1.$$

This completes the demonstration that $d \leq (n-1)(n-2) + 1$.

Let B_1e, B_2e, \ldots, B_de be a basis for $\mathcal{B}e$, with $B_i \in \mathcal{B}$. Since \mathcal{B} is a subspace of the vector space spanned by the d + n matrices

$$B_1,\ldots,B_d,E_{1,n},\ldots,E_{n,n},$$

it follows that

dim
$$\mathcal{B} \le d + n \le (n-1)(n-2) + 1 + n = n^2 - 2n + 3.$$

Thus the desired upper bound for dim \mathcal{B} holds in all cases.

The argument above shows that when we have the equality

dim
$$\mathcal{B} = d + n = (n - 1)(n - 2) + 1 + n = n^2 - 2n + 3$$

then

$$\mathcal{B} = \mathcal{B}e + \mathcal{M}E_{n,n}.$$

Moreover, from the equality $d = \dim \mathcal{B}e = (n-1)(n-2)+1$, it follows from Agore [1, Prop. 2.5] (again appealing to the Appendix to dispense with the condition of algebraic closure) that there is an invertible matrix S in the set $\mathcal{M}[R_n, C_n] + E_{n,n}$ such that $S^{-1}\mathcal{B}eS$ is equal to one of

$$\mathcal{M}[R_n, C_n, C_1] + KE_{1,1}, \qquad \mathcal{M}[R_n, C_n, R_{n-1}] + KE_{n-1,n-1}.$$

Since $S^{-1}\mathcal{M}E_{n,n}S = \mathcal{M}E_{n,n}$, we achieve the desired classification of Ω . \Box

4 Appendix

Let F be a field of characteristic 0 with algebraic closure \overline{F} . Given a proper subalgebra $\mathcal{C} \subset \mathcal{M}_n(F)$ of maximum dimension, Agore [1, Prop. 2.5, Cor. 2.6] proved that the \overline{F} -span of \mathcal{C} is similar over \overline{F} to the \overline{F} -span of \mathcal{D} for some parabolic subalgebra \mathcal{D} of maximum dimension in $\mathcal{M}_n(F)$. The purpose of this Appendix is to deduce that \mathcal{C} is similar over F to \mathcal{D} .

Lemma 4.1. (Wallach) Let \mathcal{A} be a subspace of $\mathcal{M}_n(F)$ of dimension n-1 such that $\mathcal{A} \otimes_F \overline{F}$ has basis of one of the following two forms:

a) $x_1 \otimes \lambda_1, x_2 \otimes \lambda_1, ..., x_{n-1} \otimes \lambda_1$, with $\lambda_1 \in (\bar{F}^n)^*, x_j \in \bar{F}^n$ and $\lambda_1(x_j) = 0$, b) $x_1 \otimes \lambda_1, x_1 \otimes \lambda_2, ..., x_1 \otimes \lambda_{n-1}$, with $\lambda_j \in (\bar{F}^n)^*, x_1 \in \bar{F}^n$ and $\lambda_j(x_1) = 0$. Then in case a) \mathcal{A} is F-conjugate (i.e., under GL(n, F)) to the span of the matrices $E_{i,n}$ with i = 1, ..., n - 1, and in case b) \mathcal{A} is F-conjugate to the span of the matrices $E_{n,i}$ with i = 1, ..., n - 1.

Proof. In either case, if $X, Y \in \mathcal{A}$ then XY = 0 and X has rank 1. For X of rank 1, we have $XF^n = Fy$ for some $y \neq 0$. Thus there exists $\mu \in (F^n)^*$

with $Xz = \mu(z)y = (y \otimes \mu)(z)$ for all z. We conclude that \mathcal{A} has a basis over F of the form $X_i = y_i \otimes \mu_i$ for i = 1, ..., n - 1.

We now assume that case a) is true (the argument for the other case is essentially the same). In case a), there exists $z \in \overline{F}^n$ such that

$$\{X_1(z), ..., X_{n-1}(z)\}$$

is linearly independent over \overline{F} . This implies that

$$\mu_1(z)\cdots\mu_{n-1}(z)y_1\wedge\cdots\wedge y_{n-1}\neq 0.$$

Thus $y_1, ..., y_{n-1}$ are linearly independent. But $0 = X_i X_j = \mu_i(y_j) y_i \otimes \mu_j$. Thus $\mu_i(y_j) = 0$ for all j = 1, ..., n-1. Let ν be a non-zero element of $(F^n)^*$ such that $\nu(y_i) = 0$ for all i = 1, ..., n-1. Then ν is unique up to non-zero scalar multiple. Thus $y_i \otimes \nu$, i = 1, ..., n-1 is an F-basis of \mathcal{A} . There exists $g \in \operatorname{GL}(n, F)$ such that if $e_1, ..., e_n$ is the standard basis and $\xi_1, ..., \xi_n$ is the dual basis then $gy_i = e_i$ and $\nu \circ g = \xi_n$. This completes the proof in case a).

Proposition 4.2. (Wallach) Suppose that $\mathcal{L} \subset \mathcal{M}_n(F)$ is a subalgebra such that $\mathcal{L} \otimes_F \overline{F}$ is either:

a) conjugate to the parabolic subalgebra $\mathcal{P}_{\bar{F}}$,

b) conjugate to the parabolic subalgebra $(\mathcal{P}_{\bar{F}})^{\mathrm{T}}$.

In case a) \mathcal{L} is *F*-conjugate to \mathcal{P}_F . In case b) \mathcal{L} is *F*-conjugate to $\mathcal{P}_F^{\mathrm{T}}$.

Proof. We just do case a) as case b) is proved in the same way. We look upon \mathcal{L} as a Lie algebra over F. Then Levi's theorem [5, p. 91] implies that $\mathcal{L} = S \oplus R$ with S a semi-simple Lie algebra and R the radical (the maximal solvable ideal). Thus $\mathcal{L} \otimes_F \overline{F} = S \otimes_F \overline{F} \oplus R \otimes_F \overline{F}$. Therefore $R \otimes_F \overline{F}$ is the radical of $\mathcal{L} \otimes_F \overline{F}$. If we conjugate $\mathcal{L} \otimes_F \overline{F}$ to $\mathcal{P}_{\overline{F}}$ via $h \in \mathrm{GL}(n, \overline{F})$, then we see that

$$h[R \otimes_F \overline{F}, R \otimes_F \overline{F}]h^{-1}$$

has basis $E_{i,n}$, i = 1, ..., n - 1. Thus hypothesis a) of Lemma 4.1 is satisfied for $\mathcal{A} = [R, R]$. There exists therefore $g \in \operatorname{GL}(n, F)$ such that $g\mathcal{A}g^{-1}$ has basis $E_{i,n}$, i = 1, ..., n - 1. Assume that we have replaced \mathcal{L} with $g\mathcal{L}g^{-1}$. Then \mathcal{A} has basis $E_{i,n}$, i = 1, ..., n - 1. Since $[\mathcal{L}, \mathcal{A}] \subset \mathcal{A}$ and \mathcal{P}_F is exactly the set of elements X of $\mathcal{M}_n(F)$ such that $[X, \mathcal{A}] \subset \mathcal{A}$, we have $\mathcal{L} \subset \mathcal{P}_F$. Thus $\mathcal{L} = \mathcal{P}_F$, as both sides have the same dimension.

Acknowledgment

We are very grateful to Nolan Wallach for providing the Appendix and for many helpful suggestions.

References

- [1] A. L. Agore, The maximal dimension of unital subalgebras of the matrix algebra, Forum Math. **29** (2017), 1–5.
- [2] F. Gaines, Some generators for the algebra of $n \times n$ matrices, Linear Multilinear Algebra 5 (1977/78), no. 2, 95–98.
- [3] B. J. Gardner and R. Wiegandt, Radical Theory of Rings, M. Dekker, NY, 2004.
- [4] I. M. Isaacs, Algebra: A Graduate Course, Brooks/Cole, Pacific Grove, CA, 1994.
- [5] N. Jacobson, Lie Algebras, Courier Dover Publications, NY, 1979.
- [6] K. O'Meara, J. Clark, and C. Vinsonhaler, Advanced Topics in Linear Algebra, Oxford University Press, 2011.
- [7] C. S. Pazzis, On Gerstenhaber's theorem for spaces of nilpotent matrices over a skew field, Linear Algebra Appl. **438** (2013), 4426–4438.
- [8] J. Rotman, Advanced Modern Algebra: Third Edition, Part I, AMS, Providence, RI, 2015.
- [9] N. Wallach, email dated 2/20/2017.