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Abstract

The n-th power-moments Sn of classical Kloosterman sums (mod p)
are known explicitly only for n ≤ 6. In 2002, we conjectured formulas
for Sn(mod 4) for each n > 1, valid for all primes p > n. Here we
prove these formulas, and give conjectural congruences for Sn modulo
some higher powers of 2 for a few small values of n. For example, we
conjecture that if p ≡ 17 (mod 120), so that p = 3s2 + 5t2, then

S10 ≡
{

15 (mod 64), if t ≡ ±1 (mod 12)
47 (mod 64), if t ≡ ±5 (mod 12).
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1 Introduction

For an odd prime p, let Fp denote a field of p elements, and write
ζp = exp(2πi/p). Consider the Kloosterman sums K(a) defined by

(1.1) K(a) =

p−1∑
x=1

ζx+a/x
p , a ∈ Fp.

For n > 1, let Sn denote the power-moment

(1.2) Sn =

p−1∑
a=0

K(a)n.

Define σt ∈ Gal(Q(ζp)/Q) by σt(ζp) = ζt
p, where (t, p) = 1. We have

σt(K(a)) = K(at2); to see this, replace x by x/t in (1.1). Thus each σt

fixes Sn, so Sn ∈ Z. It is not difficult to show moreover that for each p > n,

(1.3) Sn ≡
{

0 (mod 2), if n is a power of 2,
1 (mod 2), otherwise.

The primary purpose of this paper is to determine Sn(mod 4) for all p > n.
This is accomplished in Theorems 2.1 and 2.2 for odd and even n, respectively.
We conjectured these results in 2002 [2].

While Theorems 2.1 and 2.2 evaluate Sn(mod 4), it appears to be a much
more difficult task to obtain general congruences for Sn(mod 2r) for any fixed
value of r > 2. In Section 5, we present conjectural congruences for some
small values of n > 5 and r > 2. The formulas are especially intriguing
for even n, as they depend on parameters occurring in multifarious binary
quadratic forms representing the primes p.

We proceed to discuss further facts and conjectures concerning the sums
Sn. For a study of sums of powers of certain Kloosterman sums over rings,
see [6].

Explicit formulas for Sn are known for n ≤ 6. Indeed, Salié [11] proved
that

(1.4) S2 = p2 − p,

(1.5) S3 =
(p

3

)
p2 + 2p,
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and

(1.6) S4 = 2p3 − 3p2 − 3p.

Proofs may also be found in [8] (but replace −p by −3p in [8, (4.25)]). For
p > 5, it follows from the work in [10] and [9] that

(1.7) S5 =
(p

3

)
4p3 + (ap + 5)p2 + 4p,

where ap is the integer with |ap| < 2p defined for p > 5 by

(1.8) ap =




2p − 12u2, if p = 3u2 + 5v2

4x2 − 2p, if p = x2 + 15y2

0, if p ≡ 7, 11, 13, or 14 (mod 15).

For p > 5, ap is the coefficient of p−s in the Hecke L-function

L(s, χ) = 1 +
1

2s
− 3

3s
− 3

4s
+

5

5s
− 3

6s
+ · · ·

where χ is the Hecke character of conductor (1) whose values on integral
ideals of Q(

√−15) are as follows. For every principal ideal (α), χ((α)) = α2;
for a nonprincipal prime ideal P of norm p, χ(P ) = −3 when p = 3 and
otherwise χ(P ) = β, where β is that generator of the principal ideal P 2

whose real part is congruent modulo 3 to the Legendre symbol (p/3). For
example, χ(P ) = (1 +

√−15)/2 when p = 2.
By the Hecke correspondence, ap is the Fourier coefficient of qp in the q-

expansion of a newform F (z) on Γ0(15) of weight 3 with quadratic nebentypus
of conductor 15, where q = exp(2πiz). Amazingly, F (z) can be expressed
explicitly as

F (z) := η(z)η(3z)η(5z)η(15z) (θ2(q)θ2(q
15) + θ3(q)θ3(q

15)),

where η is the Dedekind eta function and θ2, θ3 are the classical Jacobi
theta functions. This can be proved by squaring both sides (to get forms
of weight 6 with trivial nebentypus) and then matching the corresponding
Fourier coefficients up to the Sturm bound.

For p > 6, it follows from the work in [7] that

(1.9) S6 = 5p4 − 10p3 − (bp + 9)p2 − 5p,
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where bp is the integer with

(1.10) |bp| < 2p3/2

defined to be the coefficient of qp in the q-expansion of the newform of weight
4, level 6 given by

(η(6z)η(3z)η(2z)η(z))2.

For p > 7, S7 has been evaluated conjecturally [4] in terms of the coeffi-
cient of qp in the q-expansion of a certain newform of weight 3, level 525.

For any n > 1, we have

(1.11) Sn ≡ p(n − 1)(−1)n−1 (mod p2)

for all p > n (in agreement with the rightmost terms in (1.4) – (1.7) and
(1.9)). To see (1.11), first note that

(1.12) Sn/p =
∑

x̄1+···+x̄n=0

ζx1+···+xn
p ≡ Un :=

∑
x̄1+···+x̄n=0

1 (mod p),

where xi ∈ F∗
p and xixi = 1 in Fp. The congruence

(1.13)
∑

x̄1+···+x̄n=1

1 ≡ Un + (−1)n−1 (mod p)

yields the recursion

(1.14) Un ≡ (−1)n−1 − Un−1 (mod p).

This in turn implies

(1.15) Un ≡ (−1)n−1(n − 1) (mod p),

which proves (1.11).
We remark that the first equality in (1.12) yields the formula

(1.16) Sn = p(N0 − N1),

where

(1.17) Na :=
{
(x1, . . . , xn) ∈ (F∗

p)
n : Σxi = 0, Σxi = a

}
.
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See also [8, pp. 61–62].
By (1.9) and (1.10),

(1.18) S6 ∼ 5p4 as p → ∞.

In fact, (1.18) is a special case of the asymptotic formula

(1.19) S2k ∼
(

2k

k

)
1

k + 1
pk+1 as p → ∞,

which can be proved for each fixed integer k > 0 using the work of Katz on
Kloosterman sheaves [8, p. 64]. Note that the estimate

S2k < 4kpk+1

follows immediately from (1.2) and the Weil bound [8, (4.19)].
By (1.7) and (1.8),

(1.20) |S5| ≤ (6 + 9/p)p3 < 8p3, for p > 5.

This is a special case of the estimate

(1.21) |S2k+1| ≤
(

4k −
(

2k + 1

k

)
+

((
2k + 1

k

)
− 1

)
/p

)
pk+1

for p > 2k + 1, which again can be proved for each fixed integer k > 0 using
[8, p. 64].

By (1.5), (p/3)S3 > 0 for all p > 3. It can also be shown (using the
estimates of Katz) that (p/3)S5 > 0 for all p > 5. On the other hand,
S7, S9, S11, and S13 are each negative when, e.g., p = 2161.

2 Theorems and preliminaries

Theorem 2.1 Let n > 1 be odd, with binary expansion

1 + 2a1 + 2a2 + · · · + 2am , 0 < a1 < a2 < · · · < am.

Write

(2.1) Mn = Π(2am ± 2am−1 ± · · · ± 2a1 ± 1),
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where the product is over all 2m choices of signs. Then for each prime p > n,

(2.2) Sn ≡ −
(

p

Mn

)
(mod 4),

where the symbol on the right is the Jacobi symbol.

Example: For n = 21, we have M21 = Π(24±22±1) = 21·19·13·11 = 57057,
so

S21 ≡ −
( p

57057

)
(mod 4)

for all p > 21.

Theorem 2.2 Let n > 1 be even, with binary expansion

2a1 + · · · + 2am , 0 < a1 < · · · < am.

Then for each prime p > n,

(2.3) Sn ≡



1 − p (mod 4), if m = 1
−1 (mod 4), if m = 2

1 (mod 4), if m > 2.

Example: For p > 14, we have S14 ≡ 1 (mod 4), S6 ≡ S10 ≡ S12 ≡
−1 (mod 4), and S2 ≡ S4 ≡ S8 ≡ 1 − p (mod 4).

For the proofs of Theorems 2.1 and 2.2, we will need the following result
of Kummer (see [5]) for binomial coefficients

(
N
M

)
.

Theorem (Kummer, 1852) Let q be a prime. Then

qc‖
(

N

M

)
,

where c is the number of carries resulting from the addition of M and N −M
in base q.

We will also need the simple facts

(2.4) K(0) = −1
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and, for nonzero a (mod p),

(2.5) K(a) ≡
{

ζ2b
p + ζ−2b

p (mod 2), if a ≡ b2 (mod p)

0 (mod 2), if
(

a
p

)
= −1.

To prove (2.5), first note that the term ζ
x+a/x
p in (1.1) remains unchanged

when x is replaced by a/x, then note that x 6≡ a/x (mod p) unless x ≡
±b (mod p) with a ≡ b2 (mod p).

Finally, for the quadratic character φ on Fp (defined by φ(r) = (r/p)),
recall that the quadratic Gauss sum

(2.6) G(φ) :=

p−1∑
x=1

φ(x)ζx
p =

p−1∑
b=0

ζb2

p

satisfies the elementary formula [1, p. 12]

(2.7) G(φ)2 = φ(−1)p.

3 Proof of Theorem 2.1

Assume that p > n, where

(3.1) n = 1 + 2a1 + · · · + 2am , 0 < a1 < · · · < am.

Our objective is to prove (2.2). If n = 3, then (2.2) follows from (1.5), so
assume that n ≥ 5. For brevity, write

(3.2) N = n − 1.

For nonzero a (mod p), (2.5) yields

(3.3) K(a)N ≡
{ (

ζ2b
p + ζ−2b

p

)N
(mod 4), if a ≡ b2 (mod p)

0 (mod 4), if
(

a
p

)
= −1.

By (2.4) and (3.3),

Sn ≡ (−1)n +
1

2

p−1∑
b=1

K(b2)n(3.4)

≡ −1 +
1

2

p−1∑
b=1

(
ζ2b
p + ζ−2b

p

)N
K(b2) (mod 4).
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The lower limit b = 1 on the far right may be replaced by b = 0, since 8|2N .
Thus

Sn + 1 ≡ 1

2

N∑
k=0

(
N

k

) p−1∑
b=0

K(b2) ζ2b(2k−N)
p(3.5)

=
1

2

N∑
k=0

(
N

k

) p−1∑
x=1

ζx
p

p−1∑
b=0

ζb2/x+2b(2k−N)
p

=
1

2

N∑
k=0

(
N

k

) p−1∑
x=1

ζx−x(2k−N)2

p

p−1∑
b=0

ζ(b+x(2k−N))2/x
p

= G(φ)
1

2

N∑
k=0

(
N

k

) p−1∑
x=1

φ(x)ζx(n−2k)(2k+2−n)
p

= G2(φ)
1

2

N∑
k=0

(
N

k

)
φ(n − 2k)φ(2k + 2 − n) (mod 4),

where the last equality follows because (n− 2k)(2k + 2− n) 6≡ 0 (mod p), in
view of the fact that n is an odd integer < p. The right side of (3.5) is an
integer, and G(φ)2 ≡ 1 (mod 4) by (2.7). Thus

Sn + 1 ≡ 1

2

N∑
k=0

(
N

k

)
φ(n − 2k)φ(2k + 2 − n)(3.6)

=
1

2

(
N

N/2

)
+

∑
0≤k<N/2

(
N

k

)
φ(n − 2k)φ(2k + 2 − n)

≡ 1

2

(
N

N/2

)
+

∑
0≤k<N/2

(
N

k

)
(−1 − φ(n − 2k) − φ(2k + 2 − n))

=

(
N

N/2

)
− 2N−1 −

∑
0≤k<N/2

(
N

k

)
{φ(n − 2k) + φ(2k + 2 − n)}

≡
(

N

N/2

)
−

∑
0 ≤ k < N/2(N

k

)
odd

(
N

k

)
{φ(n − 2k) + φ(2k + 2 − n)} (mod 4),

where the last congruence holds because the expression in braces is even.
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Let T denote the set of 2m−1 subsums of the sum 2am−1 + · · · + 2a1 . If
m = 1, interpret T = {0}. For 0 ≤ k < N/2, Kummer’s Theorem gives

(3.7)

(
N

k

)
is odd if and only if k ∈ T.

Also by Kummer’s theorem,

(3.8) 2m

∥∥∥∥
(

N

N/2

)
.

Suppose first that m = 1. By (3.6) – (3.8),

(3.9) Sn ≡ 1 − φ(n) − φ(2 − n) ≡ −φ(n(2 − n)) (mod 4).

By (2.1), Mn = n(n − 2) ≡ 3 (mod 4), so (3.9) yields, in view of quadratic
reciprocity,

Sn ≡ −
(

p

Mn

)
(mod 4).

This completes the proof of (2.2) in the case m = 1, so suppose now that
m > 1. By (3.6) – (3.8),

(3.10) −Sn ≡ 1 +
∑
k∈T

(φ(n − 2k) + φ(2k + 2 − n)) (mod 4).

The right side of (3.10) is the sum of 2|T | + 1 = 2m + 1 terms in {±1}.
It is easily proved that any sum of t terms in {±1} with t ≡ 1 (mod 4) is
congruent (mod 4) to the product of these same t terms. Thus

(3.11) Sn ≡ −
∏
k∈T

φ((n − 2k)(n − 2k − 2)) (mod 4).

By (3.1) and the definition of T ,

(3.12) Mn =
∏
k∈T

(n − 2k)(n − 2k − 2).

Note that Mn ≡ (−1)|T | = 1 (mod 4). By (3.11) – (3.12) and quadratic
reciprocity,

(3.13) Sn ≡ −φ(Mn) = −
(

p

Mn

)
(mod 4)

and the proof of (2.2) is complete. ¤
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4 Proof of Theorem 2.2

As might be expected from the relative simplicity of (2.3) compared to (2.2),
Theorem 2.2 has a considerably shorter proof than Theorem 2.1. Assume
that p > n, where

(4.1) n = 2a1 + · · · + 2am , 0 < a1 < · · · < am.

If n = 2 or 4, then (2.3) follows from (1.4) and (1.6), so assume that n ≥ 6.
By (2.4) and (3.3),

Sn ≡ (−1)n +
1

2

p−1∑
b=1

K(b2)n(4.2)

≡ 1 +
1

2

p−1∑
b=1

(
ζ2b
p + ζ−2b

p

)n

≡ 1 +
1

2

p−1∑
b=0

(
ζ2b
p + ζ−2b

p

)n

≡ 1 +
1

2

n∑
k=0

(
n

k

) p−1∑
b=0

ζ2b(2k−n)
p (mod 4).

As p > n, we have 2k − n ≡ 0 (mod p) if and only if k = n/2. Thus

(4.3) Sn ≡ 1 +
p

2

(
n

n/2

)
(mod 4).

By (4.3) and (3.8),

Sn ≡
{

1 (mod 4), if m > 2
−1 (mod 4), if m = 2.

This completes the proof of (2.3) when m > 1. Finally, assume m = 1, so
that n = 2a for some a ≥ 3. We have

(
n

n/2

)
=

2a−1∏
u=1

(2a−1 + u)

u
(4.4)

≡
4∏

v=1

(
2a−1 + v2a−3

v2a−3

)
=

4∏
v=1

(
4 + v

v

)
≡ −2 (mod 8).
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By (4.3) and (4.4),
Sn ≡ 1 − p (mod 4),

which completes the proof of (2.3). ¤

5 Conjectural congruences

In this section, we conjecture congruences for S7, S9 and S11 (mod 16), as
well as for S6 (mod 25), S8 (mod 27), S10 (mod 26), and S12 (mod 26). These
congruences have been verified for at least the first 360 primes.

Congruences for S7 (mod 16) when p > 7

S7 ≡ 1 ⇔ (p/5) = −1, (p/21) = 1, and(5.1)

(2/p) =

{
1, if (p/3) = 1

−(−1/p), if (p/3) = −1.

(5.2) S7 ≡ 3 ⇔ (p/15) = (p/7) = −1 and (−1/p) = −(p/3).

S7 ≡ 5 ⇔ (p/5) = 1, (p/21) = −1, and(5.3)

(2/p) =

{ −(−1/p), if (p/3) = 1
1, if (p/3) = −1.

(5.4) S7 ≡ 7 never occurs.

S7 ≡ 9 ⇔ (p/5) = −1, (p/21) = 1, and(5.5)

(2/p) =

{ −1, if (p/3) = 1
(−1/p), if (p/3) = −1.

(5.6) S7 ≡ 11 ⇔ (p/15) = (p/7) = −1 and (p/3) = (−1/p).

S7 ≡ 13 ⇔ (p/5) = 1, (p/21) = −1, and(5.7)

(2/p) =

{
(−1/p), if (p/3) = 1
−1, if (p/3) = −1.
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(5.8) S7 ≡ 15 ⇔ (p/15) = (p/7) = 1.

Congruences for S9 (mod 16) when p > 9

(5.9) S9 ≡ 15 if (p/7) = 1 and (p/15) = 1.

(5.10) S9 ≡ 7 if (p/7) = 1 and (p/15) = −1.

(5.11) S9 ≡ 5 if (p/7) = −1 and (p/15) = −(2/p).

(5.12) S9 ≡ 13 if (p/7) = −1 and (p/15) = (2/p).

Congruences for S11 (mod 16) when p > 11

S11 ≡ 1 ⇔ (p/55) = (p/3) = −(p/7) and(5.13)

(2/p) =

{
1, if (p/3) = 1

(11/p), if (p/3) = −1.

S11 ≡ 3 ⇔ (p/77) = (p/5) = −(p/3) and(5.14)

(p/3) =

{
(p/7), if (−1/p) = −1

1, if (−1/p) = 1.

S11 ≡ 5 ⇔ (p/3) = (p/7) = −(p/55) and(5.15)

(2/p) =

{ −1, if (p/3) = 1
(11/p), if (p/3) = −1.

S11 ≡ 7 ⇔ (p/77) = (p/3) = (p/5)(5.16)

and (p/7) = (−1/p) = −1.

S11 ≡ 9 ⇔ (p/55) = (p/3) = −(p/7) and(5.17)

(2/p) =

{ −1, if (p/3) = 1
−(11/p), if (p/3) = −1.
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S11 ≡ 11 ⇔ (p/77) = (p/5) = −(p/3) and(5.18)

(p/3) =

{ −(p/7), if (−1/p) = −1
−1, if (−1/p) = 1.

S11 ≡ 13 ⇔ (p/3) = (p/7) = −(p/55) and(5.19)

(2/p) =

{
1, if (p/3) = 1

−(11/p), if (p/3) = −1.

S11 ≡ 15 ⇔ (p/77) = (p/3) = (p/5) and(5.20)

(p/7), (−1/p) are not both − 1.

Congruences for S6 (mod 32) when p > 6

The congruences below depend on parameters in the following binary
quadratic forms representing p:

(5.21) p = a2 + 4b2, when p ≡ 1 (mod 4),

(5.22) p = c2 + 2d2, when p ≡ 3 (mod 8),

(5.23) p = e2 + 6f 2, when p ≡ 7 (mod 24),

and

(5.24) p = 6h2 − g2, when p ≡ 23 (mod 24).

We have the following conjectures for S6 (mod 32).

(5.25) If p ≡ 1 (mod 24), then S6 ≡ 11.

If p ≡ 5 (mod 24), then(5.26)

S6 ≡
{

3, if a ≡ ±b (mod 12)
19, otherwise.

If p ≡ 7 (mod 24), then(5.27)

S6 ≡
{

3, if e ≡ ±1 (mod 12)
19, otherwise.
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If p ≡ 11 (mod 24), then(5.28)

S6 ≡
{

3, if ± d ≡ 3 − 2(−1)(p−3)/8 (mod 12)
19, otherwise.

If p ≡ 13 (mod 24), then(5.29)

S6 ≡
{

11, if 3|b
27, otherwise.

If p ≡ 17 (mod 24), then(5.30)

S6 ≡
{

11, if 4|b
27, otherwise.

If p ≡ 19 (mod 24), then(5.31)

S6 ≡
{

3, if c ≡ ±1 (mod 12)
19, otherwise.

If p ≡ 23 (mod 24), then(5.32)

S6 ≡
{

11, if g ≡ ±1 or ± 5 (mod 24)
27, otherwise.

Congruences for S8 (mod 128) when p > 8

The congruences below again depend on parameters in (5.21) – (5.24).

(5.33) If p ≡ 1 (mod 24), then S8 ≡ 37 − p.

If p ≡ 5 (mod 24), then(5.34)

S8 ≡
{

37 − p, if a ≡ ±b (mod 12)
101 − p, otherwise.

If p ≡ 7 (mod 24), then(5.35)

S8 ≡
{

61 − p, if e ≡ ±1 (mod 12)
125 − p, otherwise.
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If p ≡ 11 (mod 24), then(5.36)

S8 ≡
{

93 − p, if ± d ≡ 3 − 2(−1)(p−3)/8 (mod 12)
29 − p, otherwise.

If p ≡ 13 (mod 24), then(5.37)

S8 ≡
{

69 − p, if 3|b
5 − p, otherwise.

If p ≡ 17 (mod 24), then(5.38)

S8 ≡
{

37 − p, if 4|b
101 − p, otherwise.

If p ≡ 19 (mod 24), then(5.39)

S8 ≡
{

93 − p, if c ≡ ±1 (mod 12)
29 − p, otherwise.

If p ≡ 23 (mod 24), then(5.40)

S8 ≡
{

93 − p, if g ≡ ±1 or ± 5 (mod 24)
29 − p, otherwise.

Note the remarkable parallel between the congruences for S6 and S8. This
does not persist for S10 and S12, where additional quadratic forms come into
play.

Congruences for S10 (mod 64) when p > 10

If p ≡ 71 (mod 120), so p = 60u2 − v2, then(5.41)

S10 ≡
{

15, if ± v ≡ 5 − 3(−1)(p−7)/8 (mod 15)
47, if ± v ≡ 5 + 3(−1)(p−7)/8 (mod 15).

If p ≡ 17 (mod 120), so p = 3s2 + 5t2, then(5.42)

S10 ≡
{

15, if t ≡ ±1 (mod 12)
47, if t ≡ ±5 (mod 12).

As the complete list of congruences for S10 (mod 64) is quite long, we refer
the reader to [3] for the remaining congruences.
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Congruences for S12 (mod 64) when p > 12

If p ≡ 71 (mod 240), so p = x2 − 10y2, then(5.43)

S12 ≡
{

3, if ± y ≡ 3 − 2(−1)(p−7)/16 (mod 12)
35, if ± y ≡ 3 + 2(−1)(p−7)/16 (mod 12).

If p ≡ 17 (mod 240), so p = 3s2 + 5t2, then(5.44)

S12 ≡
{

31, if ± s ≡ 3 − 2(−1)(p−17)/16 (mod 12)
63, if ± s ≡ 3 + 2(−1)(p−17)/16 (mod 12).

For the long list of remaining congruences for S12 (mod 64), see [3].
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