The Shortest-Network Problem

What is the shortest network of line segments interconnecting
an arbitrary set of, say, 100 points? The solution to this problem has
eluded the fastest computers and the sharpest mathematical minds

by Marshall W. Bern and Ronald L. Graham

Company figured that it would

save millions of dollars -if it
could find the shortest possible net-
work of telephone lines to intercon-
nect its 100 customers. In search of
a solution, Steiner hired the Cava-
lieri Computer Company, known for
the world’s fastest programmers and
computers. After a week Cavalieri pre-
sented a program to solve Steiner's
problem and showed that the program
had indeed found a shortest network
for 15 of the customers in just one
hour. Steiner paid Cavalieri $1,000 for
the program and promised to pay one
cent per second for the time it would
take a computer to generate the com-
plete solution. By the time the com-
puter had finished the calculation for
all 100 customers, the telephone com-
pany owed trillions of dollars in com-
puter expenses and its customers had
all moved many kilometers away—ei-
ther by choice or by continental drift!
Did Cavalieri sell Steiner a faulty
program? This dilemma is one exam-
ple of the Steiner problem, which asks
for the shortest network of line seg-
ments that will interconnect a set of
given points. The Steiner problem can-
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not be solved by simply drawing lines
between the given points, but it can
be solved by adding new ones, called
Steiner points, that serve as junctions
in a shortest network. To determine
the location and number of Steiner
points, mathematicians and computer
scientists have developed algorithms,
or precise procedures. Yet even the
best of these algorithms running on
the fastest computers cannot provide
a solution for a large set of given
points because the time it would take
to solve such a problem is impractical-
ly long. Furthermore, the Steiner prob-
lem belongs to a class of problems for
which many computer scientists now
believe an efficient algorithm may nev-
er be found. For this reason the Ca-
valieri Computer Company should be
exonerated.

On the other hand, Cavalieri could
have developed a practical program
that would have yijelded solutions
somewhat longer than the shortest
network. Approximate solutions to the
shortest-network problem are com-
puted routinely for numerous appli-
cations, among them designing inte-
grated circuits, determining the evolu-
tionary tree of a group of organisms
and minimizing materials used for
networks of telephone lines, pipelines
and roadways.

he Steiner problem, in its gener-

al form, first appeared in a pa-

per by Milo§ Kossler and Vojtéch
Jarnik in 1934, but the problem did
not become popular until 1941, when
Richard Courant and Herbert E. Rob-
bins included it in their book What
Is Mathematics? Courant and Robbins
linked the problem to the work of
Jakob Steiner, a 19th-century mathe-
matician at the University of .Berlin.
Steiner’s work sought the single point
whose connections to a set of given
points had the shortest possible total
length. In about 1640, however, a spe-
cial case of both problems—the one
Steiner worked on and the one that
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bears his name—was first posed: Find
the point P that minimizes the sum of
the distances from P to each of three
given points. Evangelista Torricelli and
Francesco Cavalieri solved the prob-
lem independently. Torricelli and Ca-
valieri deduced that if the angles at
point P are all 120 degrees or more,
then the total distance is minimized.

Knowing that the angles at P meas-
ure at least 120 degrees, Torricelli and
Cavalieri developed a geometric con-
struction for finding P [see top illus-
tration on page 87). Line segments are
drawn connecting the given points
(call them A, B and C, with B at the
vertex of the largest angle). If angle Bis
greater than or equal to 120 degrees,
then point P coincides with point B.
In other words, the shortest network
is simply the line segments between
A and B and between B and C. If angle
Bis less than 120 degrees, then point
P must be somewhere inside the tri-
angle. To find it, an equilateral trian-
gle is drawn along the longest side of
the triangle, namely the side between
points A and C. The third vertex of the
equilateral triangle, labeled X, is oppo-
site point B. The equilateral triangle is
circumscribed, and a line segment is
drawn from point B to X. Point P lies
where the line intersects the circle.
Joining points A, Band C to P creates
three angles of exactly 120 degrees
and yields the shortest network. Fur-
thermore, the length of the line from B
to Xturns out to be equal to the length
of the shortest network. For the pur-
pose of our article we shall call X
the replacement point, since replacing
points Aand Cwith Xleaves the length
of the network unchanged.

The three-point and the multipoint
Steiner problem share many proper-
ties. The form of the solutions, known
as trees, is such that removing any line
segment from the shortest network
detaches one of the given points. In
other words, one cannot follow the
network from a given point back to the
same point without retracing lines.



SOAP-BUBELE COMPUTER (fop) challenges an electronic com-
puter (bottom) to find the shorest network of line segments
interconnecting 29 cities. The soap-bubble computer, in which
the placement of pegs mimics the geography, minimizes the
length of soap films in a local area. It provides a short pet-

work, but not necessarily the shortest one. The electronic
computer implements an algorithm, authored by Ermest ].
Cockayne and Denton E Hewgill of the University of Victoria,
that guarantees the true shortest network The 28-point prob-
lem is close to the current limit of computing capabilities.
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NETWORK PROBLEM for points arranged at the vertexes of an equilateral triangle, a
rectangle and a “ladder” has various solutions. In a, d and g the points are connected
without adding new points, in what is known as the minimum spanning solution, or
tree. Steiner trees, which are made by adding additional junction points, are shown in
. & f, hand i Only ¢, fand i are shortest Steiner trees, or shortest networks. The
number under each solution gives the approximate total length of the line segments,

Solutions to the three-point and mul-
tipoint problem are therefore called
Steiner trees, the segments are known
as edges, and the points—analogous
to P—that must be added to construct
the tree are called Steiner points.
The three-point Steiner problem
also provides information abour the
geometry of shortest Steiner trees.
First, every angle measures at least
120 degrees, which implies that every
given point is connected to the tree by
no more than three edges. Second, at
every Steiner point exactly three edges
meet, at 120-degree angles. Third, the
number of edges in a tree is always
one less than the number of given
points added to the Steiner points.
And last, since exactly three edges
meet at every Steiner point and at least
one edge must touch every given
point, the maximum number of Stei-
ner points in any problem is two few-
er than the number of given points.

or the same number and ar-
F rangement of given points, many
different Steiner trees can be
constructed that have those proper-
ties. Some of the trees, known as local-

ly minimal solutions, cannot be short-

ened by a small perturbation, such as
moving an edge slightly or splitting a
Steiner point. But not every locally
minimal Steiner tree is a shortest so-
lution possible. Large-scale rearrange-
ments of the Steiner points may be
necessary to transform a network into
a shortest possible tree, called a glob-
ally minimal Steiner tree,

Let us demonstrate with a set of
given points that define the four cor-
ners of a rectangle measuring three
meters by four. The solutions have
two Steiner points, which can be ar-
ranged in two different ways. Fach
arrangement forms a Steiner tree that
has three edges connected to each
Steiner point at 120 degrees. If the
Steiner points are arranged parallel to
the width, the locally minimal Steiner
tree that results is aboutr 9.9 meters
long, If the Steiner points are arranged
parallel to the length, a globally mini-
mal Steiner tree results, measuring
about 9.2 meters.

A brute-force approach to discover-
ing a shortest network is to search
through all possible locally minimal
Steiner trees, calculate their lengths
and choose the shortest one. Because
Steiner points can be placed anywhere,
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however, it is not clear that all possible
locally minimal Steiner trees can be
computed in a finite amount of time,
Z.A. Melzak of the University of British
Columbia overcame the difficulty and
developed the first algorithm for the
Steiner problem.

Melzak’s algorithm considers many
possible connections between given
points and many possible locations
for Steiner points. The algorithm can
be outlined in two parts. The first part
simply separates the set of given
points into every possible subset of
given points. The second part creates
a number of possible Steiner trees for
each subset by using a construction
similar to the one employed to solve
the three-point problem.

Just as in the three-point problem, a
replacement point can be substtuted
for two of the given points without
changing the length of the solution. In
the general problem, however, the al-
gorithm must guess which pair to re-
place, and eventually it tries all pos-
sible guesses. Moreover, the replace-
ment point may be placed on either
side of a line segment that joins the
pair, because the equilateral triangle
used in the construction can be orient-
ed in two directions. After one pair
of points in the subset is replaced by
one of the two possible replacement
points, each subsequent step of the
algorithm replaces either two given
points, a given point and a replace-
ment point or two replacement points
with another replacement point until
the subset is reduced to three points.

Once the Steiner point for those
three points is found, the algorithm
works backward, attempting to deter-
mine the Steiner point corresponding
to each replacement point [see bottom
ilustration on oppasite page|. An at-
tempt can fail because of contradic-
tory constraints on the placement of
Steiner points. A successful attempt,
however, creates a Steiner tree con-
necting each given point in the subset
with one edge. After considering all
replacement sequences, the algorithm
chooses the shortest of these Steiner
trees for the subset. Combining short-
esl Steiner trees for subsets in all
possible ways to span the original set
of given points yields all possible lo-
cally minimal Steiner trees, and the
geometry of the overall shortest net-
work can be determined.

Melzak's algorithm can take an
enormous amount of time even for
small problems because it considers
so many possibilities. A 10-point prob-
lem, for instance, can be separated
into 512 subsets of given points, Al-
though two-point subsets do not re-



quire much work, each of the 45 sub-
sets of eight points has rwo million
replacement sequences. Furthermore,
there are more than 18,000 ways to
recombine the subsets into trees,

o be sure, investigators have

found better ways o organize

the computation and increase
the speed of the algorithm. Instead of
considering the problem's geometry,
they focus on possible patterns of
connections in the network—what is
known as the network's topology. A
topology specifies which points are
connected to one another, but not the
actual locations of Steiner points. As-
suming a certain topology, one can
find an appropriate replacement se-
quence relatively quickly. This organi-
zation greatly increases the speed of
computing shortest Steiner trees for
the subsets. For an eight-point subset,
for example, the algorithm needs to
consider only about 10,000 different
topologies rather than two million dif-
ferent replacement sequences.

Because the number of topologies
grows rapidly with the size of the
subset, Steiner problems might be-
come more manageable if only very
small subsets of the set of given
points needed to be considered. Ex-
periments with Melzak's algorithm
suggest that the shortest network for
more than six random points can usu-
ally be separated into shortest net-
works for smaller sets of points. By
considering special arrangements of
points called ladders, however, Fan K.
K. Chung of Bell Communications Re-
search and one of us {(Graham) demon-
strated that there are arbitrarily large
sets of points for which the shortest
Steiner tree cannot be separated. A
ladder is an arrangement in which all
the given points are equally spaced
along two parallel lines. A general so-
lution was discovered for this quite
special Steiner problem. It showed
that the number of Steiner points in a
shortest Steiner tree for a ladder with
an odd number of “rungs” is the maxi-
mum: the number of given points mi-
nus two. Such a Steiner tree cannot be
separated because the placement of
every Steiner point requires that every
given point be considered simultane-
ously. Thus one cannot simply declare
a cutoff on the size of subsets consid-
ered in Melzak's algorithm.

A number of investigators improved
on Melzak's algorithm by finding sub-
tler ways to reduce the amount of
work [see illustration on next pagel.
These methods prune, or eliminate,
parts of the computation that would
only yield long networks. New pruning

SHORTEST NETWORK for three points A, B and C can be constructed. An equilateral
triangle ACX (green) is erected along the longest side of triangle ARC and then cir-
cumscribed with a circle ( yellow). The intersection of the circle and a line segment
from B to X, the equilateral triangle's third vertex, marks point F, known as the Slein-
er point. Joining points A, Band C 1o Plorms three angles of 120 degrees and yields
the shortest network. The length of line segment BX equals the network’s length.

MELZAK'S ALGORITHM reduces a shortest-network problem into smaller problems.
Point A is the correct place to separate the problem into a three-point problem and a
five-point problem. To construct possible Steiner trees for the five-point problem, a
pair of points (B and C, for instance) can be replaced with a single point (X in this
case) by constructing an equilateral triangle on one side of B and C. The problem
is thus reduced to four points: X, D, G and A. A pair of these points can then be
replaced—in this case, first D and X with ¥ and then G and A with Z Each of the
equilateral triangles that results { XDY, AGZ and BCX) is circumscribed with a circle.
The points at which a line from Y to Z intersects two of the circles give the Steiner
points @ and R, and the intersection of a line from X to @ with the remaining circle
determines the Steiner point P. Since the best partitioning and pairing cannot be
determined in advance, all possibilities must be considered to find the shortest tree.
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techniques have reduced computation
times substantially. Programs based
on Melzak's algorithm, such as one
written in 1969 by Ernest J. Cockayne
of the University of Victoria, could
solve all mine-point problems and
some 12-point problems in about half
an hour. A program written recently
by Cockayne and a colleague at Vic-
toria, Denton E. Hewgill, uses a power-
ful pruning technique introduced by
Pawel Winter of the University of Co-
penhagen to solve all 17-point prob-
lems and most randomly generated
30-point problems in a few minutes,
Winter's pruning method is so suc-
cessful at eliminating possible topolo-
gies that the bulk of the computation
is now the recombination of solutions
for subsets,

or any of these programs, how-

ever, running times can depend

quite sensitively on the geometry
as well as on the number of points.
Moreover, the computation time of
even the most sophisticated algorithm
grows exponentially with the number
of points, and Steiner problems of 100
points are still well out of reach. Will
an efficient algorithm ever be found to

compute solutions for large Steiner
problems?

Advances in theoretical computer
science have convinced most investi-
gators that the existing algorithms for
Steiner problems cannot be substan-
tially improved. This theory assigns a
size to each instance, or example, of a
problem. For Steiner problems there is
a natural measure of size: the number
of given points. One then considers
the number of basic computer opera-
tions—such as additions, subtractions
or comparisons—an algorithm may
need in order to solve an instance of a
certain size. Since different instances
of the same size may require different
numbers of operations, one looks at
the maximum number of operations
as a funcrion of size. If the number of
operations increases by the size of the
instance (n) to some power, as in the
expressions n?, 5nor Gn+ n', the pro-
cedure is called a polynomial-time al-
gorithm. These algorithms are consid-
ered efficient, at least in a theoretical
sense. If the number of operations
increases exponentially with size, as
in cases such as 2%, 5" or 3n¥ x 4" the
procedure is known as an exponential-
time algorithm.

F

PRUNING METHODS increase the efficiency of algorithms for finding short networks.
One way to prune, or rule out, possible networks (devised by Cockayne) is to consid-
er the order in which a rubber band (red) stretched around the set of given points
touches them. The rubber band touches all the points except Cand H, but € can be
included in the sequence because the angle formed by point Cand two consecutive
points in contact with the rubber band measures at least 120 degrees. The order of
points is then ABCDEFG. An unbroken path ( purple) traced around a possible network
(blue) touches the points in the order ACBDEFHG. Since B and C are reversed with
respect to the order established by the rubber band, this network can be pruned.
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Although for very small problems
both polynomial- and exponential-
time algorithms are practical, for large
problems the solution times of expo-
nential-time algorithms are so slow
that these algorithms are hopeless-
ly impractical [see “The Efficiency of
Algorithms,” by Harry R. Lewis and
Christos H. Papadimitriou; SCilENTIFIC
AMERICAN, January, 1978). For suffi-
ciently large problems a polynomial-
time algorithm executed on even the
slowest machine will yield an answer
sooner than an exponential-time algo-
rithm running on a supercomputer.

Even though exponential-time algo-
rithms have been found for the Stein-
er problem (Melzak's algorithm, for
example), no polynomial-time algo-
rithms have yet been found. The pros-
pects for an efficient algorithm are
not good. In 1971 Stephen A. Cook of
the University of Toronto proved that
if a polynomial-time algorithm could
be found for any single problem in a
group now known as NP-hard prob-
lems, that algorithm could be used to
solve all other problems efficiently in
a large class of hard problems includ-
ing WP-hard problems. Later one of
the authors (Graham), working with Mi-
chael R. Garey and David S. Johnson
of the AT&1' Bell Laboratories, proved
that the Steiner problem is an NP-
hard problem. Since all NP-hard prob-
lems have to date foiled the efforts of
thousands of workers, it is consid-
ered unlikely that any NP-hard prob-
lem, including the Steiner problem, can
be solved by a polynomial-time algo-
rithm. Proving that NP-hard problems
cannot be solved efficiently, however,
is the preeminent problem in theoreti-
cal computer science,

Although it does not appear likely
that an efficient, polynomial-time al-
gorithm will be found for computing
shortest networks, there are practical
algorithms producing slightly longer
networks. One example is the algo-
rithm for solving the minimum-span-
ning-tree problem, which searches for
the shortest network of line segments
that will interconnect a set of given
points without adding any new ones.
To solve it one connects the two giv-
en points that are closest together,
and in each subsequent step one
connects the closest pair of points
that can be joined without forming a
closed path. After all, an edge can be
removed from a closed path and leave
given points still connected by the
remaining edges.

Edgar N. Gilbert and Henry O. Pollak
of Bell Laboratories have conjectured
that the ratio of a shortest Steiner tree
to a minimum spanning tree is at least



J/3/2, that is, the Steiner tree's length
is at most about 13.4 percent shorter
than the minimum spanning tree's
length. The ratio of +/3/2 occurs in a
simple example: three given points
forming an equilateral triangle. Al-
though the conjecture remains un-
proved, Chung and one of the authors
{Graham) have proved that the Steiner
tree is at most 17.6 percent shorter
than the spanning tree.

Minimum spanning trees can often
be shortened 3 to 4 percent by careful-
Iy adding Steiner points and adjust-
ing the tree. One of the authors (Bern)
has shown that this kind of inexact
algorithm has some theoretical justi-
fication, since the average length of
an adjusted tree will be a little less
than the average length of a minimum
spanning tree.

he minimum-spanning-tree and

shortest-network problems have

been applied to constructing tel-
ephone, pipeline and roadway net-
works. The solutions, whether approx-
imate or exact, can provide guidelines
for the layout of the networks and the
necessary amounts of materials. More
complicated versions of the Steiner
problem can accommodate the need
to avold certain geographic features
or to find the shortest connections
along preexisting networks.

Perhaps the most practical applica-
tion of the Steiner problem is in the
design of electronic circuits. A short
network of wires on an integrated cir-
cuit requires less time to charge and
discharge than a long network and so
increases the circuit's speed of oper-
ation. The shortest-network problem
on circuits, however, involves a differ-
ent kind of geometry, since wires on a
circuit generally run in only two direc-
tions, vertical and horizontal.

The problem, known as the rectilin-
ear Steiner problem, was first investi-
gated in 1965 by Maurice Hanan of the
[BM Corporation's Thomas ]. Watson
Research Center in Yorktown Heights,
N.Y. As in the original Steiner problem,
the solution to the rectilinear version
is also a tree containing Steiner points
and given points, but edges meet at
90 or 180 degrees. Although Steiner
points could conceivably lie anywhere
in the rectilinear problem, Hanan
showed that it is possible to restrict
the locations of Steiner points in a
shortest rectilinear network. A verti-
cal and a horizontal line are drawn
through each given point, and each
intersection of two lines defines a pos-
sible Steiner point. An algorithm can
try all subsets of possible Steiner
points in order to compute a short-

VARIATIONS of the shortest-network problem have been applied to the design of
electronic circuits in order to increase operating speeds. The shortest network of
horizontal and vertical wires that interconnect a set of terminals is shown in ma-
genta. The background shows other wires and terminals arranged in deeper layers.

est network. As the number of given
points increases, however, the solu-
tion time of such a brute-force algo-
rithm grows exponentially. More so-
phisticated but still exponential-time
algorithms can solve rectilinear Steiner
problems that have about 40 points.
A rectilinear version of the min-
imum-spanning-tree problem, which
can be solved efficiently by the algo-
rithm that chooses the shortest con-
nection at each step, unless that con-
nection forms a closed path. Frank K
Hwang of Bell Laboratories has proved
that a rectilinear Steiner tree is never
shorter than a rectilinear minimum
spanning tree by more than one-third.
The most surprising application of
the Steiner problem is in the area of
phylogeny. David Sankoff of the Uni-
versity of Montreal and other investi-
gators defined a version of the Stei-
ner problem in order to compute plau-
sible phylogenetic trees. The workers
first isolate a particular protein that is
common to the organisms they want
1o classify. For each organism they
then determine the sequence of the
amino acids that make up the protein
and define a point at a position de-
termined by the number of differen-
ces between the corresponding or-
ganism's protein and the protein of
other organisms. Organisms with simi-
lar sequences are thus defined as be-
ing close together and organisms with
dissimilar sequences are defined as
being far apart. In a shortest network
for this abstract arrangement of given
points, the Steiner points correspond
to the most plausible ancestors, and
edges correspond to a relation be-
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tween organism and ancestor that
assumes the fewest mutarions. Since
the phylogenetic Steiner problem is
no easier than other Steiner problems,
however, the problem—except as it is
applied to small numbers of organ-
isms—has served more as a thought
experiment than as a practical re-
search toaol.

Ithough knowledge about algo-
rithms has progressed greatly in
recent years, the shortest-net-
work problem remains tantalizingly
difficult. The problem can be stated in
simple terms, and yet solutions defy
analysis, A tiny variation in the geom-
etry of a problem may appear to be
insignificant, and yet it can radical-
ly alter the shortest network for the
problem. This sensitivity renders even
peripheral questions about shortest
networks guite challenging. The short-
est-network problem will continue to
frustrate and fascinate us for years
o come.
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