Midterm - CSE 167 - Some Study Problems
This is a few extra purbloms for review /study, to help prepare for the CSE 167 midterm. You should also veriew guin and homework puoblems. A synapsis of lecture teppies can be found on the course will page, to hals you review course topics. No calculators or cheat sheet will be allowed for the midterm.

1) An " F " is affected by an affine tramstumation A as shawn. Give the 3×3 homagenow maori " the

 represents A.
(b)

What 3×3 matrix represents A^{-1} ?
(c) What sequence of pseadb-OpmhGl commands could be cred to draw the "F" on the right using a routine draw F() the draws the "F" in the left.
(2) When is it preferable to use orthographic vieasing transformations? Why? Similarly, when is it preferable to use perspective tramstamations?
(3) Describe the difference. loetween Thong shading and Gourand shading: What are their relative advantages?
(4) What are the three kinds (ar fur) of light used in the Thing lighting model. Draw pictures illustrating the different kinder of reflection in the Thong lighting model.
5) Let $\vec{u}=\langle 1,1,1\rangle$.

Let $\vec{v}=\langle 1,0,0\rangle$.
What is projection of \vec{v} auto \vec{u} ?
What is the result $\vec{\omega}$ of rotating $\vec{v} 90^{\circ}$ around $\vec{u}=\langle 1,1,1\rangle$ with direction of notation given by the right rule?
6) Let $R_{90^{\circ}, \vec{e}}$ be a 90° vocation around the x-axis (in \mathbb{R}^{3}).

Let $R_{90, y}$ be a 90° rotation around the y-axes.
Give a 3×3 matrix that represents the linear transtiomation

$$
R_{90^{\circ}, \vec{j}} \circ R_{90^{\circ}, \vec{l}} \text {. Do the same for } R_{\text {eq, }, 1} \circ R_{90^{\circ}, \vec{j}} \text {. }
$$

7) Describe how double-buffening works.
8) Describe " z-fighting".
9) Define the term "aspect ratio"
10) Describe the "painter's algarithen" for hidden surface removal.
11) Describe how the depth buffer is used for hidden surface removal.
12) Cinsidn the infinite cylinder $\left\{\langle x, y, z\rangle:(1-y)^{2}+z^{2}=1\right\}$ The posit $\left\langle 1 / \sqrt{2}, r^{\prime}-1 / \sqrt{2}, 1 / \sqrt{2}\right\rangle$ is on the cylinder. What is the normal vector at this point $\langle 1 / \sqrt{2}, 1-1 / \sqrt{2}, 1 / \sqrt{2}\rangle$?
13) Find a parametric equation for the cylinder, between $x=0$ and $x=1$. Use the to find 'another formula for the rumal vectors for points on the cylinder.
